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Problem Statement



Vertex Cover in Graphs

Input: A simple undirected graph G = (V,E).

Output: A subset S ⊆ V of smallest cardinality such that for each edge
e = (u, v) ∈ E, at least one of u or v is in S.
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Complexity Results

Let G be a simple undirected graph, and let k be the cardinality of its
minimum vertex cover.

1. NP-Complete for graphs.

2. Polynomial Time Approximation Algorithm.
3. Exact (FPT) Algorithms:

3.1 A naive algorithm running in O(|V |k+1) time.
3.2 An algorithm running in O(|V |2k) time.
3.3 An algorithm running in O(|V |+ |E|+ k22k) time.
3.4 · · ·

Note: FPT algorithms are polynomial in graph parameters |V | and |E|, but
exponential in k - the size of the vertex cover. If k is small, these algorithms
are efficient.
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A Simple Approximation Algorithm



Approximation via Maximal Matching

A matching M ⊆ E in G = (V,E) is a collection of edges so that no two
edges in M are incident to the same vertex.

Matching M is maximal, if every other edge in E \M shares an end point
with some edge in M .

Approx Vertex Cover Algorithm:

1. Compute a maximal matching M of G.

2. Let S ⊆ V be the set of vertices incident on the edges in M .

3. Return S as an approximation to vertex cover of G.

Observation
Any optimal vertex cover S∗ ⊆ V of G satisfies |S∗| ≥ |M |.
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Approximation via Maximal Matching (contd.)

Approx Vertex Cover Algorithm:

1. Compute a maximal matching M of G.

2. Let S ⊆ V be the set of vertices incident on the edges in M .

3. Return S as an approximation to vertex cover of G.

Observation
Set of vertices in S forms a vertex cover of G. Moreover, the graph G \ S is
an independent set.

Claim
|S| = 2|M | ≤ 2|S∗|. Thus, the above algorithm is a 2-approximation
algorithm for the vertex cover problem. The algorithm runs in O(|V |+ |E|)
time.
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FPT Algorithms



A Brute-Force Algorithm

Problem: Whether G = (V,E) has a vertex cover of size ≤ k?

Easy solution:

• Consider all subsets S ⊆ V of size k.

• Check whether G \ S is an independent set.

Time Complexity:
(
n
k

)
O(n+m) = O(nk(n+m)), where n = |V | and

m = |E|.
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A Brute-Force Algorithm (contd.)

Problem: Whether G = (V,E) has a vertex cover of size ≤ k?

1. Find a Maximal Matching M of G.

2. |M | > k, return G has no vertex cover of size ≤ k.

3. Let S be the set of vertices constituting the edges in M .
Note: S forms a vertex cover of G and I = V \ S is an independent set.

4. Consider all possible subsets A of S of size ≤ k and check whether
A ∪ (N(S \A) ∩ I) is a vertex cover of G of size at most k. If true, output
A ∪ (N(S \A) ∩ I) as the vertex cover. (N(X) represents neighbors of
vertices in X in G.)
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A Brute-Force Algorithm (contd.)

S

I = V \ S

A

N(S \ A)

S \ A

S is a vertex cover and I an independent set of G.

Observation
Let S be a vertex cover of G = (V,E). For a subset A ⊆ S,
A ∪ (N(S \A) ∩ I) is a vertex cover of G if and only if there are no edges in
E such that both of its end points are in S \A.
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Analysis of Brute-Force Algorithm (contd.)

1. Finding maximal matching M in G requires O(n+m) time.

2. Number of all possible subsets of size at most k of S is 22k = 4k.

3. Checking whether the set A ∪ (N(S \A) ∩ I) forms the vertex cover of
size at most k requires O(n+m) time.

4. Thus, the overall complexity is 4knO(1).

5. The time complexity is of type f(k)nO(1) - a function in k (may be
exponential) and a polynomial function in the size of G.

Fixed-Parameter Tractable

A problem is said to be fixed parameter tractable with respect to a parameter
k if there is an algorithm with running time f(k)nO(1), where n is the size of
the problem and f is independent of n.

Example: Vertex Cover is FPT.
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A Branch-and-Bound Algorithm

Observation
For each edge e = (uv) of G, any vertex-cover of G contains at least one of
u or v.

Proof: Follows from definition of vertex cover of G.
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A FPT Algorithm for Vertex Cover

Algorithm VertexCoverFPT(G, k)

1. if G has no edges then return TRUE

2. if k = 0 then return FALSE

3. Let e = (uv) ∈ E be an edge of G

4. if VertexCoverFPT(G− u, k − 1) then return TRUE

5. if VertexCoverFPT(G− v, k − 1) then return TRUE

6. return FALSE

Note: Above algorithm is a Decision Algorithm - answers whether G has a
vertex cover of size ≤ k?

With some extra work, we can also find the vertex cover S ⊆ V of size ≤ k.
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Correctness

The correctness of the algorithm is based on induction on the size of the
vertex cover k.

- If k = 0 =⇒ G has no edges and Step 1 returns TRUE.

- Let G = (V,E) be a graph with vertex cover S of size k > 0.

- To cover the edge e = (uv), S must contain at least one of u or v.

- If u ∈ S, the graph G− u (i.e., remove u and all its incident edges) has
vertex cover of size at most k − 1. Step 4 returns TRUE.

- If u 6∈ S, then v ∈ S, G− v has vertex cover of size at most k − 1. Step 5
returns TRUE.

- If both returns FALSE, then clearly G doesn’t have a vertex cover of size
≤ k.
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Complexity Analysis

Observe that

- Recursion ‘tree’ is a complete binary tree of height k.

- It consists of 2k leaves and 2k−1 internal nodes.

- Each internal node requires computation time of O(|V |) (e.g. using
adjacency list representation of graphs).

- For each leaf node, we need to check whether there are no edges in the
remaining graph.

- Overall Running Time = (2k + 2k−1)O(|V |) = O(|V |2k)

Result 1
Let G = (V,E) be a simple undirected graph that has a vertex cover of size
at most k. We can find the minimum vertex cover of G in O(|V | × 2k) time.
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Kernelization



Kernel

• 〈Q, k〉 A−→ 〈Q′, k′〉
Given a problem instance Q with parameter k, we will execute an
algorithm A, running in polynomial time, to obtain an equivalent instance
Q′ such that Q has a solution if and only if Q′ has a solution.

• We say A is a kernelization algorithm if the size of Q′ and k′ can be
bounded by some function of k (and independent of the size of problem
Q.) It will be ideal to bound the size of Q′ and k′ by a polynomial function
in k, preferably linear or quadratic functions.

• The kernelization algorithm A is usually broken down as a set of rules.
For example, for the vertex cover problem, a simple rule is to remove all
vertices of degree 0, and the resulting graph has a vertex of size ≤ k if
and only if the original graph has a vertex cover of size ≤ k.
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Observations

Observation (high-degree vertices)
If G has a vertex u of degree > k. Let S ⊆ V be a vertex-cover of G with
|S| ≤ k. Then u ∈ S.

Proof: If u 6∈ S, then all its neighbours must be in S. But u’s has > k

neighbors and |S| ≤ k.
2

=⇒ We can place u in the vertex cover and remove u and all its incident
edges in G, and seek for a vertex cover of size at most k − 1 in the resulting
graph.
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Observation

Observation

Let S′ be the set of all vertices in G whose degree is > k. Let G′ be the
graph obtained from G by removing all vertices in S′ (and their incident
edges). G has a vertex cover of size ≤ k, if and only if, G′ has a vertex
cover of size ≤ k′ = k − |S′|.
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Observation (contd.)

Observation

Let S′ be set of all vertices in G whose degree is > k. Let G′ be the graph
obtained from G by removing all vertices in S′ (and their incident edges).
The degree of each vertex in G′ is ≤ k.
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Observation (contd.)

Observation

If graph G′ has more than kk′ edges, then G′ doesn’t have any vertex cover
of size ≤ k′.

Proof: Each vertex in the cover of G′ can cover at most k edges. Thus, k′

vertices cannot cover more than kk′ edges.
2
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A Faster FPT Algorithm

Here are all the steps in the algorithm:

Algorithm Kernelization-FPT(G, k)

1. Let S′ be the vertices of G of degree > k. If |S′| > k, return FALSE.

2. Let G′ = G− S′ and let k′ = k − |S′|.

3. If G′ has more than kk′ edges, return FALSE

4. Let G′′ be the graph obtained after removing isolated vertices from G′

5. Return VertexCoverFPT(G′′, k′ = k − |S′|)

Correctness:

- From observation on high degree vertices, all vertices in G of degree > k

are in the vertex cover.

- By Observations, if the graph G′ has more than kk′ edges, than G cannot
have vertex cover of size ≤ k.

- By Result 1, VertexCoverFPT(G′′, k′) correctly returns the outcome of
whether G′′ has a vertex cover of size ≤ k′.
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Complexity Analysis

1. Let S′ be the vertices of G of degree > k. If |S′| > k, return FALSE.

2. Let G′ = G− S′ and let k′ = k − |S′|.

3. If G′ has more than kk′ edges, return FALSE

4. Let G′′ be the graph obtained after removing isolated vertices from G′

5. Return VertexCoverFPT(G′′, k′ = k − |S′|)

- Step 1 takes O(|V |+ |E|) time

- Step 2 takes O(|V |+ |E|) time

- Step 3 takes O(|V |+ |E|) time

- Step 4 takes O(|V |+ |E|) time
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FPT+Kernelization

Consider the graph G′′ obtained in Step 4.

G′′ has at most kk′ ≤ k2 edges.

Since G′′ has no isolated vertices, it has ≤ 2k2 vertices.

Graph G′′ is the ‘small’ kernel for the vertex cover problem. We can execute
an exponential time algorithm on G′′.

By Result 1, in Step 5, execution of VertexCoverFPT(G′′, k′) takes
O(k2 × 2k) time.

Result 2
Let G = (V,E) be a simple undirected graph that has a vertex cover of size
at most k. Vertex cover problem admits a kernel consisting of O(k2)

vertices and O(k2) edges. We can find the minimum vertex cover of G in
O(|V |+ |E|+ k22k) time.
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Crown Decomposition



Crown Decomposition - A general kernelization technique

Crown Decomposition of G
Crown decomposition of a graph G = (V,E) is a partitioning of the set of
vertices V in three disjoint sets V = C ∪H ∪R such that

1. There is no edge between vertices in C and R. H separates C from R.

2. C is a non-empty independent set.

3. There is a matching of size |H| in the bipartite graph induced between
the vertices in C and H. I.e. the matching saturates the vertices in H.

C

H

R

(Independent Set)

(Separates C from R)
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Crown Lemma

Main Lemma
Let G = (V,E) be a graph with at least 3k + 1 vertices, none of them are
isolated. In polynomial time we can determine either G has a matching of
size at least k + 1 or find its crown decomposition.

Proof: We can use any of the matching algorithms to determine whether G
has a matching of size ≥ k + 1 in polynomial time. Assume that all possible
matchings have fewer than k + 1 edges.

1. Let M be a maximal matching of G. Let VM be the set of vertices
corresponding to edges in M . The vertices I = V \ VM forms an
independent set.

2. Consider the bipratite graph B(VM , I) consisting only of edges between
VM and I in G.

3. Let M ′ be a maximum matching in B and let X be a minimum vertex
cover of B.

4. |X| = |M ′| ≤ k, as B is bipartite graph and maximum matching in G has
< k + 1 edges (by assumption).
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Claim

5. Claim
5. X ∩ VM 6= ∅.

Proof: Suppose not. I.e. X ∩ VM = ∅.
=⇒ X ⊆ I

We claim that X = I. If so, |VM |+ |I| ≤ 2k + k = 3k, and that contradicts the
fact that G has at least 3k + 1 vertices and thus it can’t be that VM ∩X = ∅.
To complete this part of the argument, suppose X 6= I.
Let v ∈ I \X.
Since no vertex of G is isolated, there is an edge uv incident on v where
u ∈ VM .
But to cover the edge uv, we need to have u ∈ X.
But we assumed that VM ∩X = ∅. 2
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Proof of Lemma (contd.)

Now we have that X ∩ VM 6= ∅.

6. Since |X| = |M ′|, exactly one end of each edge of M ′ is in X. Let
M∗ ⊆M ′ such that every edge in M∗ has one end point in X ∩ VM . Let
VM∗ be the union of all vertices defining the edges in M∗.

a

a′ b c d

b′ c′ d′

X = {a, b, c, d}
M ′ = {aa′, bb′, cc′, dd′}

VM

I

b c d

b′ c′ d′

a a′

C = I ∩ VM∗

H = X ∩ VM∗

R = V \ (C ∪H)

M∗ = {bb′, cc′, dd′} VM∗ = {b, b′, c, c′, d, d′}

7. Define the sets C,H, and R for the crown decomposition as follows:
H = X ∩ VM∗ ; C = I ∩ VM∗ ; R = V \ (H ∪ C)
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Observations on C, H, and R

Crown Set C
The set C = I ∩ VM∗ is a non-empty independent set.

Proof: C is independent as I is independent. C 6= ∅ as X ∩ VM 6= ∅, and
each edge in the matching M ′ contributes exactly one end point to the vertex
cover X of B(VM , I). 2

Head Set H
The set H = X ∩ VM∗ separates C from R. Moreover, the induced bipartite
graph on C ∪H has a matching of size |H|.

Proof: For any vertex v ∈ C = I ∩ VM∗ , ∃u ∈ H = X ∩ VM∗ such that
uv ∈M∗ ⊆M ′ (and u ∈ X) =⇒ v 6∈ X as for any edge uv ∈M ′ exactly
one of its ends is in X.
Thus, C ∪H has a matching of size |H|.
Since v ∈ I and v 6∈ X, all neighbors of v in B(VM , I) are in X ∩ VM∗ = H. 2
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Crown Lemma (contd.)

Main Lemma
Let G = (V,E) be a graph with at least 3k + 1 vertices, none of them are
isolated. In polynomial time we can determine either G has a matching of
size at least k + 1 or find its crown decomposition.

Observe that the main computational steps are:

- Finding a maximum matching in G

- Finding the sets C, H and R.

Each step can be implemented in polynomial time.

C

H

R

(Independent Set)

(Separates C from R)
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Small Kernel for Vertex Cover using Crown Decomposition

Let G = (V,E) be the given graph and let k be an integer parameter.
Question: Is there a vertex cover of size at most k?

We use the crown decomposition to find a small kernel as follows:

Algorithm VC-Kernel〈G, k〉

1. Remove isolated vertices from G.

2. If G has ≤ 3k vertices, output G as the kernel and terminate.

3. Apply Crown Lemma on G. Either it reports that matching in G has
≥ k + 1 edges ( =⇒ G has a vertex cover of size > k) or a partitioning
V = C ∪H ∪R.

4. Place all vertices in H in the vertex cover, and execute
VC-Kernel〈G−H, k − |H|〉.
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Correctness of Algorithm VC-Kernel

Correctness of Algorithm VC-Kernel
The algorithm reports whether G = (V,E) has a vertex cover of size > k or
outputs a kernel of size ≤ 3k.

Proof: If ∃ matching of size ≥ k + 1, the vertex cover of G requires ≥ k + 1

vertices. Otherwise, consider the crown decomposition V = C ∪H ∪R.

- Recall, C is independent. H 6= ∅. H separates C from R. ∃ matching of
size |H| in the bipartite graph formed by C and H =⇒ H is a vertex cover of
induced graph of C ∪H.

- Graph G−H consists of isolated vertices in C, and possibly some isolated
vertices in the set R. They will be removed in the next call to
VC-Kernel〈G−H, k − |H|〉.

=⇒ Crown decomposition reduces the problem to finding a vertex cover of
size ≤ k − |H| in graph G−H. As H 6= ∅, G−H is a smaller graph.

- Recursion terminates when G has fewer than 3k + 1 vertices. 2
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Kernel from Linear Program



Integer Linear Program for Vertex Cover

Integer LP for Vertex Cover
Let G = (V,E) be the given graph. Associate an indicator 0− 1 variable xv
for each vertex v ∈ V that indicates whether v is in the cover or not. The LP
is given by

Objective Function: minimize
∑
v∈V

xv

Subject to: ∀e = (uv) ∈ E : xu + xv ≥ 1

xv ∈ {0, 1}

Observation
Above ILP results in a vertex cover. Each edge is covered because of the
constraint xu + xv ≥ 1, and at least one of u or v has to be 1 indicating that
the corresponding vertex is in the cover.
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Relaxed LP for Vertex Cover

Since ILP’s are NP-Hard, we relax it and solve the relaxed LP in polynomial
time.

Relaxed LP for Vertex Cover

Objective Function: minimize
∑
v∈V

xv

Subject to: ∀e = (uv) ∈ E : xu + xv ≥ 1

0 ≤ xv ≤ 1

Note: Variables xv ’s can take fractional values. The value of the objective
function of the relaxed LP is a lower bound on the size of the vertex cover.

32



Three Sets

Define three sets of vertices based on LP values of variables xv ’s:
V0 = {v ∈ V |xv < 1

2
}, V1 = {v ∈ V |xv > 1

2
}, and V 1

2
= {v ∈ V |xv = 1

2
}.

V0 V1 V 1
2

Observations

1. V0, V1, and V 1
2

is a partition of V , i.e. V = V0 ∪ V1 ∪ V 1
2

2. The set V0 is an independent set.

3. There are no edges between vertices in V0 and V 1
2

.
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Nemhauser-Trotter theorem

V0 = {v ∈ V |xv < 1
2
}, V1 = {v ∈ V |xv > 1

2
}, and V 1

2
= {v ∈ V |xv = 1

2
}.

Theorem
There is a minimum vertex cover S ⊆ V of G such that V1 ⊆ S ⊆ V1 ∪ V 1

2

Proof: Let S∗ is a minimum vertex cover of G.
- Define S = (S∗ \ V0) ∪ V1.
- S is a vertex cover of G as any vertex in V0 is only adjacent to vertices in V1.

Using contradiction, we show that S forms a minimum vertex cover.

- Assume |S| > |S∗|
- Observe that |S| = |S∗| − |S∗ ∩ V0|+ |V1 \ S∗|
=⇒ |V1 \ S∗| > |S∗ ∩ V0| as we assumed |S| > |S∗|.

- Now we will construct another feasible solution of the relaxed LP that has a
smaller optimum value contradicting the optimality of LP.
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Nemhauser-Trotter theorem (contd.)

Define ε = min{|xv − 1
2
|, v ∈ V0 ∪ V1}.

V0 V1 V 1
2

V0 ∩ S∗

V1 \ S∗

+ε/2

−ε/2

Modify xv values as follows:
- For all vertices v ∈ V1 \ S∗: set yv = xv − ε

2
.

- For all vertices v ∈ V0 ∩ S∗: set yv = xv +
ε
2
.

- For all remaining vertices: set yv = xv

- Note that
∑
xv >

∑
yv, as we had |V1 \ S∗| > |S∗ ∩ V0|.

- Next we show that yv values satisfy the constraints of relaxed LP
=⇒ xv ’s are not optimal and that leads to a contradiction to optimality of LP. 35



Nemhauser-Trotter theorem (contd.)

- Consider any edge e = (uv) ∈ G. We need to show that yu + yv ≥ 1.
- Consider the cases where one of the end vertices of any edge is in V0 ∩ S∗

or V1 \ S∗, as for all other edges yu + yv = xu + xv ≥ 1.

V0 V1 V 1
2

V0 ∩ S∗

V1 \ S∗

+ε/2

−ε/2

(A) Suppose u ∈ V0 ∩ S∗: v can only be in V1. If v ∈ V1 \ S∗,
xu + xv = yu + ε/2 + yv − ε/2 = yu + yv ≥ 1.
If v ∈ V1 ∩ S∗, yu + yv = xu + ε/2 + xv ≥ xu + xv ≥ 1.

(B) u ∈ V1 \ S∗: If v ∈ V0, a similar argument applies. If v ∈ V 1
2

,
yu + yv = xu − ε/2 + xv ≥ 1 as xv = 1

2
and xu > 1

2
+ ε/2. 2
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Applying Nemhauser-Trotter theorem to vertex cover

We know that an optimal vertex cover S satisfies V1 ⊆ S ⊆ V 1
2
∪ V1.

Perform the following steps to determine if G has a vertex cover of size ≤ k.

Step 1: If value returned by relaxed LP is > k. Report G has vertex
cover of size > k and Stop.

Step 2: Include V1 in the vertex cover and determine if G \ (V0 ∪ V1)

has a vertex cover of size ≤ k − |V1|.

Reduced graph G \ (V0 ∪ V1)

G has a vertex of size ≤ k if and only if G \ (V0 ∪ V1) has a vertex cover of
size ≤ k − |V1|.

Proof: We know that there is a minimum vertex cover S of G such that
V1 ⊆ S ⊆ V 1

2
∪ V1. If S is a vertex cover of size ≤ k for G, =⇒ S \ V1 is a

vertex cover of size ≤ k − |V1| for the graph induced by V \ (V0 ∪ V1) = V 1
2

.

For the other direction, observe that the graph induced by V0 is isolated, and
only has edges to the vertices in the set V1. If S′ is a vertex cover of the
graph induced by V 1

2
, S′ ∪ V1 is a vertex cover of G. 2
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Cardinality of V 1
2

Cardinality of V 1
2

|V 1
2
| ≤ 2k.

Proof: By definition, the linear program has assigned each variable xv ∈ V 1
2

the value of 1
2
. Thus,

|V1| =
∑
v∈V 1

2

2xv

≤ 2
∑
v∈V

xv

≤ 2k 2
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Small Kernel for Vertex Cover

Lemma
The induced graph on the vertices in V 1

2
forms a kernel for the vertex cover

problem consisting of at most 2k vertices. Moreover, we can determine the
kernel in polynomial time.

Proof:

- Linear programs can be solved in polynomial time and we can determine if
its objective value ≤ 1

2
.

- We can form the sets V0, V1, and V 1
2

in O(|V |) time.

- Computation of the induced graph on V 1
2

takes O(|V |+ |E|) time.

- Thus we can determine the kernel of size ≤ 2k of G in polynomial time
provided that it has a vertex cover of size ≤ k.

2
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Iterative Compression



Illustration via Vertex Cover

A Property of Vertex Cover
Let X,S ⊆ V be two vertex covers of G = (V,E). Let A = S ∩X, and let
N(X \A) represent neighbors of vertices in X \A in the set V \X. The set
Y = A ∪N(X \A) is a vertex cover of G if the graph induced by vertices in
X \A is an independent set.

Proof: X is a vertex cover =⇒ V \X is an independent set.
A ⊆ Y =⇒ all edges incident to A are covered.
N(X \A) ⊆ Y =⇒ all edges incident to N(X \A) are covered.
If X \A is independent, Y is a vertex cover of G. 2

A = S ∩X X \ AX

V \X

N(X \ A)
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Large VC → Small VC

Input: X ⊆ V , G = (V,E), |X| = k + 1, and X is a vertex cover of G.
Output: Does G contain a vertex cover of size ≤ k?

Idea: Select an arbitrary subset A ⊂ X of ≤ k vertices. Check whether there
exists a vertex cover S ⊇ A consisting of k vertices.

A = S ∩X X \ AX

V \X

N(X \ A)
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Large VC → Small VC

Observation
Let N(X \A) represent the neighbors of X \A in V \X. Set
S = A ∪N(X \A). S is the required vertex cover of G if

1. |S| ≤ k.

2. There are no edges in the graph induced by X \A.

Given X, we can try all possible subsets A of X.
# subsets A of X = O(2k), and for each subset we can test the required
conditions in O(|V |+ |E|) time.

A = S ∩X X \ AX

V \X

N(X \ A)
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Iterative Compression

Compression algorithm for testing whether G has a vertex cover of size ≤ k:

Step 1: Consider an arbitrary permutation of vertices of G. Let it be
v1, . . . , vn.

Step 2: Let Gk be the graph induced by vertices Vk = {v1, . . . , vk}.
Note that X = Vk is a vertex cover of Gk of size k.

Step 3: For i := k + 1 to n do

1. Compute Gi by adding the vertex vi and all of its incident
edges to Gi−1. Note that Vi = {v1, . . . , vi}.

2. Set X ← {vi} ∪X. Note that X is a vertex cover of Gi.
3. If |X| = k + 1, check whether there exists a vertex cover

S ⊂ Vi of size ≤ k for Gi. If so, set X ← S, otherwise
report G doesn’t have a vertex cover of size ≤ k.
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Iterative Compression

Claim

The above procedure takes O(2k|V |(|V |+ |E|)) time to determine whether
G has a vertex cover of size ≤ k.

Proof: Note that G = Gn.

- At the start of the iteration i ∈ {k + 1, n}, we know that X is a vertex cover
of size ≤ k for the graph Gi−1.

- If |X ∪ vi| ≤ k, we already have a vertex cover of size ≤ k for Gi.

- Otherwise, we apply the observation as X is a vertex cover of Gi consisting
of k + 1 vertices and we are seeking a vertex cover S of size at most k. We
consider all possible subsets A of size ≤ k of X and determine whether there
exists S ⊃ A consisting of ≤ k vertices that covers Gi.

- Outcome is either we find a set S, or we fail. If we find S, we set X ← S and
proceed to the next iteration. If we fail, G can’t have a vertex cover of size
≤ k as its subgraph Gi doesn’t admit vertex cover of size ≤ k.

- Running time for each iteration is O(2k(|V |+ |E|). 2
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Iterative Compression via FVS

Feedback Vertex Set (FVS)
Let G = (V,E) be a simple undirected graph. A subset S ⊂ V of vertices is
called a feedback vertex set if the graph induced on the vertices V \ S
(denoted by G(V \ S)) is acyclic.

FVS Decision Problem: Does G contain a FVS of size at most k?

We will first look into a specific version of FVS problem, and then show how
an iterative compression technique can be applied to answer the decision
problem.

Disjoint Feedback Vertex Set Problem
Input consists of G = (V,E), a parameter k, a FVS X ⊂ V of size k + 1.
Decide whether G has FVS S ⊆ V \X of size ≤ k? We denote this
problem as D-FVS(G,X, k).
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Disjoint Feedback Vertex Set Problem

G(V \X) and G(X) are forests

• If X is FVS of G = (V,E), the graph, G(H = V \X), induced on the
vertices H = V \X is a forest.

• Some S ⊂ H can be FVS of G provided that the graph, G(X), induced
on the vertices of X is acyclic.

X

H = V \X
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Reduction Rules

We apply the following reduction rules exhaustively to simplify the graph in
order to find a disjoint-FVS.

R1: Delete all vertices of degree ≤ 1 from G. They can’t be in any
FVS of G.

R2: If ∃v ∈ H that has two or more edges incident to the same
component in X (i.e., G(X ∪ {v}) has cycle(s)) =⇒ v has to
be in FVS. Thus, remove v from G and solve
D-FVS(G \ {v}, X, k − 1). If k < 0, report G doesn’t have a
D-FVS of size ≤ k.

R3: Let v ∈ H be a vertex of degree two in G and let u and w be
its neighbors. If u or w ∈ H, remove v and add an edge uw
(this may create a multi-edge between u and w).
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Iterative Compression

Reduction Rules

1. In R3, if both u,w ∈ X, no shortcut is added.The reason is that none of vertices
in X can be in D-FVS.

2. After rules R1-R3 are applied exhaustively, each vertex in H has degree at least
2. For all non-isolated vertices in G(H), their degree is ≥ 3.



Observation

Structure of the resulting graph
Let G be the graph obtained after applying the reduction rules R1-R3
exhaustively.

1. The number of connected components in G(X) is ≤ k + 1.

2. Consider the forest G(H) induced by vertices in H. For any isolated
vertex in G(H) its degree is ≥ 2 in G. For any non isolated vertex in
G(H), its degree is ≥ 3 in G.

Branching on degree ≤ 1 vertices of forest H
Perform the following branching steps for any degree ≤ 1 vertex v of G(H)

v ∈ D-FVS: Execute D-FVS(G \ {v}, X, k − 1).

v 6∈ D-FVS: Move v to the set X, merge the components in X that are
adjacent to v, and execute D-FVS(G,X ∪ v, k).

Note: During each branching, we also apply the reduction rules.
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Correctness of Branching

We make some observations about the branching process.

1. In each call to branching, we either reduce k by 1, or reduce the number
of connected components in X by at least 1. Therefore, the branching
process terminates in at most 2k + 1 steps, as there are ≤ k + 1

components in G(X).

2. Moving a degree ≤ 1 vertex v ∈ G(H) to X is safe as G(X ∪ {v}) is
acyclic. Otherwise, we would have applied the reduction rule R2.

3. If ever k < 0, we terminate and report that D-FVS(G,X, k) has no
solution.

4. It is possible that we may reach a situation during branching where we
have a single component in G(X). Remember that we are still applying
the reduction rules R1-R3, and that ensures what vertices will be added
to D-FVS.
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D-FVS Summary

D-FVS
Discrete feedback vertex set problem D-FVS(G,X, k) can be solved in
O(4knO(1)) time, where n is the number of vertices in G.

Proof:
- Rules R1-R3 can be implemented in polynomial time with respect to the
size of G.
- Branching terminates in at most 2k + 1 steps, where in each step either we
include a vertex v of degree ≤ 1 of G(H) in D-FVS or exclude it.
- Thus, the branching tree has 22k+1 = O(4k) nodes.

2
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Iterative Compression for FVS

Compression algorithm for testing whether G has FVS of size ≤ k:

Step 1: Consider an arbitrary permutation of vertices of G. Let it be
v1, . . . , vn.

Step 2: Let Gk be the graph induced by vertices Vk = {v1, . . . , vk}.
Note that X = Vk is a FVS of Gk of size k.

Step 3: For i := k + 1 to n do

1. Compute Gi by adding vertex vi and all of its incident
edges to Gi−1. Note: Vi = {v1, . . . , vi}.

2. Set X ← {vi} ∪X. Note that X is a FVS of Gi.
3. If |X| = k + 1, check whether there exists a FVS S ⊂ Vi

of size ≤ k for Gi. If so, set X ← S, otherwise report G
doesn’t have a FVS of size ≤ k.
To find S, we try all subsets A ⊂ X and solve for
D-FVS(G(Vi) \A,X \A, k − |A|).
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FVS Summary

D-FVS

For a given graph G and a parameter k, we can check in 5knO(1) time
whether G has a feedback vertex set of size at most k, where n is the
number of vertices in G.

Proof: Recall that in the D-FVS(G,X, k) problem, the input consists of a
graph G, a parameter k, a FVS X ⊂ V of size k + 1, and the problem is to
decide whether G has FVS S ⊆ V \X of size ≤ k?

Consider any iteration i ≥ k + 1 of the algorithm:
- We have the FVS X ∪{vi} of size ≤ k+1 for Gi =⇒ Gi(Vi \X) is a forest.
- Our task is to decide if ∃S ⊂ Vi of size ≤ k such that S is FVS of Gi.
- We make guess of which vertices of S are from X. Assume A = S ∩X.
- Consider the graph Gi(Vi \A).
- We want a FVS of size ≤ k − |A| in Gi(Vi \A) where all of its vertices are
from the set Vi \X.
This is precisely the D-FVS(G(Vi) \A,X \A, k − |A|) problem.
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FVS Analysis (contd.)

Next we analyze the running time.

In iteration i ≥ k + 1, we try all possible subsets A of X, where |X| = k + 1,
and for each subset A, we make a call to an appropriate
D-FVS(G(Vi) \A,X \A, k − |A|) problem.

We know that the running time for the D-FVS problem is 4k−|A|nO(1).

Therefore, the total running time for the i-th iteration is

k∑
j=0

(
k + 1

j

)
4k−jnO(1) = 5knO(1)

Note that (1 + 4)k =
k∑
j=0

(
k+1
j

)
1j · 4k−j = 5k.

Since i ranges from k + 1 to n, the total running time for the FVS decision
problem is 5knO(1).

2
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