Singular-Value Decomposition with Applications

1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Matrices

Eigenvalues and Eigenvectors

Symmetric Matrices

Singular Value Decomposition

Applications

CUR

Matrices

Matrices

- 1. A Rectangular Array
- 2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse; Determinant
- 3. Row Operations; Linear Equations; Gaussian Elimination
- 4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular; Orthogonal; Orthonormal
- 5. Transformations Eigenvalues and Eigenvectors
- 6. Rank; Column and Row Space; Null Space
- 7. Applications: Page Rank, Dimensionality Reduction, Recommender Systems, ...

Utility Matrix M

A Matrix M where rows represent users, columns items, and entries in M represents the ratings.

M =	$\begin{bmatrix} 1 & & \\ 3 & & \\ 4 & & \\ 5 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{bmatrix}$	1 1 3 3 4 4 5 5 2 0 0 0 1 0	B B D D D D D D D D D D	$ \begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 4 & 4 \\ 5 & 5 \\ 2 & 2 \\ \end{array} $	=							
F 13	- 0'	2	01	٦								
.41	0'	7	.03									
.55	1		.04	[[1	2.5	0	0]	.56	.59	.56	.09	.09]
.68	1	1	.05		0	9.5	0	12	.02	12	.69	.69
.15	.59	-	65	5 L	0	0	1.35	.40	8	.40	.09	.09
.07	.73		.67									
.07 .07	.29	-	32	2				$\begin{bmatrix} .56 \\12 \\ .40 \end{bmatrix}$				

Questions: How to guess missing entries? How to guess ratings for a new user? ...

• Matrix-vector product: Ax = b

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

• Ax = b as linear combination of columns:

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} 8 \\ 12 \end{bmatrix} \begin{bmatrix} -2 \\ -8 \end{bmatrix}$$
$$= \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

• Matrix-matrix product A = BC:

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 6 & 16 \end{bmatrix}$$

• A = BC as sum of rank 1 matrices:

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 8 \\ 6 & 12 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 8 \\ 6 & 16 \end{bmatrix}$$

Row Reduced Echelon Form

$$\operatorname{Let} A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 4 & 8 \\ 10 & 16 & 24 \end{bmatrix}$$

1st Pivot: Replace r_2 by $r_2 - r_1$, and r_3 by $r_3 - 5r_1$:

 $\begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 8 \\ 0 & 6 & 24 \end{bmatrix}$

2nd Pivot: Replace r_3 by $r_3 - 3r_2$:

 $\begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 8 \\ 0 & 0 & 0 \end{bmatrix}$

RREF contd.

Divide the first row by 2, the second row by 2:

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Replace r_1 by $r_1 - r_2$:

$$R = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 4 & 8 \\ 10 & 16 & 24 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix} = R$$

Definitions:

- Rank = Number of non-zero pivots = 2
- Basis vectors of row space = rows corresponding to non-zero pivots in R $v_1 = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$
- Basis vectors of column space = Columns of *A* corresponding to non-zero pivots of *R*.

$$u_1 = \begin{bmatrix} 2\\2\\10 \end{bmatrix}$$
 and $u_2 = \begin{bmatrix} 2\\4\\16 \end{bmatrix}$

- A as sum of the product of rank 1 matrices

$$A = u_1 v_1^T + u_2 v_2^T = \begin{bmatrix} 2\\2\\10 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \end{bmatrix} + \begin{bmatrix} 2\\4\\16 \end{bmatrix} \begin{bmatrix} 0 & 1 & 4 \end{bmatrix}$$

Null Space

Null space of A = All vectors x such that Ax = 0. This includes the 0 vector $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$

Is there a vector $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, such that $Ax = x_1 \begin{bmatrix} 2\\2\\10 \end{bmatrix} + x_2 \begin{bmatrix} 2\\4\\16 \end{bmatrix} + x_3 \begin{bmatrix} 8\\8\\24 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

x = (1, -1, 1/4), or any of its scalar multiples, satisfies Ax = 0

Dimension of Null Space of A= Number of columns (A) - rank(A)= 3 - 2 = 1

Let A be $m \times n$ matrix with real entries.

Let R be RREF of A consisting of $r \leq \min\{m, n\}$ non-zero pivots.

- 1. $\operatorname{rank}(A) = r$
- 2. Column space is a subspace of R^m of dimension r, and its basis vectors are the columns of A corresponding to the non-zero pivots in R.
- 3. Row space is a subspace of R^n of dimension r, and its basis vectors are the rows of R corresponding to the non-zero pivots.
- 4. The null-space of A consists of all the vectors $x \in \mathbb{R}^n$ satisfying Ax = 0. They form a subspace of dimension n - r.

Eigenvalues and Eigenvectors

Given an $n \times n$ matrix A.

A non-zero vector v is an eigenvector of A, if $Av = \lambda v$ for some scalar λ .

 λ is the eigenvalue corresponding to vector v.

Example Let $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ Observe that $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Thus, $\lambda_1 = 5$ and $\lambda_2 = 1$ are the eigenvalues of A. Corresponding eigenvectors are $v_1 = [1, 3]$ and $v_2 = [1, -1]$, as $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$.

Matrices with distinct eigenvalues

Propertry

Let A be an $n \times n$ real matrix with n distinct eigenvalues. The corresponding eigenvectors are linearly independent.

Proof: Proof by contradiction. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues and v_1, \ldots, v_n the corresponding eigenvectors, that are linearly dependent. Assume v_1, \ldots, v_{n-1} are L.I. (otherwise work with a smaller set).

Dependence $\implies \alpha_1 v_1 + \ldots + \alpha_{n-1} v_{n-1} + \alpha_n v_n = 0$, where $\alpha_n \neq 0$.

 $\implies v_n = \frac{-\alpha_1}{\alpha_n}v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n}v_{n-1}$

Multiply by A: $Av_n = \lambda_n v_n = \frac{-\alpha_1}{\alpha_n} \lambda_1 v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} \lambda_{n-1} v_{n-1}$

Multiply by λ_n : $\lambda_n v_n = \frac{-\alpha_1}{\alpha_n} \lambda_n v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} \lambda_n v_{n-1}$

Subtract last two equations:

 $0 = \frac{-\alpha_1}{\alpha_n} (\lambda_n - \lambda_1) v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} (\lambda_n - \lambda_{n-1}) v_{n-1}$

Since, $\lambda_n - \lambda_i \neq 0$, \implies the vectors v_1, \ldots, v_{n-1} arre linearly dependent. A contradiction. Let *A* be an $n \times n$ real matrix with *n* distinct eigenvalues. Let $\lambda_1, \ldots, \lambda_n$ be the distinct eigenvalues and let x_1, \ldots, x_n be the corresponding eigenvectors, respectively. Let each $x_i = [x_{i1}, x_{i2}, \ldots, x_{in}]$.

Define an eigenvector matrix
$$X = \begin{bmatrix} x_{11} & x_{21} & \dots & x_{n1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{nn} \end{bmatrix}$$

Define a diagonal $n \times n$ matrix $\Lambda \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$

Consider the matrix product AX,

$$AX = A \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \dots & \lambda_n x_n \end{bmatrix} = X\Lambda$$

Since eigenvectors are linearly independent, we know that X^{-1} exists. Multiply by X^{-1} on both the sides from left in $AX = X\Lambda$ and we obtain

$$X^{-1}AX = X^{-1}X\Lambda = \Lambda \tag{1}$$

and when we multiply on the right we obtain

$$AXX^{-1} = A = X\Lambda X^{-1} \tag{2}$$

An Application of Diagonalization $A = X\Lambda X^{-1}$

Consider $A^2 = (X\Lambda X^{-1})(X\Lambda X^{-1}) = X\Lambda(X^{-1}X)\Lambda X^{-1} = X\Lambda^2 X^{-1}$ $\implies A^2$ has the same set of eigenvectors as A, but eigenvalues are squared.

Similarly, $A^k = X\Lambda^k X^{-1}$. Eigenvectors of A^k are same as that of A and its eigenvalues are raised to the power of k.

Symmetric Matrices

Example

Consider symmetric matrix $S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Its eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = 2$ and the corresponding eigenvectors are $q_1 = (1/\sqrt{2}, 1/\sqrt{2})$ and $q_2 = (1/\sqrt{2}, -1/\sqrt{2})$, respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Eigenvalues of Symmetric Matrices

All the eigenvalues of a real symmetric matrix S are real. Moreover, all components of the eigenvectors of a real symmetric matrix S are real.

Property

Any pair of eigenvectors of a real symmetric matrix S corresponding to two different eigenvalues are orthogonal.

Proof: Let q_1 and q_2 be eigenvectors corresponding to $\lambda_1 \neq \lambda_2$, respectively. We have $Sq_1 = \lambda_1q_1$ and $Sq_2 = \lambda_2q_2$. Now $(Sq_1)^T = q_1^T S^T = q_1^T S = \lambda_1q_1^T$, as *S* is symmetric, Multiply by q_2 on the right and we obtain $\lambda_1q_1^Tq_2 = q_1^T Sq_2 = q_1^T \lambda_2q_2$. Since $\lambda_1 \neq \lambda_2$ and $\lambda_1q_1^Tq_2 = q_1^T \lambda_2q_2$, this implies that $q_1^Tq_2 = 0$ and thus the eigenvectors q_1 and q_2 are orthogonal.

Symmetric matrices with distinct eigenvalues

Let *S* be a $n \times n$ symmetric matrix with *n* distinct eigenvalues and let q_1, \ldots, q_n be the corresponding orthonormal eigenvectors. Let *Q* be the $n \times n$ matrix consisting of q_1, \ldots, q_n as its columns. Then $S = Q\Lambda Q^{-1} = Q\Lambda Q^T$. Furthermore, $S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T$

An Example:

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$
$$= 4 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} + 2 \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Theorem

For a real symmetric $n \times n$ matrix S, we have

- 1. All eigenvalues of *S* are real.
- 2. *S* can be expressed as $S = Q\Lambda Q^T$, where *Q* consists of orthonormal basis of \mathbb{R}^n formed by *n* eigenvectors of *S*, and Λ is a diagonal matrix consisting of *n* eigenvalues of *S*.
- 3. S can be expressed as the sum of the product of rank 1 matrices:

$$S = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T$$

Inverse of Symmetric Matrices

Claim

$$S = Q\Lambda Q^T$$
 and $S^{-1} = \frac{1}{\lambda_1}q_1q_1^T + \ldots + \frac{1}{\lambda_n}q_nq_n^T$

Proof Sketch: $S = Q\Lambda Q^T = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T$

 $SS^{-1} = (\lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T)(\frac{1}{\lambda_1} q_1 q_1^T + \ldots + \frac{1}{\lambda_n} q_n q_n^T) = I \text{ as } q_1, \ldots, q_n$ are orthonormal.

Positive Definite Matrices

A symmetric matrix S is positive definite if all its eigenvalues > 0. It is positive semi-definite if all the eigenvalues are ≥ 0 .

An Alternate Characterization

Let S be a $n \times n$ real symmetric matrix. For all non-zero vectors $x \in R^n$, if $x^T S x > 0$ holds, then all the eigenvalues of S are > 0.

Proof: Let λ_i be an eigenvalue of *S*. Let the corresponding unit eigenvector is q_i . Note that $q_i^T q_i = 1$. Since *S* is symmetric, we know that λ_i is real. Now we have, $\lambda_i = \lambda_i q_i^T q_i = q_i^T \lambda_i q_i = q_i^T S q_i$. But $q_i^T S q_i > 0$, hence $\lambda_i > 0$.

Singular Value Decomposition

Square Matrices:

A be an $n \times n$ matrix with distinct eigenvalues. $X_{n \times n}$ = Matrix of eigenvectors of A

 $AX = X\Lambda, A = X\Lambda X^{-1}, \Lambda = X^{-1}\Lambda X$

Symmetric Matrices:

S be an $n \times n$ symmetric matrix with distinct eigenvalues. $Q_{n \times n}$ = Matrix of *n*-orthonormal eigenvectors of *S* $S = Q \Lambda Q^T$

What if A is a rectangular matrix of dimensions $m \times n$?

Let A be a $m \times n$ matrix of rank r with real entries.

We can find orthonormal vectors in \mathbb{R}^n such that their product with A results in a scaled copy of orthonormal vectors in \mathbb{R}^m .

Formally, we can find

- 1. Orthonormal vectors $v_1, \ldots, v_r \in \mathbb{R}^n$
- 2. Orthonormal vectors $u_1, \ldots, u_r \in \mathbb{R}^m$
- 3. Real numbers $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$

4. For
$$i = 1, ..., r$$
: $Av_i = \sigma_i u_i$

5. $AV = U\Sigma$, i.e.,

$$A\begin{bmatrix}v_1 & \dots & v_r\end{bmatrix} = \begin{bmatrix}u_1 & \dots & u_r\end{bmatrix}\begin{bmatrix}\sigma_1 & & \\ & \cdot & \\ & & \cdot & \\ & & \sigma_r\end{bmatrix}$$

6. $A = U\Sigma V^T$

Example

An Example: $AV = U\Sigma$

$$\begin{bmatrix} 1 & 5 \\ 0 & 3 \\ 1 & 4 \\ 4 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} .60 & -.8 \\ .8 & .6 \end{bmatrix} = \begin{bmatrix} .58 & .39 \\ .31 & .30 \\ .48 & .28 \\ .30 & -.56 \\ .48 & -.59 \end{bmatrix} \begin{bmatrix} 7.8 & 0 \\ 0 & 5.7 \end{bmatrix}$$

Alternatively, $A = U\Sigma V^T$

$$\begin{bmatrix} 1 & 5 \\ 0 & 3 \\ 1 & 4 \\ 4 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} .58 & .39 \\ .31 & .30 \\ .48 & .28 \\ .30 & -.56 \\ .48 & -.59 \end{bmatrix} \begin{bmatrix} 7.8 & 0 \\ 0 & 5.7 \end{bmatrix} \begin{bmatrix} .60 & .8 \\ -.8 & .6 \end{bmatrix}$$

Play around with the SVD command in Wolfram Alpha for some matrices.

Symmetric and Positive semi-definite

Let A be $m \times n$ matrix, where $m \ge n$. The matrix $A^T A$ is symmetric and positive semi-definite

Proof: Symmetric: $(A^T A)^T = A^T (A^T)^T = A^T A$

Positive semi-definite: Take any non-zero vector $x \in \mathbb{R}^n$ $x^T(A^TA)x = (x^TA^T)(Ax) = (Ax)^T(Ax) = ||Ax||^2 \ge 0$

 $A^T A$ is a symmetric matrix of dimension $n \times n$. Eigenvalues of $A^T A$ are non-negative and the corresponding eigenvectors are orthonormal.

Let $\lambda_1 \geq \ldots \geq \lambda_n$ be eigenvalues of $A^T A$ and let v_1, \ldots, v_n be the corresponding eigenvectors.

$$A^T A v_i = \lambda_i v_i \Leftrightarrow v_i^T A^T A v_i = \lambda_i$$

Define
$$\sigma_i = ||Av_i|| \implies \sigma_i^2 = ||Av_i||^2 = v_i^T A^T A v_i = \lambda_i$$

Hence,
$$\sigma_i = ||Av_i|| = \sqrt{\lambda_i}$$

Consider two cases:

Full Rank: Rank of $A^T A$ is n.

Low Rank: Rank of $A^T A$ is r < n.

Assume, $\sigma_1 \ge \ldots \ge \sigma_n > 0$ ($\implies A \text{ and } A^T A \text{ has rank } n$)

Define vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ as $u_i = Av_i/\sigma_i$

Orthonormal

The set of vectors $u_i = Av_i/\sigma_i$, for i = 1, ..., n, are orthonormal.

Proof: $||u_i|| = ||Av_i|| / \sigma_i = \sigma_i / \sigma_i = 1$

Consider the dot product of any two vectors u_i and u_j : $u_i^T u_j = (Av_i/\sigma_i)^T (Av_j/\sigma_j) = \frac{1}{\sigma_i \sigma_j} v_i^T A^T Av_j = \frac{1}{\sigma_i \sigma_j} v_i^T \lambda_j v_j = \frac{\lambda_j}{\sigma_i \sigma_j} v_i^T v_j = 0$ Suppose $m \ge n$, but rank(A) = r < n.

Eigenvalues of $A^T A$

The n - r eigenvalues of $A^T A$ are equal to 0.

Proof: Consider a basis of the null space of *A*. Let x_1, \ldots, x_{n-r} be a basis of the null space of *A*. This implies that $Ax_j = 0$ for $j = 1, \ldots, n-r$. Now, $A^T A x_j = 0 = 0 x_j$. Thus, 0 is an eigenvalue of $A^T A$ corresponding to each x_i 's. Thus n - r eigenvalues of $A^T A$ are equal to 0 Consider eigenvalues and eigenvectors of $A^T A$ Let $\lambda_1 \ge \ldots \ge \lambda_r > 0$ and $\lambda_{r+1} = \ldots = \lambda_n = 0$

Let v_1, \ldots, v_r be the orthonormal vectors corresponding to $\lambda_1, \ldots, \lambda_r$

For i = 1, ..., r, define $\sigma_i = ||Av_i|| = \sqrt{\lambda_i}$ Note that $\sigma_1 \ge ... \sigma_r > 0$

For $i = 1, \ldots, r$, define $u_i = \frac{1}{\sigma_i} A v_i$

SVD for A

Vectors u_1, \ldots, u_r are orthonormal and $Av_i = \sigma_i u_i$.

${\bf SVD}$ of A

Summary

For a matrix A of dimension $m \times n$, where $m \ge n$, we have

- 1. $A^T A$ is a symmetric positive semidefinite square matrix of dimension $n \times n$.
- 2. Rank of *A* is $n: \lambda_1 \ge \ldots \ge \lambda_n > 0$ are eigenvalues of $A^T A$ and v_1, \ldots, v_n the corresponding orthonormal eigenvectors. The vectors $u_i = Av_i/\sigma_i$, for $i = 1, \ldots, n$, are orthonormal, where $\sigma_i = \sqrt{\lambda_i}$.
- 3. Rank of *A* is r < n: $\lambda_1 \ge ... \ge \lambda_r > 0$ are non-zero eigenvalues of $A^T A$ and $v_1, ..., v_r$ the corresponding orthonormal eigenvectors. The vectors $u_i = Av_i/\sigma_i$, for i = 1, ..., r, are orthonormal, where $\sigma_i = \sqrt{\lambda_i}$.
- 4. $AV = U\Sigma$, where V is $n \times r$ matrix consisting of orthonormal eigenvectors of $A^T A$ corresponding to non-zero eigenvalues of $A^T A$, U is $m \times r$ matrix of orthonormal vectors given by $u_i = Av_i/\sigma_i$ for non-zero σ_i , and Σ is $r \times r$ diagonal matrix.
- 5. $AVV^T = A = U\Sigma V^T$

We have $A = U\Sigma V^T$.

 $\boldsymbol{A}^{T}\boldsymbol{A} = (\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T})^{T}(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}) = (\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{T})(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}) = \boldsymbol{V}\boldsymbol{\Sigma}(\boldsymbol{U}^{T}\boldsymbol{U})\boldsymbol{\Sigma}\boldsymbol{V}^{T} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{T}$

Matrix $A^T A$

 $A^T A$ is square symmetric matrix and it is expressed in the diagonalized form $A^T A = V \Sigma^2 V^T$. Thus, σ_i^2 's are its eigenvalues and V is its eigenvectors matrix.

Similarly, consider AA^T and we obtain that $AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

Matrix AA^T

 AA^T is square symmetric matrix and it is expressed in the diagonalized form $AA^T = U\Sigma^2 U^T$. Thus *U* is the eigenvector matrix for the symmetric matrix AA^T with the same eigenvalues as A^TA .

- Let A be a $m\times n$ matrix of real numbers of rank r
- $A_{m \times n} = U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$, where
- U is a orthonormal $m \times r$ matrix V is a orthonormal $n \times r$ matrix Σ is an $r \times r$ diagonal matrix and its (i, i)-th entry is σ_i for i = 1, ..., r
- Note that $\sigma_1 \ge \sigma_2 \ge \ldots \sigma_r > 0$ and $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of $A^T A$
- The set of orthonormal vectors v_1, \ldots, v_r and u_1, \ldots, u_r are eigenvectors of $A^T A$ and $A A^T$, respectively. The vectors v's and u's satisfy the equation $Av_i = \sigma_i u_i$, for $i = 1, \ldots, r$
- Alternatively, we can express \boldsymbol{A} as the sum of the product of rank 1 matrices

$$A = \Sigma_{i=1}^r \sigma_i u_i v_i^T = \sigma_1 u_1 v_1^T + \ldots + \sigma_r u_r v_r^T$$

Applications

An Application

Let $A_{m \times n}$ be the Utility Matrix, where $m = 10^8$ users and $n = 10^5$ items. SVD of $A = U\Sigma V^T$ Let r of $\sigma'_i s$ are > 0Let $\sigma_1 \ge \ldots \ge \sigma_r > 0$

A can be expressed as
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T = \sigma_1 u_1 v_1^T + \ldots + \sigma_r u_r v_r^T$$

Total space required to store A is r(m + n + 1). If rank of A is small, it is better to store $u_1, \ldots, u_r, v_1, \ldots, v_r, \sigma_1, \ldots, \sigma_r$, rather than whole of A.

Energy of A is given by
$$\mathcal{E} = \sum_{i=1}^{r} \sigma_i^2$$

Define $\mathcal{E}' = 0.99\mathcal{E}$, and let $j \leq r$ be the maximum index such that $\sum_{1=1}^{j} \sigma_i^2 \leq \mathcal{E}'$

Approximate
$$A$$
 by $\sum_{i=1}^{j} \sigma_{i} u_{i} v_{i}^{T}$

How many cells we need to store in this representation?

- 1. First j columns of U,
- 2. j diagonal entries of Σ , and
- 3. $j \text{ rows of } V^T$.

Total Space = $j^2 + j(m+n)$ cells

For our example, dimension of $A_{m \times n}$ are $m = 10^8$ users and $n = 10^5$ items.

If j=20, then we need to store $j^2+j(m+n)=20^2+20\times(10^8+10^5)\approx 5,005,000~{\rm cells}$

This number is only .02% of 10^{13}

Let SVD of \boldsymbol{A} be

$$A = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{30} & -1/\sqrt{5}\\ 1/\sqrt{30} & 2/\sqrt{5}\\ 5/\sqrt{30} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5}\\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

In terms of Rank 1 Components:

$$A = \sqrt{6} \begin{bmatrix} 2/\sqrt{30} \\ 1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}^T + \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}^T$$

Energy of A: $\mathcal{E}(A) = \sqrt{6}^2 + 1^2 = 7$

Possible $\frac{6}{7}$ -Energy approximation of A is given by

$$A \approx \sqrt{6} \begin{bmatrix} 2/\sqrt{30}\\ 1/\sqrt{30}\\ 5/\sqrt{30} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix}^T$$

Interpreting U, Σ , and V

Utility Matrix M as SVD $M = U\Sigma V^T$

M=	$\begin{bmatrix} 1 \\ 3 \\ 4 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 3 4 5 2 0 1	1 3 4 5 0 0 0	$egin{array}{c} 0 \\ 0 \\ 0 \\ 4 \\ 5 \\ 2 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 4 \\ 5 \\ 2 \end{bmatrix} =$						
Γ.1	.3 1 5 8 .5	0 1 1 .59 .73 .29	2 7 1 1	.01	$\begin{bmatrix} 12.5\\0\\0 \end{bmatrix}$	0 9.5 0	$\begin{bmatrix} 0 \\ 0 \\ 1.35 \end{bmatrix} \begin{bmatrix} .56 \\12 \\ .40 \end{bmatrix}$.59 .02 8	.56 12 .40	.09 .69 .09	.09 .69 .09

- 1. 3 concepts (= rank)
- 2. U maps users to concepts
- 3. V maps items to concepts
- 4. Σ gives strength of each concept

Rank-2 Approximation

$$\begin{bmatrix} .13 & -.02 \\ .41 & -.07 \\ .55 & -.1 \\ .68 & -.11 \\ .15 & .59 \\ .07 & .73 \\ .07 & .29 \end{bmatrix} \begin{bmatrix} 12.5 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix}$$

% Loss in Energy
$$= \frac{1.35^2}{12.5^2 + 9.5^2 + 1.35^2} < 1\%$$

Consider the utility matrix M and its SVD.

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{\left[\begin{array}{c} .13 & -.02 \\ .41 & -.07 \\ .55 & -.1 \\ .68 & -.11 \\ .15 & .59 \\ .07 & .73 \\ .07 & .29 \end{bmatrix}} \begin{bmatrix} 12.5 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix}$$

MV gives mapping of each user in concept space:

[1	1	1	0	0				1.71	22
3	3	3	0	0	[.56	12		5.13	66
4	4	4	0	0	.59	.02		6.84	88
5	5	5	0	0	.56	12	=	8.55	-1.1
0	2	0	4	4	.09	.69		1.9	5.56
0	0	0	5	5	.09	.69		.9	6.9
0	1	0	2	2				.96	2.78

Suppose we want to recommend items to a new user q with the following row in the utility matrix $\begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix}$

1. Map q to concept space:

$$qV = \begin{bmatrix} 3 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} 1.68 & -.36 \end{bmatrix}$$

2. Map the vector qV to the Items space by multiplying by V^T as vector V captures the connection between items and concepts.

 $\begin{bmatrix} 1.68 & -.36 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} .98 & .98 & .98 & -.1 & -.1 \end{bmatrix}$

Suppose we want to recommend items to user q' with the following row in the utility matrix $\begin{bmatrix} 0 & 0 & 4 & 0 \end{bmatrix}$

1.
$$q'V = \begin{bmatrix} 0 & 0 & 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} .36 & 2.76 \end{bmatrix}$$

2. Map q'V to the Items space by multiplying by V^T $\begin{bmatrix} .36 & 2.76 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} -.12 & .26 & -.12 & 1.93 & 1.93 \end{bmatrix}$ Suppose we want to recommend items to user q'' with the following row in the utility matrix $\begin{bmatrix} 0 & 0 & 4 & 4 & 0 \end{bmatrix}$

1.
$$q''V = \begin{bmatrix} 0 & 0 & 4 & 4 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} 2.6 & 2.28 \end{bmatrix}$$

2. Map q''V to the Items space by multiplying by V^T $\begin{bmatrix} 2.6 & 2.28 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} 1.18 & 1.57 & 1.18 & 1.8 & 1.8 \end{bmatrix}$

CUR

Interpreting U, Σ , and V

Utility Matrix M as SVD $M = U\Sigma V^T$

M =	$\begin{bmatrix} 1 & 1 \\ 3 & 3 \\ 4 & 4 \\ 5 & 5 \\ 0 & 2 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{array}{cccc} 1 & 0 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0 \\ 0 & 4 \\ 0 & 5 \\ 0 & 2 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 4 \\ 5 \\ 2 \end{bmatrix} =$						
F.13	02 07 1 11 .59 .73 .29	.01 .03		0 9.5 0	$\begin{bmatrix} 0 \\ 0 \\ 1.35 \end{bmatrix} \begin{bmatrix} .56 \\12 \\ .40 \end{bmatrix}$.59 .02 8	.56 12 .40	.09 .69 .09	.09 .69 .09

Issues:

- 1. Utility matrix M is sparse, but U and V are dense
- 2. Total size $= r(n+m) + r^2$
- 3. Interpretation of entries of U and V is unclear

A Possiblity

Can we express $M \approx \mathcal{C}U\mathcal{R}$, where

- 1. C consists of some columns of M
- 2. \mathcal{R} consists of some rows of M
- 3. U is not that big
- 4. Square of Frobenius Norm = $\sum_{ij} (M_{ij} (CUR)_{ij})^2$ is small

$\mathcal{C}U\mathcal{R}$ Method

Let M be $m\times n$ and let $\Delta = \sum\limits_{ij} M[i,j]^2$

- 1. For each column *j*, compute $p_j = \frac{1}{\Delta} \sum_{i=1}^m M[i,j]^2$
- 2. Pick α columns of M based on their probabilities (with replacement). Let C be the multi-set of picked columns.
- 3. For each element of selected columns $j \in C$, scale its value to $\frac{M[*,j]}{\sqrt{\alpha p_j}}$
- 4. Repeat above steps for all the rows and let \mathcal{R} be the multi-set of α picked and scaled rows.
- 5. Let W be the $\alpha\times\alpha$ matrix whose entries are from M that are common to ${\mathcal C}$ and ${\mathcal R}$
- 6. Construct SVD of $W = X \Sigma Y^T$. Construct Σ^+ , where each non-zero element x of Σ is replaced by 1/x
- 7. Compute $U = Y(\Sigma^+)^2 X^T$
- 8. Report CUR as approximation of M

An Example

M =	4 4 0 0 0	1 0 1 1	$ \begin{array}{c} 1 \\ 0 \\ 5 \\ 5 \\ 5 \end{array} $	0 1 5 5 3		$\sum_{ij} M$	$(1_{ij})^2 =$	171
Colui	(21	C_2	C_3	C_4			
$\sum_{i} M$	3	32	3	C ₃ 76	60			
Row		1	\mathcal{R}_1	R_2	R_3	R_4	R_5	-
$\sum_{j} M$	ij	1	8	17	R ₃ 50	51	35	

For Rank 1 Approximation: Select C_3 and R_4 and scale them to obtain: $C_3 = \frac{1}{\sqrt{76/171}} \begin{bmatrix} 1 & 0 & 5 & 5 \end{bmatrix}^T = \begin{bmatrix} 1.5 & 0 & 7.6 & 7.6 \end{bmatrix}^T$ $R_4 = \frac{1}{\sqrt{51/171}} \begin{bmatrix} 0 & 1 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1.85 & 9.3 & 9.3 \end{bmatrix}$

W = 5 and SVD W = [1][5][1] and U = [1][1/25][1]

We have $M = \mathcal{C}U\mathcal{R}$ as

$$M \approx \begin{bmatrix} 1.5\\0\\7.6\\7.6\\7.6\\7.6 \end{bmatrix} \begin{bmatrix} \frac{1}{25} \end{bmatrix} \begin{bmatrix} 0 & 1.85 & 9.3 & 9.3 \end{bmatrix} = \begin{bmatrix} 0 & .11 & .59 & .59\\0 & 0 & 0 & 0\\0 & .56 & 2.8 & 2.82.8\\0 & .56 & 2.8 & 2.82.8\\0 & .56 & 2.8 & 2.82.8 \end{bmatrix}$$

Try Rank 2 approximation: Possibly select Columns C_3, C_4 and Rows R_3, R_4 and compute scaled columns, rows, matrices W, U and CUR

Remarks

- 1. In case a row/column is picked $\beta > 1$ times, we take only one of its copy in \mathcal{R}/\mathcal{C} and scale the corresponding entries by a factor of $\sqrt{\beta}$
- 2. \implies W may not be square, but we know how to compute SVDs for rectangular matrices.
- 3. Columns in ${\mathcal C}$ and rows in ${\mathcal R}$ are from ${\it M}$
- 4. In CUR decomposition, U (of dimension at most $\alpha \times \alpha$) may be dense.
- 5. Total Space = $\alpha(n+m) + \alpha^2$ (likely to be much less due to the sparsity of M)

Quality Estimate

Let M_k be the best rank *k*-approximation of M. Choose $\alpha = \frac{k \log k}{\epsilon^2}$. The resulting \mathcal{CUR} decomposition satisfies the following: Frobenius Norm of M and \mathcal{CUR} is at most $(2 + \epsilon)$ times the Frobenius Norm of M and M_k , i.e. $||M - \mathcal{CUR}||_F \le (2 + \epsilon)||M - M_k||_F$

Remarks:

- 1. There are recent works that show that $\alpha = k/\epsilon$ suffices
- 2. Approximation is by a factor of $1 + \epsilon$
- 3. Running time is faster than that of computing SVDs
- 4. Randomized Linear Algebra a new field in TCS

- 1. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press.
- G. H. Golub abd W. Kahan, Calculating the singular values and pseudo-inverse of a matriix, SIAM Journal Series B2:2:205-224, 1965.
- P. Drineas, R. Kanan and M.W. Mahoney, Fast Monte-Carlo algorithms for matrics III: Computing a compressed approximate matrix decomposition, SIAM JI. Computing 36:1: 184-206, 2006.
- J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, Less is more: compact matrix decomposition for large sparse graphs, SIAM International Conference on Data Mining, 2007.