
Multiplicative-Weight Update Method

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

1

Outline

Problem

Warmup

Potential Function

Randomization

±1 Costs

Generalization

2

Problem

Expert Investor Without an Expertise

Model:

1. Access to n experts (newspapers, stock briefs, . . .)

2. Predict whether TSX will go ↑ or ↓ at the end of each day.

3. Reward of $0/per day for correct prediction.

4. Costs us $1/per day for wrong prediction.

Problem: Devise an algorithm that makes prediction for each day. Suppose
we are at day t, where t ∈ {1, . . . , T}. Algorithm can use previous predictions
for t− 1 days + experts advises for days 1, . . . , t

Objective: At the end of T days we want to be competitive with respect to
the best expert. Our cost (loss) is not significantly higher than the cost of any
expert (including the best expert).

3

Warmup

Warmup: ≥ 1 Real Experts

Extra Knowledge: Among all the n experts there is at least one (unknown)
expert who is always correct.

Let the set of experts be E = {1, . . . , n}

For each day t := 1 to T do:

Step 1: Among all the remaining experts in E, poll them to find the
prediction of the majority of them for that day. Record that as
the prediction of the algorithm.

Step 2: Observe the true outcome at the end of the day. Discard all
those experts that predicted wrong from E from future
considerations.

4

Warmup (contd.)

#Wrong Predictions
Algorithm makes at most O(logn) wrong predictions

5

MWU - Idea

Extra Knowledge: The best expert (unknown) makes ≤ m mistakes over the
period of T days.

Let the set of experts be E = {1, . . . , n}
For each expert i, set its weight w1

i = 1

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts. Sum total
the weights of all the experts that predict ↑ (respectively, ↓).
Whichever of the two sums is higher is the prediction for day t.

Step 2: Observe the true outcome at the end of the day t

Step 3: For all the experts i that predicted wrongly, their weight is set
to wt+1

i = wti/2. For all others, wt+1
i = wti .

6

Potential Function

Potential Function

Potential Function Φt

Define the potential function Φt for day t ∈ {1, . . . , T} to be the sum total of

the weights of all the experts at the start of day t, i.e. Φt =
n∑
i=1

wti

Observations:

1. Φ1 = n

2. If the algorithm makes a wrong prediction on day t, Φt+1 ≤ 3
4
Φt

3. If the algorithm has made M mistakes in T days, its total weight at the
end of day T , ΦT+1 ≤

(
3
4

)M
Φ1 =

(
3
4

)M
n

7

Bounding Potential Function

Assume that the best Expert is i (we don’t know it’s identity).

Bounds on Potential Function

Weight of the expert i at the end of day T is ≥ (1
2
)m. Therefore,(

1
2

)m ≤ ΦT+1 ≤
(

3
4

)M
n

8

Number of mistakes

Bounding number of mistakes
The algorithm makes at most 2.41(m+ logn) mistakes.

9

Number of mistakes

Bounding number of mistakes
The algorithm makes at most 2.41(m+ logn) mistakes.

20
22

-0
3-

06

MWU Method
Potential Function

Number of mistakes

Proof: We had
(

1
2

)m ≤ ΦT+1 ≤
(

3
4

)M
n. Take log’s:

−m ≤ M log

(
3

4

)
+ logn

−M log

(
3

4

)
≤ m+ logn

M log

(
4

3

)
≤ m+ logn

M ≤ 2.41(m+ logn)

2

Replacing 1
2

Choose η ∈ (0, 1
2
]

Let the set of experts be E = {1, . . . , n}
For each expert i, set its starting weight w1

i = 1

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts. Sum total
the weights of all the experts that predict ↑ (respectively, ↓).
Whichever of the two sums is higher is the prediction for day t.

Step 2: Observe the true outcome at the end of the day t

Step 3: For all the experts i that predicted wrongly, their weight is set
to wt+1

i = (1− η)wti . For all others, wt+1
i = wti .

10

An Observation

Suppose the algorithm made a mistake on day t, i.e., the majority weighted
prediction turned out to be incorrect.

Without loss of generality, assume weighted majority prediction was in favor
of ↑.

Define ΦtU =
∑

expert i predicts ↑
wti .

Similarly, let ΦtD =
∑

expert i predicts ↓
wti .

Note ΦtU ≥ 1
2
Φt ≥ ΦtD.

An Observation

Φt+1 ≤ (1− η
2
)Φt.

Proof: Given the assumption, we have Φt+1 = ΦtD + (1− η)ΦtU .

Thus, Φt+1 = ΦtD + ΦtU − ηΦtU ≤ Φt − η
2
Φt = (1− η

2
)Φt 2

11

Analysis

New Bound

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

12

Analysis

New Bound

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

20
22

-0
3-

06

MWU Method
Potential Function

Analysis

Proof: We have assumed that the algorithm makes at most M mistakes and the best
expert makes at most m mistakes over T days.

Potential function equation: (1− η)m ≤ ΦT+1 ≤ (1− η
2

)Mn

Take log’s and use −η − η2 ≤ ln(1− η) ≤ −η for η ∈ [0, 1
2

]:

m ln(1− η) ≤ M ln(1−
η

2
) + lnn

−m(η + η2) ≤ −M
η

2
+ lnn

M
η

2
≤ lnn+ (η + η2)m

M ≤
2

η
lnn+ 2(1 + η)m

2

Randomization

An Example

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

Example: Two experts A and B.
A predicts (↑, ↓) correctly only on even numbered days
B predicts (↑, ↓) correctly only on odd numbered days

Best Expert: Wrong half the times.

How many times the Algorithm predicts wrongly?

13

Improvements (contd.)

How to remove the multiplicative factor of 2 in M ≤ 2(1 + η)m+ 2
η

logn?

Use Randomization

14

Objectives

Loss/Cost: Assume that the loss (costs) are real numbers in the interval
[0, 1].

Let mt
i ∈ [0, 1] denote the loss of expert i ∈ {1, . . . , n} on day t ∈ {1, . . . , T}

Objective: Algorithm to be competitive against the cost incurred by the best
expert. Assume i is the (unknown) best expert.

M t = Expected cost that the algorithm incurs on day t.

Our algorithm should have the following guarantee:

T∑
i=1

M t ≤ lnn
η

+ (1 + η)
T∑
t=1

mt
i

Total expected cost over T days is within an additive factor lnn
η

and a multi-
plicative factor (1 + η) of the best expert.

15

Randomized MWU

Multiplicative Weight Update Method

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its initial weight w1
i = 1

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti

For each expert i, compute pti =
wti
Φt

Step 2: Choose an expert based on their probabilities and predict
(↑, ↓) according to the chosen expert

Step 3: Update Weights: For each expert i set wt+1
i = wti(1− ηmt

i)

16

Analysis - Upper Bound

Expected loss M t

The expected loss M t that the algorithm incurs on day t is given by

M t =
n∑
i=1

ptim
t
i = 〈pt ·mt〉, (1)

where pt = (pt1, p
t
2, . . . , p

t
n) and mt = (mt

1,m
t
2, . . . ,m

t
n) and their dot

product is 〈pt ·mt〉

17

Analysis (contd.)

Potential Function

For any t ∈ {1, . . . , T}: Φt+1 ≤ Φte−ηM
t

.

Moreover, ΦT+1 ≤ ne
−η

T∑
t=1

Mt

18

Analysis (contd.)

Potential Function

For any t ∈ {1, . . . , T}: Φt+1 ≤ Φte−ηM
t

.

Moreover, ΦT+1 ≤ ne
−η

T∑
t=1

Mt

20
22

-0
3-

06

MWU Method
Randomization

Analysis (contd.)

Proof:

Φt+1 =
n∑
i=1

wt+1
i =

n∑
i=1

wti(1− ηmti) =
n∑
i=1

wti − η
n∑
i=1

wtim
t
i

= Φt − η
n∑
i=1

Φtptim
t
i = Φt(1− η〈pt ·mt〉)

≤ Φte−η〈p
t·mt〉 = Φte−ηM

t

Using induction on t, we obtain

ΦT+1 ≤ Φ0e
−η

T∑
t=1

Mt

= ne
−η

T∑
t=1

Mt

2

Analysis - Lower Bound

Lower Bound

For any expert i, ΦT+1 ≥ (1− η)

T∑
t=1

mti

19

Analysis - Lower Bound

Lower Bound

For any expert i, ΦT+1 ≥ (1− η)

T∑
t=1

mti

20
22

-0
3-

06

MWU Method
Randomization

Analysis - Lower Bound

Proof: Since all mti ∈ [0, 1], wti ≥ 0.

=⇒ Φt+1 ≥ wt+1
i for any individual weight as Φt+1 =

n∑
i=1

wt+1
i

Note: For ε ∈ [0, 1], 1− εx ≥ (1− ε)x if x ∈ [0, 1]

Using the update rule of wt+1
i ,

we have ΦT+1 ≥ wT+1
i = w1

i

T∏
t=1

(1− ηmti) ≥ (1− η)

T∑
t=1

mti
.

2

Putting Lower & Upper Bounds Together

Putting upper and lower bounds for ΦT+1 we have

ne
−η

T∑
t=1

Mt

≥ ΦT+1 ≥ (1− η)

T∑
t=1

mti (2)

Take log’s and divide by η:

lnn

η
−

T∑
t=1

M t ≥ ln(1− η)

η

T∑
t=1

mt
i (3)

This is equivalent to

T∑
t=1

M t ≤ lnn

η
− ln(1− η)

η

T∑
t=1

mt
i (4)

20

Putting Lower & Upper Bounds Together (contd.)

Use η ∈ [0, 1
2
], −η − η2 ≤ ln(1− η) and we obtain:

T∑
t=1

M t ≤ lnn

η
+
η + η2

η

T∑
t=1

mt
i (5)

or

T∑
t=1

M t ≤ lnn

η
+ (1 + η)

T∑
t=1

mt
i

21

±1 Costs

MWU with costs in [−1, 1]

The costs of each expert can be positive or negative, i.e. mt
i ∈ [−1, 1]. Use

the same algorithm as for the cost [0, 1]:

MWU with costs in [−1, 1]

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its initial weight w1
i = 1

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti

For each expert i, compute pti =
wti
Φt

Step 2: Choose an expert based on their probabilities and predict
(↑, ↓) according to the chosen expert

Step 3: Update Weights: For each expert i set wt+1
i = wti(1− ηmt

i)

22

Analysis - Upper Bound

Upper Bound

ΦT+1 ≤ ne
−η

T∑
t=1

Mt

Proof: Expected cost of algorithm on day t: M t =
n∑
i=1

ptim
t
i = 〈pt ·mt〉

The upper bound for Φt+1 follows the same analysis:

Φt+1 =
n∑
i=1

wt+1
i =

n∑
i=1

wti(1− ηmt
i) ≤ Φte−ηM

t

And using induction on t we have ΦT+1 ≤ ne
−η

T∑
t=1

Mt

2

23

Analysis - Lower Bound

Lower Bound

ΦT+1 ≥ (1− η)

∑
mt
i
≥0

mti

(1 + η)

−
∑

mt
i
<0

mti

Proof: Since mt
i ∈ [−1, 1], we have 1− ηmt

i ≥ 0.
Thus, wti ≥ 0 =⇒ Φt+1 ≥ wt+1

i for any individual weight.

From the update rule of wt+1
i : ΦT+1 ≥ wT+1

i =
T∏
t=1

(1− ηmt
i).

Group for each day the positive mt
i ’s and the negative mt

i ’s:

ΦT+1 ≥ (1− η)

∑
mt
i
≥0

mti

(1 + η)

−
∑

mt
i
<0

mti

2

Note: For ε ∈ [0, 1]:
If x ∈ [0, 1], (1− ε)x ≤ 1− εx.
If x ∈ [−1, 0], (1 + ε)−x ≤ 1− εx.

24

Upper+Lower Bound

ne
−η

T∑
t=1

Mt

≥ (1− η)

∑
mt
i
≥0

mti

(1 + η)

−
∑

mt
i
<0

mti

Take log’s and divide by η:

lnn

η
−

T∑
t=1

M t ≥ ln(1− η)

η

∑
mti≥0

mt
i −

ln(1 + η)

η

∑
mti<0

mt
i

T∑
t=1

M t ≤ lnn

η
− ln(1− η)

η

∑
mti≥0

mt
i +

ln(1 + η)

η

∑
mti<0

mt
i

25

Upper+Lower Bound (contd.)

Use, η + η2 ≥ − ln(1− η) and ln(1 + η) ≥ η − η2, for η ∈ [0, 1
2
].

T∑
t=1

M t ≤ lnn

η
+ (1 + η)

∑
mti≥0

mt
i + (1− η)

∑
mti<0

mt
i

Note: (η − η2)
∑
mti<0

mt
i ≥ ln(1 + η)

∑
mti<0

mt
i because of negative values.

On expanding we obtain

T∑
t=1

M t ≤ lnn

η
+ η

T∑
t=1

|mt
i|+

T∑
t=1

mt
i

Since |mt
i| ≤ 1, we have

T∑
t=1

M t ≤ lnn

η
+ ηT +

T∑
t=1

mt
i (6)

26

Observations

Cost of MWU

By setting η =
√

lnn
T

in
T∑
t=1

M t ≤ lnn
η

+ ηT +
T∑
t=1

mt
i, we obtain

T∑
t=1

M t ≤ 2
√
T lnn+

T∑
t=1

mt
i

Interpretation: Cost of MWU algorithm is off by an additive factor that is
proportional to the square root of the product of the number of days and the
number of experts as compared to the best expert.

Average Error: Consider the average error on each day (divide by T):

1
T

T∑
t=1

M t ≤ 2
√

lnn
T

+ 1
T

T∑
t=1

mt
i

Observe that as T increases the average error drops down. Therefore, MWU
method is able to learn from experts reasonably well when executed over a
number of days.

27

Generalization

MWU with costs in [−l, ρ]

The costs of each expert is in mt
i ∈ [−l, ρ], where l < ρ.

MWU with costs in [−l, ρ]

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its weight w1
i = 1

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti . For each expert i, compute pti =
wti
Φt

Step 2: Choose an expert based on their probabilities and predict
according to the chosen expert

Step 3: Update Weights: For each expert i set

wt+1
i =

w
t
i(1− η)

mti
ρ , if mt

i ≥ 0

wti(1 + η)
−
mti
ρ , if mt

i < 0

28

Analysis

As mt
i/ρ ∈ [−1,+1], we have

Upper Bound

ΦT+1 ≤ ne
−η

T∑
t=1

Mt

ρ

Lower Bound

ΦT+1 ≥ (1− η)

∑
mt
i
≥0

mti
ρ

(1 + η)

−
∑

mt
i
<0

mti
ρ

29

Results

Theorem
T∑
t=1

M t ≤ ρ lnn

η
+ (1 + η)

∑
mti≥0

mt
i + (1− η)

∑
mti<0

mt
i

Corollary

(A) If η ≤ min(1
2
, ε

4l
) for some error parameter ε, after T = 2ρ lnn

ηε
time, the

average expected loss is given by

1

T

T∑
t=1

M t ≤ ε+
(1 + η)

T

∑
mti≥0

mt
i +

(1− η)

T

∑
mti<0

mt
i

(B) If η ≤ min(1
2
, ε

4ρ
) for some error parameter ε, after T = 16ρ2 lnn

ε2
time,

the average expected loss is given by

1

T

T∑
t=1

M t ≤ ε+
1

T

∑
t

mt
i

30

Applications

Numerous applications including:

1. 2-Player Zero-Sum Games

2. Is the linear system Ax ≥ b, x ≥ 0, feasible?

3. Multi-commodity Flow Problems: Give k source-sink pairs, and
capacities on edges of a graph, maximize the total flow from each si to
ti, respecting the capacity constraint on each edge.

4. Approximate set cover.

5. · · ·

31

Reference

- Arora, Hazan and Kale, The multiplicative weights update method: a
meta-algorithm and applications, Theory of Computing 8(1): 121-164, 2012.

- Several Lecture Notes

32

	Problem
	Warmup
	Potential Function
	Randomization
	1 Costs
	Generalization

