Assignment 4

COMP 3804, Fall 2021

Upload in Brighspace by 11:59PM on December 6, 2021

1 Guidelines

General guidelines are as follows:

- 1. We will be discussing solutions to this assignment in Office Hours of December 7th and 9th and hence **no late submissions** will be entertained.
- 2. Please write clearly and answer questions precisely. It is your responsibility to ensure that what is uploaded is clearly readable. If we can't read, we can't mark!
- 3. Please cite all the references (including web-sites, names of friends, etc.) which you used/consulted as the source of information for each of the questions.
- 4. All questions/problems carry equal marks.
- 5. When a question asks you to design an algorithm it requires you to
 - (a) Clearly spell out the **steps** of your algorithm in pseudo code.
 - (b) **Prove** that your algorithm is correct
 - (c) Analyze the running time.
- 6. You can assume that a graph G = (V, E) uses adjacency list representation.
- 7. n is a positive integer, and it typically represents the size of the input to a problem.

2 Problems

- 1. We are given a sequence of n integers, a_1, \ldots, a_n , some of which may be negative. For a contiguous subsequence a_i, \ldots, a_j , where $1 \le i \le j \le n$, define $\Delta[i, j] = a_i + \cdots + a_j$. In O(n) time, determine a pair of indices (i, j), where $1 \le i \le j \le n$, such that $\Delta[i, j] \ge \Delta[\alpha, \beta]$ for any choice of α, β , where $1 \le \alpha \le \beta \le n$. (Hint: Think of dynamic programming and consider the subsequence ending at j that maximizes $\Delta[i, j]$ for each choice of $j \in \{1, \ldots, n\}$.)
- 2. Assume that O(pqr) number of operations (multiplications and additions) are required to compute the product PQ of two matrices P of dimension $p \times r$ and Q of dimension $r \times q$. Note that the resulting product matrix has dimension $p \times q$ (i.e., p rows and qcolumns). As input, we are given six matrices A, B, C, D, E, F and their dimensions are as follows:
 - A is 5×10 ,
 - B is 10×3 ,
 - C is 3×12 ,
 - D is 12×5 ,
 - E is 5×50 , and
 - F is 50×6 .

What is the least number of operations required to compute the product *ABCDEF*? Justify your answer. (Hint: See the video lecture/notes.)

- 3. Let T = (V, E) be a tree. Its vertex set is V, and edge set is E. We say $X \subset V$ is a cover of T, if for any edge $e = (uv) \in E$, $u \in X$ or $v \in X$. Design an algorithm, running in polynomial-time, to find a cover of the minimum size of a given tree T. (Hint: Assume T is rooted at vertex r. For each vertex v, define C(v, 0) and C(v, 1), that indicates the size of the cover when v is excluded or included in the cover, respectively. Set up the recurrence relation for C(v, *) taking into account the C values of each of its children. Note that we are interested in reporting $\min(C[r, 0], C[r, 1])$.)
- 4. Let A be a $m \times n$ matrix where each element is 0 or 1. We are interested in finding the largest square sub-matrix of A such that each of its elements is 1. Design a dynamic-programming algorithm, running in O(mn) time, that finds such a largest

square sub-matrix in A. For example, let $A = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$.

In this case, the 3×3 square submatrix formed by columns $\overline{2}, 3, 4$ and rows 4, 5, 6 of all 1s should be returned by the algorithm.

5. You are given a set of n positive numbers $A = \{a_1, \ldots, a_n\}$ and a positive integer t. Design a dynamic programming algorithm running in O(nt) time that decides whether there exists a subset $A' \subseteq A$ such that $\sum_{x \in A'} x = t$. Note that each element of A can be used at most once.

- 6. In your own words describe the following
 - (a) Complexity class P. Also, present a couple of examples.
 - (b) Complexity class NP. Also, present a couple of examples.
 - (c) Polynomial-time reducibility
 - (d) What steps are involved in showing a decision problem $L \in P$.
 - (e) What are the steps involved in showing a decision problem $L \in NP$ -Hard.
 - (f) What are the steps involved in showing a decision problem $L \in NP$ -Complete.
- 7. Let G = (V, E) be a simple connected undirected graph. We are given a subset $L \subseteq V$. We want to decide if there is a spanning tree of G such that its set of leaves includes the set L. Is this decision problem in P? Is it in NP? Is it NP-Complete?
- 8. Consider the following decision problem on satisfying inequalities. Let A be an integer $m \times n$ matrix. Let b be a vector of length m where each coordinate is an integer. You need to decide whether there exists a vector x of length n such that each of its

coordinates is 0 or 1 and $Ax \leq b$. For example, let $A = \begin{bmatrix} 1 & 0 & -3 \\ 1 & -1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Then $x = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, satisfies $Ax \leq b$. Show that the problem of satisfying (integer)

inequalities is NP-Complete. (Hint: Provide a polynomial-time reduction from 3CNF-SAT problem.)