Problems

Consult [1, 2].

Problem 1. Let \(S = 1 + x + x^2 + \cdots + x^n \). Show the following

1. If \(x = 1 \), \(S = n + 1 \).
2. If \(x = 0 \), \(S = 1 \).
3. If \(x \neq \{0, 1\} \), \(S = \frac{1-x^{n+1}}{1-x} \).
4. If \(0 < x < 1 \) and \(n \to \infty \), \(S = \frac{1}{1-x} \).
5. If \(0 < x < 1 \), \(S = \frac{1-x^{n+1}}{1-x} \leq \frac{1}{1-x} = \Theta(1) \).
6. If \(x > 1 \), \(S_n = \frac{x^{n+1}-1}{x-1} \geq \frac{x^n-1}{x-1} = x^n \) and
 \(S_n = \frac{x^{n+1}-1}{x-1} = \frac{x}{x-1} x^n = O(x^n) \).
7. For \(x > 1 \), \(S = \Theta(x^n) \),
 i.e. \(S \) is proportional to the last term of the series.

Problem 2. Show that for positive constants \(\alpha, \beta \) and positive number \(n \), \(\alpha^{\log_\beta n} = n^{\log_\beta \alpha} \)

Problem 3. Consider the recurrence \(T(n) = aT\left(\frac{n}{2}\right) + cn^k \), where \(a \geq 1 \), \(b > 1 \), and \(c > 0 \) be constants.
Show that \(T(n) = O(n^{\log_b a}) + \sum_{i=0}^{\log_\beta n} a^i c \left(\frac{n}{b^i} \right)^k \).
Conclude that (i) if \(a > b^k \) then \(T(n) = \Theta(n^{\log_b a}) \),
(b) if \(a = b^k \) then \(T(n) = \Theta(n^{\log_\beta n}) \), and (c) if \(a < b^k \) then \(T(n) = \Theta(n^k) \).

Problem 4. Evaluate the recurrence \(T(n) = 2T\left(\frac{n}{2}\right) + n \), where \(T(1) = O(1) \).

Problem 5. Evaluate the recurrence \(T(n) = T\left(\frac{n}{2}\right) + 1 \), where \(T(1) = O(1) \).

Problem 6. Evaluate the recurrence \(T(n) = 3T\left(\frac{n}{2}\right) + n \), where \(T(1) = O(1) \).

Problem 7. Consider the recurrence \(T(n) = T(n/3) + T(2n/3) + n \). We can assume \(T(n) = O(1) \) for small values of \(n \). Show that \(T(n) = O(n\log n) \).

Problem 8. Evaluate the recurrence \(T(n) = 2T\left(\frac{n}{2}\right) + n\log n \), where \(T(1) = O(1) \). (Observe that it doesn’t fit any of the patterns in Problem 2.)

Problem 9. Let \(S \) be a set of \(n \) distinct real numbers. Devise an algorithm, running in \(O(n + k\log n) \) time, to report the \(k \) smallest elements of \(S \) in sorted order, where \(k \in \{1, \ldots, n\} \).

Problem 10. Let \(S \) be a set of \(n \) points on a real line. How fast can you find a pair of points that have the smallest distance? What if the points are in 2-dimensional real plane.
References
