Metric LP Relaxation

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Min Cost st-cut

Multiway Min Cut

Multicuts in Trees

Multicuts in Graphs

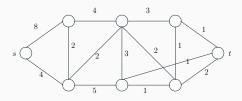
References

Min Cost st-cut

Min Cost s-t cut in a Graph

Input: An undirected graph G=(V,E) on n vertices and each edge has a positive weight $w:E\to\Re^+$. It will be easier to think of G as a complete graph K_n , as all the edges in $K_n\setminus G$ are assigned a weight of 0. Two specific vertices s and t of G.

Output: Find a set of edges $C\subseteq E$ of minimum total weight so that the graph $G'=(V,E\setminus C)$ has no path that between s and t. I.e., C forms a cut of minimum weight that separates s and t.



Towards LP Formulation

- Assume C is a cut.
- Define an indicator variable x_e for each edge e as follows:

$$x_e = \begin{cases} 1, & \text{if } e \in C, \\ 0, & \text{otherwise} \end{cases}$$

Observations:

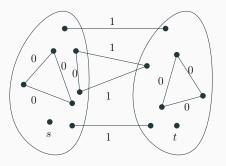
- 1. Cost of Cut equals $\sum_{e \in E} x_e w_e$.
- 2. Length of any path $\pi(s,t)$ joining s and t is ≥ 1 . Length of π is defined as the sum total of x_e 's values of the edges of π .

4

Metric Property

Metric Property

The variables x_e 's assigned to the edges of G satisfy the metric property.



5

Linear Programming Formulation

Problem: Given a complete graph G=(V,E), where edges have non-negative weights $e:E\to\Re^+$, and two vertices s and t, find the cut of minimum total weight that separates s and t.

(Integer) Metric LP Formulation

$$\min \sum_{e \in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E$, $x_e \in \{0,1\}$
- 2. Cut Constraint: $x_{st} \geq 1$.
- 3. Triangle Inequality: For every set of three distinct vertices $u,v,w\in V$: $x_{uw}+x_{wv}\geq x_{uv}$

Relaxed LP

Replace the constraint $x_e \in \{0,1\}$ by $0 \le x_e \le 1$.

Relaxed Metric LP

$$\min \textstyle \sum\limits_{e \, \in \, E} w_e x_e$$

Subject to:

- 1. For each vertex $e \in E$, $0 \le x_e \le 1$
- 2. $x_{st} > 1$.
- 3. For every set of three distinct vertices $u, v, w \in V$: $x_{uw} + x_{wv} \ge x_{uv}$

After solving the Relaxed LP, let $x_e \in [0,1]$ be the assignment of x values to each edge $e \in E$, and let $z^* = \sum_{e \in E} w_e x_e$ be the value of the objective function.

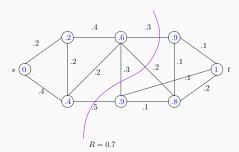
Note that x_e values satisfy:

- 1. Triangle Inequality
- 2. For any path in G between s and t, the length of the path is ≥ 1 .
- 3. The cost of an optimal min cut in G is at least z^* .

Obtaining a Cut from Relaxed LP

Method to find the edges in the cut:

- **Step 1:** Solve the Relaxed Metric LP to obtain x_e values for each edge $e \in E$.
- **Step 2:** For each vertex $v \in V$, find the shortest distance $\delta(s, v)$ from s with respect to x_e values on edges.
- **Step 3:** Choose an arbitrary value $R \in (0, 1)$.
- **Step 4:** For each edge $e=(uv)\in E$ (assume $\delta(s,u)\leq \delta(s,v)$), place e in the cut if $\delta(s,u)< R<\delta(s,v)$.
- Step 5: Return the edges in the cut.



Cost of the Cut

Claim

The expected sum total of the weights of the edges in the cut is at most z^* .

Proof: Let C be the collection of edges in the cut with respect to $R \in (0,1)$.

Consider an arbitrary edge $e = (uv) \in E$.

What is the probability that $e \in C$?

$$e \in C$$
 if $\delta(s,u) < R < \delta(s,v)$, i.e. $R \in (\delta(s,u),\delta(s,v))$

Therefore,
$$Pr(e \in C) = \frac{\delta(s,v) - \delta(s,u)}{1} = \delta(s,v) - \delta(s,u)$$
.

Because of the triangle inequality $\delta(s,v) - \delta(s,u) \leq x_e$

Thus,
$$Pr(e \in C) \leq x_e$$
.

$$E[cost(C)] = \sum_{e \in E} w_e Pr(e \in C) \le \sum_{e \in E} w_e x_e = z^*.$$

9

Finding an optimal Cut

- Notice that when R ranges from 0 to 1, one by one vertices are added to the component containing s.
- In all there are n = |V| such events
- We can find all the events and return the cut that minimizes the total weight.

Observe:

- 1. If for some R the cost of the cut is $> z^*$, than there must be a cut for which the cost $< z^*$, since the average (i.e. expected) value is z^*
- 2. The cost of any cut can't be smaller than z^* (as z^* is the objective value of relaxed LP) \implies the cut returned by the method is of optimal cost for any $R \in (0,1)$

Theorem

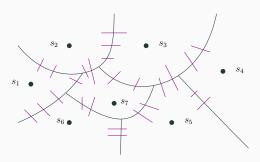
We can find an optimal cut in polynomial time using the Metric LP relaxation.

Multiway Min Cut

Multiway Cuts

Input: An undirected (complete) graph G=(V,E) on n vertices and each edge has a positive weight $w:E\to\Re^+$. A set $T=\{s_1,\ldots,s_k\}\subset V$ of k vertices called terminals.

Output: Find a set of edges $C \subseteq E$ of minimum total weight so that the graph $G' = (V, E \setminus C)$ has no path between any pair of terminals in T.



Triangle Inequality

Edges in the Cut

Let C be a multiway cut that separates every pair of terminals. Define an indicator variable x_e for each edge e as follows:

$$x_e = \begin{cases} 1, & \text{if } e \in C, \\ 0, & \text{otherwise} \end{cases}$$

The assignment of x_e values to each edge satisfies:

- 1. Cost of Multiway Cut equals $\sum\limits_{e\in E}x_ew_e$.
- 2. For any pair of distinct terminals $s_i, s_j \in T$, the length of any path $\pi(s_i, s_j)$ joining s_i and s_j is ≥ 1 .
- 3. x_e values satisfy the triangle inequality. I.e., for any three distinct vertices $u,v,w\in V,\,x_{uw}+x_{wv}\geq x_{uv}.$

Linear Programming Formulation for Multiway Cuts

Problem: Given a complete graph G=(V,E), where edges have non-negative weights $e:E\to\Re^+$, and a set $T\subset V$ of k terminals, find the cut of minimum total cost that separates every pair of terminals.

(Integer) Metric LP Formulation

$$\min \sum_{e \in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E$, $x_e \in \{0,1\}$
- 2. Cut Constraint: For every distinct pair $s_i, s_j \in T$, $x_{s_i s_j} \ge 1$.
- 3. Triangle Inequality: For every set of three distinct vertices $u,v,w\in V$: $x_{nw}+x_{vm}>x_{uv}$

Relaxed LP

Replace the constraint $x_e \in \{0,1\}$ by $0 \le x_e \le 1$.

Method for finding the edges in the cut

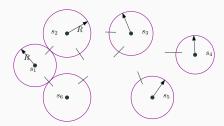
Step 1: $C \leftarrow \emptyset$

Step 2: Solve the Relaxed Metric LP to obtain x_e values for each edge $e \in E$.

Step 3: Choose an arbitrary value $R \in (0, 1/2)$.

Step 4: For each vertex $s_i \in T$, find the shortest distances $\delta(s_i,v)$ from s_i with respect to x_e values on edges. For each edge $e = (uv) \in E$ (assume $\delta(s_i,u) \leq \delta(s_i,v)$), place e in the cut C if $\delta(s_i,u) < R < \delta(s_i,v)$.

Step 5: Return the set of edges C.



Non-overlapping Balls

Let $s_i \in T$ be a terminal, and let $R \in (0, 1/2)$.

Define $B(s_i, R) = \{v \in V | \delta(s_i, v) < R\}.$

 $B(s_i,R)$ consists of all the vertices that are within the distance R of s_i .

Disjointness of $B(s_i, R)$ and $B(s_j, R)$

Let $s_i, s_j \in T$ be two distinct terminals and let $B(s_i, R)$ and $B(s_j, R)$ be the set of vertices within distance of $R \in (0, 1/2)$ of s_i and s_j , respectively. Then, $B(s_i, R) \cap B(s_j, R) = \emptyset$

Observation 1

Consider any edge $e=(uv)\in E$, where $u\in B(s_i,R)$. The edge $e\in C$ if $v\not\in B(s_i,R)$.

Feasibility

Observation 2

The cut C returned by the method is a feasible multiway cut.

Proof: We need to show that there is no path between any pair of distinct terminals $s_i, s_j \in T$ in the graph G - C.

By the 2nd constraint of LP, $x_{s_i s_j} \geq 1$.

From the triangle inequality any path $\pi(s_i, s_j)$ between s_i and s_j in G will have length ≥ 1 . Alternatively, for any vertex $w \in V$, $\delta(s_i, w) + \delta(s_j, w) \geq 1$.

Distance between any two vertices in a ball $B(s_i, R)$ is < 1.

Thus, for any ball $B(s_i, R)$, only terminal that is in $B(s_i, R)$ is s_i , i.e., $B(s_i, R) \cap T = s_i$.

Hence each connected component of $G \setminus C$ contains at most one terminal.

L

Bounding Probability of an Edge to be in C

Observation 3

Let e = (u, v) be an edge in G. $Pr(e \in C) \leq 2x_e$.

Proof: Define sets X_1,\ldots,X_k , where $X_i=\{v\in V|\delta(s_i,v)<1/2\}$. Note that for any pair of distinct sets $X_i,X_j,X_i\cap X_j=\emptyset$ and $B(s_i,R)\subseteq X_i$.

For the edge e=(u,v), one of the following cases occurs

Case 1: None of the endpoints u,v are in any set. $(\implies e \notin C \text{ and } Pr(e \in C) = 0 \le 2x_e)$

Case 2: Both u, v are in the same set, say X_i .

Case 3: $u \in X_i$ and $v \in V \setminus X_i$.

We need to estimate $Pr(e \in C)$ for Cases 2 and 3.

Probability of an Edge to be in C (contd.)

Case 2: $u, v \in X_i$. Assume $\delta(s_i, u) \leq \delta(s_i, v)$.

We know $R \in (0, 1/2)$.

$$e = (u, v)$$
 will be in the cut C if $\delta(s_i, u) < R$ and $\delta(s_i, v) > R$.

By triangle inequality we know that $\delta(s_i, v) - \delta(s_i, u) \leq x_e$.

Since we are choosing R uniformly at random in (0,1/2),

$$Pr(e \in C) = \frac{\delta(s_i, v) - \delta(s_i, u)}{\frac{1}{2}} \le 2x_e.$$

Case 3: $u \in X_i$ and $v \in V \setminus X_i$.

We know $\delta(s_i, u) < 1/2$ and $\delta(s_i, v) \ge 1/2$.

By triangle inequality we know that $\delta(s_i, v) - \delta(s_i, u) \leq x_e$.

$$e = (u, v)$$
 will be in the cut C if $\delta(s_i, u) < R$.

$$Pr(e \in C) = Pr(R \in (\delta(s_i, u), 1/2)) \le \frac{\frac{1}{2} - \delta(s_i, u)}{\frac{1}{2}} \le 2(\frac{1}{2} - \delta(s_i, u)) \le 2(\delta(s_i, v) - \delta(s_i, u)) \le 2x_e.$$

2022-03-31

 \sqsubseteq Probability of an Edge to be in C (contd.)

Probability of an Edge to be in C (contd.)

Case 2: $u, v \in X_i$. Assume $\delta(s_i, u) \le \delta(s_i, v)$. We know $R \in (0, 1/2)$. e = (u, v) will be in the cut C if $\delta(s_i, u) < R$ and $\delta(s_i, v) > R$. By triancle inequality we know that $\delta(s_i, v) - \delta(s_i, u) \le x_i$.

 $e \equiv (u, v)$ will be in the cut C if $\delta(s, u) \in R$ and $\delta(s, v) \geq R$. By triangle inscapably we know that $\delta(s, v) = \delta(s, u) \leq x$. Since we are choosing R uniformly at random in (0, 1/2), $Pr(e \in C) \equiv \frac{\delta(s, v) + (\delta(s, v))}{2} \leq 2x_v$.

Case 3: $u \in X$, and $v \in V \setminus X$.
We know $\delta(s, u) \in 1/2$ and $\delta(s, v) \geq 1/2$.

We know $\delta(s_e, u) < 1/2$ and $\delta(s_e, v) \ge 1/2$. By triangle in sequality we know that $\delta(s_e, v) - \delta(s_e, u) \le x_e$. e = (u, v) will be in the cut C if $\delta(s_e, u) < R$. $Pr(e \in C) = Pr(R \in (\delta(s_e, u), 1/2)) \le \frac{1 - \delta(s_e, u)}{2} \le 2(\frac{1}{2} - \delta(s_e, u)) \le 2(\frac{1}$

Note: If $u \in X_i$ and $v \in X_j$, then part of e lies in $B(s_i, 1/2)$ and part in $B(s_j, 1/2)$. Observe that $(1/2 - \delta(s_i, u)) + (1/2 - \delta(s_j, v)) \le x_e$.

$$Pr(e \in C) \le 2((1/2 - \delta(s_i, u)) + (1/2 - \delta(s_i, u))) \le 2x_e.$$

Expected Cost of the Cut

Observation 4

The expected weight of the edges in the multiway cut is at most $2z^*$, where z^* is the value of the objective function returned by the LP relaxation $(z^* = \sum_{e \in E} w_e x_e)$.

Proof: Let C be the collection of edges in the cut with respect to $R \in (0, 1/2)$.

We have already seen that for an arbitrary edge $e \in E$, $Pr(e \in C) \le 2x_e$.

$$E[cost(C)] = \sum_{e \in E} w_e Pr(e \in C)$$

$$\leq \sum_{e \in E} w_e \times 2x_e$$

$$= 2\sum_{e \in E} w_e x_e$$

$$= 2z^* \quad \Box$$

2-approximation of Multiway cut

Theorem

Let G=(V,E) be a simple (complete) graph where each edge has a non-negative real weight. Let $T\subset V$ be a set of terminals. We can find a set $C\subseteq E$ with the following properties:

- 1. G C has no path connecting any pair of terminals.
- 2. The total weight of the edges in ${\cal C}$ is at most 2 times the weight of an optimal multiway cut.
- 3. We can determine ${\cal C}$ in polynomial time using the solution of the relaxed LP.

Integrality Gap

Consider an unweighted star graph with k+1 vertices. It consists of k-leaves and all of them are connected to a central node.

Let the k leaves constitute the set T of terminals.

Cost of Optimal solution = k - 1 (remove any set of k - 1 edges.)

Cost of relaxed LP is k/2 (set cost of each edge to 1/2).

Approximation Factor $=\frac{k-1}{\frac{k}{2}}=2(1-\frac{1}{k})$

Using this approach, we can't do better in the worst case (termed as the integrality gap).

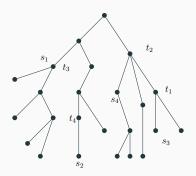
Remark: A different LP relaxation yields a $\frac{3}{2}$ -approximation.

Multicuts in Trees

Multicuts in Trees

Input: A rooted tree T=(V,E) on n vertices and each edge has a positive weight $w:E\to\Re^+$. A set of k-vertex pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$.

Output: Find a set of edges $C \subseteq E$ of minimum total weight so that the graph $G' = (V, E \setminus C)$ has no path between s_i and t_i for i = 1, ..., k.



Edges in the Cut

Edges in the Cut

Let C be a multiway cut that separates every pair $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. Define an indicator variable x_e for each edge e as follows:

$$x_e = \begin{cases} 1, & \text{if } e \in C, \\ 0, & \text{otherwise} \end{cases}$$

The assignment of x_e values to each edge satisfies:

- 1. Cost of Multicut equals $\sum_{e \in E} x_e w_e$.
- 2. For any pair (s_i, t_i) , the length of the path between them in T is ≥ 1 .

Linear Programming Formulation for MultiCuts

Problem: Given a tree T=(V,E), where edges have non-negative weights $e:E\to \Re^+$, and k pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$, find the cut of minimum total weight that separates vertices in each pair.

(Integer) Metric LP Formulation

$$\min \sum_{e \in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E$, $x_e \in \{0,1\}$
- 2. Cut Constraint: For every pair (s_i,t_i) , $\delta(s_i,t_i) \geq 1$. $\delta(s_i,t_i)$ consists of edges in the unique path between s_i and t_i in T. $\delta(s_i,t_i) = \sum x_e$.

Relaxed LP

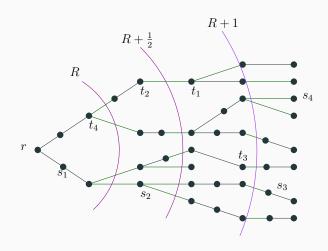
Replace the constraint $x_e \in \{0,1\}$ by $0 \le x_e \le 1$.

 $e \in \operatorname{path}(s_i, t_i)$ in T

Algorithm for finding the edges in the cut

- **Step 1:** $C \leftarrow \emptyset$. Choose an arbitrary value $R \in (0, 1/2)$.
- **Step 2:** Solve the Relaxed Metric LP to obtain x_e values for each edge $e \in E$.
- **Step 3:** Let r be root of T. For each vertex v, compute $\delta(r,v)$, where the weight of an edge e is its x_e value.
- **Step 4:** For each edge $e=(uv)\in E$ (assume $\delta(r,u)\leq \delta(r,v)$), place e in the cut C if $\delta(r,u)\in (R+\frac{1}{2}i,R+\frac{1}{2}(i+1))$ and $\delta(r,v)>R+\frac{1}{2}(i+1)$, for some integer $i\geq 0$.
- **Step 5:** Return the set of edges C.

Illustration of Edges in a Cut in the Tree



Feasibility

C is a Feasible Multicut

Let C be the set of edges in the cut returned by the algorithm. In the graph G-C, there is no path between s_i and t_i for any $i \in \{1, \dots, k\}$.

Proof: Consider any of the subtrees T' sandwiched between two adjacent 'cuts', formed by removing edges at the distance of $R+\frac{1}{2}i$ and $R+\frac{1}{2}(i+1)$ from r.

The height of T' is $<\frac{1}{2}$ \implies distance between any pair of vertices in T' is <1.

Since Relaxed LP ensured that for $i=1,\ldots,k,\,\delta(s_i,t_i)\geq 1$, we have that for any pair (s_i,t_i) at most one of its vertices can be in T'.

 \implies the path between (s_i,t_i) in T passes through at least one of the edges in C.

Bounding Probability of an Edge to be in C

Observation

Let e = (u, v) be an edge in T. $Pr(e \in C) \leq 2x_e$.

Proof: Assume $\delta(r,u) \leq \delta(r,v)$. $e=(u,v) \in C$ if $\delta(r,u) \in (R+\frac{1}{2}i,R+\frac{1}{2}(i+1))$ and $\delta(r,v) > R+\frac{1}{2}(i+1)$, for some integer $i \geq 0$.

Since we are choosing R uniformly from $(0,\frac{1}{2})$, the probability that e satisfies the condition is at most $\frac{\delta(r,v)-\delta(r,u)}{\frac{1}{2}}=2x_e$ (Note that $x_e=\delta(r,v)-\delta(r,u)$.)

Г

Expected Cost of the Cut

Theorem

Let C be the multicut returned by the algorithm for a tree T that separates every pair of vertices (s_i,t_i) for $i=1,\ldots,k$. Then $E[cost(C)] \leq 2z^*$, where z^* is the value of the objective function returned by the LP relaxation $(z^* = \sum_{e \in E} w_e x_e)$.

Proof: Let C be the multicut with respect to $R \in (0, 1/2)$.

We have already seen that for an arbitrary edge $e \in E$, $Pr(e \in C) \le 2x_e$.

$$E[cost(C)] = \sum_{e \in E} w_e Pr(e \in C)$$

$$\leq \sum_{e \in E} w_e \times 2x_e$$

$$= 2\sum_{e \in E} w_e x_e$$

$$= 2z^* \quad \Box$$

Multicuts in Graphs

Multicuts in General Graphs

Input: A (complete) graph G=(V,E) with non-negative weights on edges and a set of k-vertex pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$.

Output: A set of edges $C \subseteq E$ of minimum total weight so that $G \setminus C$ has no path between s_i and t_i for i = 1, ..., k.

Edges in the Cut

Edges in the Cut

Let C be a multiway cut that separates every pair $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. Define an indicator variable x_e for each edge e as follows:

$$x_e = \begin{cases} 1, & \text{if } e \in C, \\ 0, & \text{otherwise} \end{cases}$$

The assignment of x_e values to each edge satisfies:

- 1. Cost of Multicut equals $\sum_{e \in E} x_e w_e$.
- 2. For any pair (s_i, t_i) , length of any path between them is ≥ 1 , where the length of an edge e is its x_e value.
- 3. For any three distinct vertices $u, v, w, x_{uw} + x_{wv} \ge x_{uv}$.

Linear Programming Formulation for MultiCuts

Problem: Given a (complete) graph G=(V,E), where edges have non-negative weights $e:E\to\Re^+$, and k pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$, find the cut of minimum total weight that separates vertices in each pair.

(Integer) Metric LP Formulation

$$\min \sum_{e \in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E$, $x_e \in \{0,1\}$
- 2. Cut Constraint: For every pair (s_i, t_i) , $x_{s_i t_i} \ge 1$.
- 3. Triangle inequality: For any three distinct vertices u, v, w, $x_{uw} + x_{wv} \ge x_{uv}$.

Relaxed LP

Replace the constraint $x_e \in \{0,1\}$ by $0 \le x_e \le 1$.

Algorithm for finding the edges in the cut

Initialize:

- 1. Choose an $R \in (0, 1/2)$, uniformly at random. Initialize the cut $C \leftarrow \emptyset$.
- 2. Define k blocks $X_1 = \ldots = X_k = \emptyset$
- 3. Unmark all the vertices in G.

Main Steps:

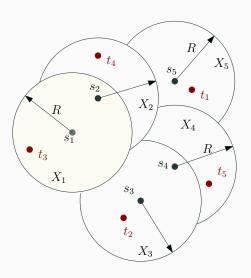
- **Step 1:** Compute a random permutation of vertices s_1, s_2, \ldots, s_k . WLOG, assume the ordering is s_1, s_2, \ldots, s_k .
- **Step 2:** Let $B_i(s_i, R)$ be the ball consisting of all the vertices within distance R of s_i .

For each s_i in the order of permutation do:

For each unmarked vertex $v \in B(s_i, R)$, mark v and place it in the block X_i .

- **Step 2:** For each edge $e=(u,v)\in E$, place it in the cut C if $u\in X_{\alpha}$ and $v\not\in X_{\alpha}$ for some $\alpha\neq\beta$.
- Step 3: Return C.

An Illustration



Observations

Observation 1

$$X_i = B(s_i, R) \setminus \bigcup_{j=1}^{i-1} B(s_j, R).$$

Observation 2

For each pair $s_i, t_i, i = 1, ..., k$, the following holds:

- 1. $t_i \notin X_i$
- 2. if $s_i \in X_j$ then $t_i \notin X_j$.

Proof: Since R < 1/2 and $x_{s_i t_i} \ge 1$ (by LP), $t_i \notin B(s_i, R)$.

Since, $X_i \subseteq B(s_i, R) \implies t_i \notin X_i$

If $s_i \in X_j$. The set X_j is defined by $s_j \implies \delta(s_j, s_i) < R < \frac{1}{2}$.

All vertices in X_j are within distance < R of s_j .

By triangle inequality, any vertex in X_j is within distance < 2R < 1 from s_i .

Since $\delta(s_i, t_i) \geq 1$, we have $t_i \notin X_j$. \square

Estimating Probability of $e \in C$

Claim

 $Pr(e \in C) \leq 2H_kx_e$, where H_k is the k-th Harmonic number, and it equals $H_k = \sum\limits_{i=1}^k rac{1}{i} pprox \ln k$.

Given the Claim, it is easy to see that the expected cost of the cut C will be within a factor of $O(\log k)$ of an optimal cut that separates k terminal pairs.

$$E[cost(C)] = E\left[\sum_{e \in C} w(e)\right]$$
$$= \sum_{e \in E} w(e)Pr(e \in C) \le \sum_{e \in E} 2H_k w_e x_e = 2H_k z^*$$

Theorem

Multicuts in a graph can be approximated within a factor of $O(\log k)$ in polynomial time that separates k- terminal pairs.

Proof of Claim

Claim

 $Pr(e \in C) \le 2H_k x_e$, where H_k is the k-th Harmonic number.

- Let e = (u, v).
- We will consider distance from s_1, \ldots, s_k to e.
- We define the distance from s_i to e=(u,v) as $d(s_i,e)=\min(\delta(s_i,u),\delta(s_i,v)).$
- WLOG, assume that the order of vertices according to increasing distance from e be s_1, s_2, \ldots, s_k .
- In the random ordering of vertices in s_1, \ldots, s_k , consider when an end point u or v of e gets marked for the first time. Say it is u, and it gets marked by s_i .
- $u \in X_i$ and assume $\delta(s_i, u) \leq \delta(s_i, v)$.
- We have two cases (a) $v \in X_i$, (b) $v \notin X_i$.

Proof Sketch of Claim (contd.)

Case (a): $v \in X_i$, i.e. v is also marked by s_i . Since both the ends of the edge e = (uv) are in $X_i \implies e \notin C$.

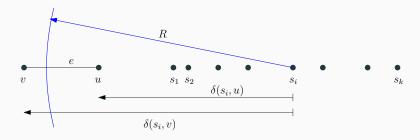
Case (b): $v \notin X_i$. In this case $e \in C$, and we say s_i cuts e.

We want to estimate $Pr(s_i \text{ cuts } e)$.

Observe that s_i cuts e because of the following:

- 1. s_i marked u but not v.
- 2. $d(s_1, e) \le d(s_2, e) \le \cdots \le d(s_k, e)$.
- 3. Among all the vertices $\{s_1, \ldots, s_k\}$, s_i is the first vertex that marked any of the end-points of e.
- 4. In the random order, none of the vertices that have smaller distance to e than s_i appeared. Otherwise, s_i won't be the first vertex marking an end of e.

An Illustration



Proof Sketch of Claim (contd.)

1. What is the probability that s_i comes before s_1, \ldots, s_{i-1} in a random permutation?

Answer: $\frac{1}{i}$.

2. What is the probability that s_i cuts e, given that s_i comes before s_1, \ldots, s_{i-1} ?

Answer: The radius $R \in (0, 1/2)$ should fall in the range

$$\delta(s_i, u) < R < \delta(s_i, v).$$

Thus, the probability is
$$\leq \frac{\delta(s_i,v)-\delta(s_i,u)}{1/2} \leq \frac{x_e}{1/2} = 2x_e$$
.

3. What is the probability that s_i cuts e?

Answer: $\frac{1}{i}2x_e$.

4. What is the probability that e is cut by any of s_1, \ldots, s_k ?

Answer:
$$\leq \sum_{i=1}^{k} Pr(s_i \text{ cuts } e) = \sum_{i=1}^{k} \frac{1}{i} 2x_e = 2H_k x_e.$$

References

References

- Garg, Vazirani and Yannakakis, Multiway cuts in node weighted graphs,
 J. Algorithms 50(1): 49–61, 2004.
- 2. Garg, Vazirani and Yannakakis, Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18(1): 3-20, 1997.
- 3. Calinescu, Karloff and Rabani, Approximation algorithms for the 0-extension problem, ACM-SIAM SODA 2001.
- 4. Fakcharoenphol, Rao and Talwar, A tight bound on approximating arbitrary metrics by tree metrics, JCSS 69(3): 485–497, 2004.
- 5. Several lecture notes (Anupam Gupta, Dinitz, Ravi).