Assignment 3

COMP 3804, Fall 2022

Upload in Brighspace by 11:59 PM on December 6, 2022

1 Guidelines

General guidelines are as follows:

- 1. Since we are only accepting assignments via the Brighspace system, and we will discuss the solutions immediately after the due date, no late submissions will be entertained after the cut-off time & date.
- 2. Please write clearly and answer questions precisely. It is your responsibility to ensure that what is uploaded is readable. If we can't read, we can't mark!
- 3. Please cite all the references (including websites, names of friends, etc.) that you used/consulted as the source of information for each of the questions.
- 4. All questions carry equal marks.
- 5. When a question asks you to design an algorithm it requires you to
 - (a) Clearly spell out the **steps** of your algorithm as a pseudo code.
 - (b) **Prove** that your algorithm is correct
 - (c) Analyze the running time.

2 Problems

- 1. Find the longest common sequence of the following two DNA strings, X and Y- construct the table and show how you have obtained the longest sequence using the table. X= AGTCGGATA and Y=ACCGGCTA.
- 2. Assume that O(pqr) number of operations (multiplications and additions) are required to compute the product PQ of two matrices P of dimension $p \times r$ and Q of dimension $r \times q$. Note that the resulting product matrix has dimension $p \times q$ (i.e., p rows and qcolumns). As input, we are given six matrices A, B, C, D, E, F and their dimensions are as follows:
 - A is 5×12 ,
 - B is 12×4 ,
 - C is 4×10 ,
 - D is 10×5 ,
 - E is 5×40 , and
 - F is 40×6 .

What is the least number of operations required to compute the product *ABCDEF*? Justify your answer.

- 3. We are given a sequence of n integers, a_1, \ldots, a_n , some of which may be negative. For a contiguous subsequence a_i, \ldots, a_j , where $1 \le i \le j \le n$, define $\Delta[i, j] = a_i + \cdots + a_j$. In O(n) time, determine a pair of indices (i, j), where $1 \le i \le j \le n$, such that $\Delta[i, j] \ge \Delta[\alpha, \beta]$ for any choice of α, β , where $1 \le \alpha \le \beta \le n$. (Hint: Think of dynamic programming and consider the subsequence ending at j that maximizes $\Delta[i, j]$ for each choice of $j \in \{1, \ldots, n\}$.)
- 4. Let A be a $m \times n$ matrix where each element is 0 or 1. We are interested in finding the largest square sub-matrix of A such that each of its elements is 1. Design a dynamic-programming algorithm, running in O(mn) time, that finds such a largest

In this case, the 3×3 square submatrix formed by columns 2, 3, 4 and rows 4, 5, 6 of all 1s should be returned by the algorithm.

5. You are given a set of *n* positive numbers $A = \{a_1, \ldots, a_n\}$ and a positive integer *t*. Design a dynamic programming algorithm running in O(nt) time that decides whether there exists a subset $A' \subseteq A$ such that $\sum_{x \in A'} x = t$. Note that each element of *A* can be used at most once. Is the run-time of your algorithm polynomial with respect to the size of the input?

- 6. Let G = (V, E) be a undirected graph. Each vertex $v \in V$ has a positive weight w(v) > 0. A subset $S \subseteq V$ is a cover of G if for any edge $e = (uv) \in E$, $u \in S$ or $v \in S$. The weight of the cover S is the sum total of the weights of the vertices in S, i.e. $w(S) = \sum_{v \in S} w(v)$. The input to the cover decision problem consists of the graph G and a positive real number Δ , and we need to decide whether there exists a cover $S \subseteq V$ of G, such that $w(S) \leq \Delta$? It is known that the decision problem for the general graphs is **NP**-Complete. Show that the cover decision problem on trees can be solved in polynomial time. (Hint: Think of dynamic programming.)
- 7. Consider the following decision problem on satisfying inequalities. Let A be an integer $m \times n$ matrix. Let b be a vector of length m where each coordinate is an integer. You need to decide whether there exists a vector x of length n such that each of its coordinates is 0 or 1 and $Ax \leq b$. For example, let $A = \begin{bmatrix} 1 & 0 & -3 \\ 1 & -1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Then $x = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, satisfies $Ax \leq b$. Show that the problem of satisfying (integer) inequalities is NP-Complete. (Hint: Provide a polynomial-time reduction from 3CNF-SAT problem.)
- 8. Let G = (V, E) be a simple undirected graph on *n*-vertices and let *k* be a positive integer. A set of *k* vertices $V' \subseteq V$ forms a clique, if for every pair of vertices $u, v \in V'$ we have $uv \in E$. We have seen that the problem Clique(G, k) of deciding whether *G* contains a clique of size *k* is **NP**-Complete. Now consider a variant of the clique problem where we need to decide if *G* has a clique of size at least n/4. Let us call this problem the *Quarter-Clique Problem (QCP)*. Show the following:
 - (a) Show that $QCP \in \mathbf{NP}$.
 - (b) Show that the QCP problem is **NP**-Complete. You may provide a polynomialtime reduction from the Clique(G, k) problem. Justify why your reduction works following the definition of polynomial-time reducibility. (Hint: Consider creating a supergraph G' of G with additional vertices and edges.)