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LP for Set Cover



Set Cover Problem

Input: A universe U consisting of n elements.
A set of m subsets S = {S1, S2, . . . , Sm} of U such that ∪mi=1Si = U .

Output: Find a minimum number of subsets of S such that their union covers
all elements of U .
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Integer Linear Program for Set Cover

Define a 0− 1 indicator variable xS for each set S ∈ S, where xS = 1 if and
only if S is included in the set cover.

The ILP formulation is:

min
∑
S∈S

xS

∀u ∈ U :
∑
u∈S

xS ≥ 1

∀S ∈ S : xS ∈ {0, 1}

The relaxed Linear Program (LP) is where we replace the integrality
constraint xS ∈ {0, 1} by 0 ≤ xS ≤ 1.

Moreover, we can replace 0 ≤ xS ≤ 1 by xS ≥ 0 as this is a minimization
problem.
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Optimization Problem → Feasibility Problem

- The value of the objective function in ILP formulation is one of the numbers
{1, . . . ,m}.

- Suppose we guess that the size of the set cover is β ∈ {1, . . . ,m}.

- If the following feasibility inequality can be satisfied, we know that the
optimal value is at most β.

∀u ∈ U :
∑
u∈S

xS ≥ 1

∑
S∈S

xS ≤ β

∀S ∈ S : xS ≥ 0

- We can perform a binary search to find the true optimal value.
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Fractional Set Cover Feasibility Problem

Let P = {x ∈ <m|
m∑
i=1

xi ≤ β
∧
∀i ∈ {1, . . . ,m}, xi ≥ 0}.

P is a convex polytope that defines the feasible solutions for our Linear
Program.

We can express the feasibility problem succinctly as follows:

Fractional Set Cover Feasibility Problem:

Report x ∈ P such that ∀u ∈ U :
∑
u∈S

xS ≥ 1,

Otherwise report infeasibility.
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An Approximate Abstract Feasibility Problem

Let A be a n×m matrix, b is a vector of length m,
P is the convex feasibility region.

Approximate Abstract Feasibility Problem:
Let ε ≥ 0 be an error parameter.
If z ∈ P and Az ≥ b is feasible then
report x ∈ P such that Aix ≥ bi − ε, ∀i ∈ {1, . . . , n},
Otherwise report infeasibility.
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Approximate Set Cover Feasibility Problem

The matrix A is a 0− 1 matrix of size n×m. It represents elements of
U = {u1, . . . , un} as rows and subsets in S = {S1, . . . , Sm} as columns.

A[i, j] =

1, if ui ∈ Sj
0, otherwise

Approximate Set Cover Feasibility Problem:
For a universe U of size n and m-subsets of U , we have

- characteristic matrix A of size n×m,
- vector b of length n consisting of 1’s,

- P = {x ∈ <m|
m∑
i=1

xi ≤ β ∧ ∀i ∈ {1, . . . ,m}, xi ≥ 0}.

- Error parameter ε ≥ 0.

If z ∈ P and Az ≥ b is feasible then
report x ∈ P such that Aix ≥ 1− ε, ∀i ∈ {1, . . . , n},
Otherwise report infeasibility.

Note: Ai represents the i-th row of matrix A.
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Approximate Feasibility → Feasibility

- Suppose we have an instance of the set cover feasibility problem with a
given choice of β that is feasible.

- Approximate set cover feasibility problem returns us an x ∈ P such that
∀u ∈ U :

∑
u∈S

xS ≥ 1− ε.

- Set x̄ = x
1−ε .

- x̄ satisfies the constraints x̄i ≥ 0 for i = 1, . . . ,m and ∀u ∈ U :
∑
u∈S

x̄S ≥ 1.

- x̄ results in the objective value of at most (1 +O(ε))β.

Next: We use the MWU method to solve the Approximate Set Cover
Feasibility Problem. But first ρ-bounded oracle for set cover.
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ρ-bounded oracle

The ρ-bounded oracle takes as input a probability distribution

p = (p1, . . . , pn), where
m∑
i=1

pi = 1, on the rows of A (i.e. on the elements of

U ) and returns the following.

ρ-bounded oracle

If x ∈ P and pTAx ≥ pT b is feasible,
return x∗ ∈ <m such that ∀i : |Aix∗ − bi| ≤ ρ.
Otherwise, return that the system is infeasible.

Note: pTAx ≥ pT b is a single inequality.
Its a linear combination of rows of A given by the vector p.
Finding x ∈ P that satisfies pTAx ≥ pT b may be easier than satisfying n
constraints of the fractional set cover feasibility problem.

Next: Construction of a ρ-bounded oracle for the set cover.
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ρ-bounded oracle for set cover

For set cover pT b = 1, as b is a vector of all 1s, and p is a vector of
probabilities that add to 1.

What do we want?

We want x ≥ 0,
∑
S∈S

xS ≤ β, and

pTAx =
∑
u∈U

pu

(∑
u∈S

xS

)
=
∑
S∈S

xSp(S) ≥ 1, where p(S) denotes the sum of

the probabilities associated to the elements in S.

How to find x?
- Find the set S ∈ S that maximizes p(S) for the given vector p.
- Suppose the set S∗ ∈ S maximizes this value.
- Set xS∗ = β and for every other set S 6= S∗ set xS = 0.
- Observe that the vector x∗ has 0’s in all the coordinates except the
coordinate corresponding to S∗ where it is equal to β.
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ρ-bounded oracle for set cover

- What are the two equalities in pTAx =
∑
u∈U

pu

( ∑
u∈S

xS

)
=
∑
S∈S

xSp(S)?

- We will interpret the product pTAx in two different ways
- Think of each element ui ∈ U has an associated probability pi.

1st interpretation: Product Ax is a vector of dimension n, where its i-th entry is the
number of sets in S that contain the element ui.
- pTAx is the dot-product of vectors pT and Ax, where the i-th entry in Ax is multiplied
by the probability pi.
- Thus, pTAx is the sum of the products of the probability pi of element ui times the
number of occurrences of ui in S.

2nd Interpretation: For each set S ∈ S sum up the probabilities associated to each
element in that set (this is the quantity p(S)).
- We take the sum p(S) over all sets so that for each element we take into account the
number of times it occurs in the sets of S.

-Therefore, pTAx =
∑
u∈U

pu

( ∑
u∈S

xS

)
=
∑
S∈S

xSp(S).



ρ-bounded oracle for set cover (contd.)

x∗ is feasible
The vector x∗ = (0, 0, . . . , β, 0, . . . , 0) ∈ P, as each of its coordinates is ≥ 0

and the sum of the coordinates is ≤ β.

Consider
∑
S∈S

x∗Sp(S).

If
∑
S∈S

x∗Sp(S) ≥ 1, we have the x∗ that we are looking for.

Claim
If
∑
S∈S x

∗
Sp(S) < 1, then no other x ∈ P can satisfy the inequality∑

S∈S
xSp(S) ≥ 1.

Proof.
Note that under the constraints (x ≥ 0,

∑
S∈S

xS ≤ β) the choice of x (=x∗)

that maximizes the expression
∑
S∈S

xSp(S) didn’t satisfy the inequality. Any

other assignment will have a value at most the max value.
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ρ-bounded oracle for set cover (contd.)

What should be the value of ρ?

Find the smallest value ρ such that for all i ∈ {1, . . . , n}, |Aix∗ − bi| ≤ ρ.
- Due to the choice of x∗ and the matrix A being a 0− 1 matrix, the product
Aix

∗ is either 0 or β.

- Thus |Aix∗ − bi| = |Aix∗ − 1| ≤ |β − 1| ≤ β ≤ m.

- Note that β ≥ 1 as the set cover consists of one or more sets to cover U .

- Set ρ = min{β,m}.

Now we have the required ρ-bounded oracle for the set cover.

ρ-bounded oracle
If x ∈ P and pTAx ≥ pT b is feasible,
we return x∗ = (0, 0, . . . , β, 0, . . . , 0) ∈ <m such that ∀i : |Aix∗ − bi| ≤ ρ.
Otherwise, we return that the system is infeasible.
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MWU Method for Approximate Fractional Set Cover

Step 1: Fix an η ∈ [0,min( 1
2
, ε

2ρ
)] and set w1 = (1, . . . , 1).

Step 2: For t = 1 to T = 4 ρ
2 lnn
ε2

days do:

1. Compute the probability vector pt = (
wt

1
Φt , . . . ,

wt
n

Φt ), where

Φt =
n∑
i=1

wti .

2. Execute the ρ-bounded oracle for pt. It either returns that
the system is infeasible and we STOP or returns the
vector xt.

3. Compute the costs of each expert i by evaluating
mt
i = 1

ρ
(Aix

t − bi). (Observe that mt
i ∈ [−1, 1].)

4. Update weights for the next day for each expert i by
executing wt+1

i = wti(1− ηmt
i).

Step 3: If we didn’t report infeasibility during the T days of execution,

return x̄ = 1
T

T∑
t=1

xt as the answer to the Approximate Set

Cover Feasibility Problem.
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Observations

1. Suppose we didn’t report infeasibility on any of the T days of execution

of MWU Method. We claim that x̄ = 1
T

T∑
t=1

xt is a feasible solution for the

approximate fractional set cover problem as it is a convex combination
(average) of T feasible vectors. Hence it is within the polytope P.

2. If Aixt ≥ bi, mt
i ≥ 0, and the i-th constraint is satisfied. But if Aixt < bi,

then mt
i < 0 =⇒ for the rows of A for which the constraints are satisfied

their weights will be smaller compared to the rows for which the
constraints are not satisfied.

3. In the next round the unsatisfied rows (experts) will get higher
probabilities compared to the satisfied rows. The more unsatisfied the
row is higher is its probability. Hence it is likely that it may get satisfied in
future rounds.
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Analysis

From the analysis of MWU Method we know that the expected cost of this
algorithm is bounded with respect to the cost of any expert i by

T∑
t=1

M t =
T∑
t=1

pt ·mt ≤ lnn

η
+ ηT +

T∑
t=1

mt
i

Claim
T∑
t=1

M t ≥ 0.

Proof.

Since mt = 1
ρ
(Axt − b), we have

M t = pt ·mt =
1

ρ

(
pt · (Axt − b)

)
=

1

ρ
(pt ·Axt − pt · b) ≥ 0

The last inequality holds as the system is satisfied, i.e. ptAxt ≥ ptb.
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Analysis (contd.)

Claim

For each i = 1, . . . , n, Aix̄ ≥ bi − ε, where x̄ = 1
T

T∑
t=1

xt.

Proof.

- For t = 1, . . . , T , each M t ≥ 0 =⇒ lnn
η

+ ηT +
T∑
t=1

mt
i ≥

T∑
t=1

M t ≥ 0.

- Substitute mt
i = 1

ρ
(Aix

t − bi), we obtain: lnn
η

+ ηT + 1
ρ

T∑
t=1

(Aix
t − bi) ≥ 0.

- This is equivalent to lnn
η

+ ηT + 1
ρ

T∑
t=1

Aix
t − T

ρ
bi ≥ 0.

- Multiply by ρ
T

and use x̄ = 1
T

T∑
t=1

xt:

ρ lnn

Tη
+ ρη +Aix̄− bi ≥ 0

- Substitute T = 4 ρ
2 lnn
ε2

and η ∈ [0,min( 1
2
, ε

2ρ
)] we obtain

ε+Aix̄− bi ≥ 0
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Computational Complexity

- We run the algorithm for T days.

- For each day we make a call to the ρ-bounded oracle.

- The overall time complexity is bounded by the time it takes to run O( ρ
2 lnn
ε2

)

calls to the oracle.
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Summary

1. Set cover problem→ ILP formulation→ Relaxed LP that may use
fractional values.

2. LP formulation→ Fractional set cover feasibility problem (binary search
to find the minimum set cover).

3. Feasibility Problem→ Approximate feasibility problem.
4. Answer to approximate feasibility problem yields an assignment to

variables (xS ’s) that satisfies all the constraints and is within a 1 +O(ε)

factor of optimal.
5. To answer the approximate feasibility problem, we take help of a

ρ-bounded oracle.
6. An easier problem as it has one inequality.
7. Use ρ-bounded oracle in the MWU method to find successive x’s that

are within the convex region P.
8. If the approximate feasibility problem has a solution, the average of xt’s

yields a good approximation, using the MWU guarantees. Otherwise, we
report infeasibility and adjust the guess on the optimal value and restart.
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