BJA British Journal of Anaesthesia, 135 (3): 561—570 (2025)

doi: 10.1016/j.bja.2025.05.037
Advance Access Publication Date: 4 July 2025

Review Article

CARDIOVASCULAR

Artificial intelligence for electrocardiographic diagnosis of
perioperative myocardial ischaemia: a scoping review

Anne Kim', Mitchell Chatterjee’® , Alla Iansavitchene®® , Majid Komeili®, Adrian D. C. Chan’®,
Homer Yang®'® and Jason Chui®**'

1Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, “Department of
Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada, *London Health Science Centre, London,
ON, Canada and *Department of Anesthesia & Perioperative Medicine, University of Western Ontario, London, ON,
Canada

*Corresponding author. E-mail: Jason.chui@lhsc.on.ca, X@jasonswchui
Both authors contributed as senior authors.

Abstract

Background: Perioperative electrocardiographic monitoring can offer immediate detection of myocardial ischaemia, yet
its application in perioperative and remote monitoring settings is hampered by frequent false alarms and signal
contamination. We performed a scoping review for the current state of artificial intelligence (Al) in perioperative ECG
interpretation.

Methods: A literature search in Ovid MEDLINE, EMBASE, Compendex, and CINAHL databases was performed from
inception to May 10, 2023. All original research of ECG monitoring for myocardial ischaemia, myocardial infarction, or
both was included.

Results: A total of 182 original research articles published between 1991 and 2023 were included. Most studies (n=132)
used a pre-existing ECG database to develop Al algorithms retrospectively, and the rest did not specify their sources.
Processing filters were used in 58% of the studies to remove ECG noises/artifacts before Al algorithm development.
Amongst the Al technologies used, ResNet demonstrated the highest median sensitivity, precision, and specificity at
98.4%, 99.8%, and 99.1%, respectively. There are only five studies with intermittent prospective ECG collection on ST-
segment elevation myocardial infarction. No studies prospectively collected continuous ECG perioperatively, with
frequent false alarms and signal contamination.

Conclusions: Al technology can achieve high diagnostic accuracy for myocardial ischaemia detection in clean inter-
mittent electrocardiograms. However, almost all these algorithms were developed from a few open-source clean ECG
databases without testing on ‘noisy data’, which limited their clinical applicability in the perioperative setting where
signal contamination is frequent. Al algorithms on perioperative electrocardiography, tested in a noisy perioperative and
remote monitoring environment, including wearable devices, are needed.
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Editor’s key points

o Artificial intelligence (AI) algorithms can detect
myocardial infarction on clean ECG data with rela-
tively high accuracy, but their performance in real-
time perioperative and noisy ECG settings remains
largely untested.

e This review highlights current Al applications avail-

able for ECG-based myocardial infarction detection

and highlights critical gaps in perioperative use.

Future efforts should validate AI models in real

perioperative settings, which could allow integration

into wearable devices for continuous monitoring.

Perioperative myocardial infarction can occur in one of 33 in-
hospital patients after noncardiac surgery.! Early studies of
myocardial ischaemia, a preceding event of myocardial
infarction (MI), noted an incidence of ischaemia in up to 41% of
postoperative patients, linked to a 2.8-fold increase in all
adverse cardiac outcomes and a 9.2-fold increase in the odds
of any ischaemic event.? The incidence of true perioperative
MI in patients who underwent noncardiac surgery, according
to recent studies, ranged from 3.5% to 19.1%.>* Perioperative
MI is mainly caused by an imbalance of oxygen supply and
demand, termed as Type 2 MI, which may be prevented with a
timely restoration of the imbalance by treating with beta-
blockers®® or nitroglycerin.>® However, more than 60% of
perioperative Mls are asymptomatic,'’!* making the timely
diagnosis and intervention challenging.

Current monitoring for myocardial injury after noncardiac
surgery* involves daily assessment of troponin levels.'?
Although troponins have prognostic value for perioperative
and long-term outcomes, the intermittent nature of this
monitoring strategy lacks an effective, timely mechanism to
detect and interrupt the ischaemia cycle. In the ambulatory
surgery setting, high-risk patients often face a dilemma: pro-
longed hospitalisation for monitoring or early discharge with
potential missed complications. In contrast, continuous
monitoring of ST-segment changes in ECG signals can provide
immediate detection of myocardial ischaemia. Monitoring ST
segments of five-lead ECG, leads Il and Vs, intraoperatively has
been used to detect intraoperative myocardial ischaemia and
Type 2 Ml for decades.’® Anecdotal reports suggest that remote
postoperative ECG monitoring may also allow for the timely
detection of cardiac events to interrupt the ischaemia cycle
and reduce postoperative MIL'*"'® However, frequent false
alarms from signal noise in remote settings can lead to alarm
fatigue (desensitisation and ignoring the alarm),’’>'® hence
compromising patient safety.'’*°

Recent studies show that artificial intelligence (AI) has
improved ECG interpretations. We conducted this scoping re-
view to map out the current state of knowledge on imple-
menting Al technology for ECG interpretation of myocardial
ischaemia and infarction in perioperative and remote settings.

Methods

Before commencing this scoping review, we confirmed no
similar articles in the JBI Database of Systematic Reviews and
Implementation Reports, Cochrane Database of Systematic

Reviews, or the International Prospective Register of System-
atic Reviews (PROSPERO).

Our research question was: ‘What evidence supports the
use of Al for ECG diagnosis of myocardial ischaemia and MI in
the perioperative and remote monitoring settings?” The pop-
ulation was ‘post-surgical patients, either in-hospital or dis-
charged from the hospital’, the concept ‘Al’', and the context
‘ECG diagnosis of perioperative myocardial ischaemia or MI in
noncardiac surgery patients’. Reporting followed the Preferred
Reporting Items for Systems Reviews and Meta-Analyses
Reporting Guideline Extension for Scoping Reviews (PRISMA-
ScR) guidelines.?”

Search strategy

A comprehensive search strategy was developed in collabo-
ration with a medical librarian. Upon the librarian’s recom-
mendation, the search scope included atrial fibrillation (AF)
alongside MI, inclusive of any in-patient (e.g. medical patients)
and out-patient (e.g. Holter) settings. This strategic decision
was made to reduce the likelihood of missing relevant studies,
as some studies may be indexed under AF owing to inconsis-
tent database indexing, and to ensure comprehensive
coverage of relevant literature.

Articles were systematically identified from the Ovid
MEDLINE, EMBASE, Compendex, and CINAHL databases, along
with snowballing of references from the included articles,
conducted on May 10, 2023. There was no restriction on pub-
lication dates. We limited our search to ‘human study’ and
‘English language’. Key search terms included AI, ECG, MI,
myocardial ischaemia or injury, AF, and STEMI. We also
accounted for ‘older’ terminology such as bioinformatics,
automated learning, computational intelligence, machine
learning, and deep learning. Detailed strategies and results
appear in Supplementary material 1. References were expor-
ted to COVIDENCE™ (Covidence, Melbourne, Australia) with
duplications removed.

Screening and selection

Two authors (AK and JC) independently screened titles and
abstracts, followed by full-text reviews of selected articles.
Disagreements were resolved through discussion; a third
reviewer (HY) was available to resolve conflicts but was not
needed. We included all original research articles that specif-
ically assessed the ECG detection of myocardial ischaemia or
MI using Al Notably, we excluded data that exclusively
focused on AF, as this was not our primary aim and based on
our search, we had found numerous systematic reviews
looking at Al in detecting AF.?’~?3 There were no restrictions
on Al model type or ECG data source, including studies that
explored wearable ECGs.

Data extraction

The extracted information was categorised into three main
areas: (1) general study details, including study design, publi-
cation year and country, cohort sizes, patient characteristics,
ECG type, and databases used; (2) Al technology and reference
standards used; and (3) the recall (or sensitivity), specificity,
precision (or positive predictive value [PPV]), negative predic-
tive value (NPV), and overall diagnostic test accuracy of the Al
technology assessed.
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The terminology used to describe diagnostic accuracy in
engineering literature slightly differs from that used in clinical
epidemiology literature. We listed the definitions of these
metrics in Supplementary Table S1 for clarification.

Data analysis

As this was a scoping review, the analysis was primarily
narrative, addressing the following questions:

1. What AI algorithms have been developed for perioperative
Ml/ischaemia ECG diagnosis?

2. How accurate are Al-based algorithms compared with
physician interpretation?

3. How do different AI models (e.g. machine learning, deep
learning) or specific patient subsets affect diagnostic
accuracy?

4. What are the key limitations and knowledge gaps in peri-
operative and remote monitoring Al applications?

Because of the heterogeneity of the study’s aims and
limited reporting qualities across studies (e.g. sample sizes
were missing in most studies), quantitative meta-analysis was
not feasible. Instead, we adopted a descriptive analysis
approach, primarily summarising available data with median
(interquartile range [IQR]) and counts (frequency), while
acknowledging its inherent limitations.

Results

Our initial systematic search yielded 12 634 records. After
removal of 5068 duplications, we first screened the titles and
abstracts of 7566 records and followed with a full-text review
of 910 articles. We extracted data from 182 studies to construct
our results (see Supplementary material 2 for full citations).
We excluded reports lacking clear, quantifiable components or
deviating from our predefined outcomes and methods (see
Appendix 1). Of note, we identified 355 studies on Al-assisted
AF interpretation that were excluded as they were out of
scope for this review.

Study characteristics

The 182 studies included in this review span from 1991 to 2023,
in which the number of studies increased exponentially in the
past 5 yr (Supplementary Fig. S1). These studies originated
from various countries, and notably, the leading countries
were China and India (n=47 and n=28, respectively).

ECG data source

The majority of these studies are of retrospective design
(n=177) and used existing open-source ECG databases to
construct their Al algorithms; specifically, the PTB/PTB-XL
database’® was used in 91 studies, the European Society of
Cardiology ST-T database’ was used in 22 studies, and MIT
Physionet/MIT-BIH databases were used in nine studies.”® A
summary of the characteristics of the commonly used open-
source ECG databases is listed in Supplementary Table S2. A
substantial number of studies (n=54) did not specify the
sources of their ECGs. In all included studies, both the training
and validation datasets were derived from the same ECG
database; none used an external validation dataset. Case

reports and series were excluded from the analysis, except for
those involving wearables, which were included in the
narrative review to explore their application in remote ECG
monitoring. The study characteristics of all included studies
are listed in Supplementary Table S3.

Reference standards

Among the 177 included studies, the most used reference
standard was ECG interpretations manually annotated by
cardiologists (n=171). Two studies relied on ECG interpretation
by attending physicians, whereas four studies used coronary
angiography as the confirmatory diagnostic method. The
remaining studies did not specify the reference standard.

Types of artificial intelligence techniques used

Altechniques investigated in the primary studies were broadly
categorised into algorithm based (n=51), traditional machine
learning (n=27), signal processing (n=2), neural network
(n=90), and hybrid network (n=12) (Table 1 and Supplementary
Table S4). Historically, Al algorithms for detecting MI or
myocardial ischaemia have evolved from expert systems to
classical machine learning, and more recently, to deep
learning, reflecting the increasing sophistication of Al
algorithms.

Expert systems (Al algorithms) in ECG interpretation
typically rely on predefined rules or established thresholds to
identify ischaemic changes, such as ST-segment deviations.?’
For instance, a rule-based system might detect an ST-
segment elevation or depression exceeding a set amplitude
or duration as myocardial ischaemia. Such expert systems,
although effective in controlled settings, may struggle with
complex or noisy ECG signals that fall outside predefined
parameters.

Traditional machine learning approaches, such as support
vector machines (SVMs) and decision trees, involve manual
feature engineering, where relevant ECG characteristics (such
as ST segment and T wave) are manually selected to train and
build predictive models for identifying ischaemic events in
new ECG data.?® Although effective for simpler tasks, these
methods may not fully capture complex, non-linear relation-
ships inherent in ECG data.

Deep neural networks (DNNs) address this by learning
intricate patterns and non-linear relationships directly from
raw ECG signals without manual feature extraction.”
Amongst these, convolutional neural networks (CNNs) use
convolutional layers adept at discerning spatial patterns
within input ECG data to apply specialised filters or kernels to
ECG signals and capture nuanced features such as ST seg-
ments.”® ?° By interconnecting all detection-specific layers,
CNNs can learn and interpret higher-level representations and
make more accurate predictions than more general artificial
neural networks (ANNs), as CNNs are targeted to interpret
grid-like data, such as ECGs.?’

The use of Residual Networks® and Densely Connected
Convolutional Networks (DenseNet) marks a significant
advancement in CNN architectures, capable of delving deeper
into data complexities. ResNet, with its capacity to encompass
hundreds of layers compared with CNN’s tens to hundreds,
uses residual blocks to incorporate shortcut connections,
known as skip connections, circumventing one or more layers
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Table 1 Summary of Al technology. Al, artificial intelligence; STEMI, ST-segment elevation myocardial infarction.

Type of Al Description Detection of ECG Advantages Limitations
changes
Rule-based Operate on predefined Rely on predefined e Highly interpretable; o Lack flexibility
algorithms rules or conditions fixed thresholds in logic is transparent e Performance not
set by the study ECG parameters to and easy to audit consistent when
determine what is e Customisable for applied to real-world
called an ST-segment specific study points: ECGs with atypical/
change (elevation, sensitivity to ST noisy features
depression, duration, depressions vs STEMI e Do not learn from
or amplitude) to data; cannot
determine as MI improve with input
over time
Traditional Trained with relevant Use manually e Better generalisation e Unable to capture
machine learning features and clinical engineered features ability more complex
(i.e. support data to build from clinical ECG e Simple to implement signals

vector machine,
decision trees)

Artificial neural
networks

Convolutional
neural networks

Residual Networks
(ResNet)

predictive models by
using specifically
extracted ECG
features (ST slopes,
QRS duration)

Learns intricate

patterns and non-
linear relationships
from data, and
interconnects these
layers via weighted
sums and non-linear
transformations

Designed for grid-like

data; incorporates
convolutional layers
adept at discerning
spatial patterns, can
apply specialised
filters or kernels to
each layer

Encompass hundreds

of layers, can
incorporate skip
connections (residual
blocks) to
circumvent/bypass
intermediate layers
or amalgamate layers

data (with ECG
changes or control) to
identify ischaemic or
MI changes and
classify as normal vs
ischaemic

Can adapt to variations

and noise to capture
more complex ECG
signals. Can detect
ischaemic patterns
from non-linear
relationships across
features

Filters applied to

extract specific ECG
spatial patterns, i.e.
ST-segment
elevation/depression;
more targeted for
grid-like data (ECG)

More complex ECG

signals captured
owing to its ability to
encompass more
specialised layers,
such as deep
hierarchical
representations. Can
identify subtle
changes in ECG
spanning longer
sequences (i.e.
ischaemia)

and validate

Feedforward neural
network, complex
information features
can be extracted and
predicted

Flexible: can handle
structured and
unstructured data
Highly effective in

Require expertise for
initial feature
extraction (subject to
human bias)

Unable to perform
well in raw high-
noise environments
Not architecturally
optimised for spatial
or temporal data,
such as ECG
Requires more data
to generate network

Limited in depth:

ECG signal confined to tens
processing: for —hundreds of con-
classification volutional layers,

Fast training process

e Automatically learns

features without
manual input

Can support
networks with
hundreds of layers
without training

cannot incorporate
more

Cannot capture long
range temporal
patterns
Performance
degrades in highly
noisy environments
Not as well studied
for use of ECG
changes, especially
in real-time periop-

degradation erative contexts,

e High accuracy in despite being most
detecting complex complex/promising
ECG patterns e Computationally

e Better generalisation expensive

to real-world vari-
ability in ECG

and seamlessly amalgamating all layers’ learnings into an
outcome®’. DenseNet, by contrast, relies on dense connections
between layers, facilitating efficient gradient flow throughout
the network and mitigating challenges such as vanishing
gradients or data overload often encountered in traditional
CNNs.

Hybrid networks such as the CNN-LSTM hybrid network
harness Long Short-Term Memory (LSTM) networks’ capabil-
ities to address the vanishing gradient problem and capture
temporal dynamics within data. This hybrid approach em-
powers CNNs to extract intricate features from ECG signals
while LSTM networks adeptly detect temporal patterns over
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Table 2 Summary of diagnostic values of Al algorithms in different settings. Data are presented as median (interquartile range). Hybrid
network refers to a combination of convolutional neural network (CNN), CNN-Long Short-Term Memory (LSTM), and Residual
Network (ResNet) methods. Al, artificial intelligence; AUC, area-under-curve; PPV, positive predictive value; NPV, negative predictive

value.

Recall (sensitivity) Specificity

Precision (PPV)

NPV Accuracy AUC

Overall (n=182)

Specific AI technique

Algorithm based (n=51)
Traditional machine
learning (n=27)
Signal processing (n=2)
Neural network (n=90)
Hybrid network (n=12)

Type of ECG

94 (87.9—98.5) 95.2 (88.2—98.9)

89.0 (82.7—95)
94.1 (91.8—98.9)

93.3 (84.9-97.7)
96.7 (90.7—99.5)

78.9 (73.6—-84.3)
95.4 (89.8—98.5)
97.1 (91.7-98.8)

96.2 (88.8—99.1)
93.3 (90—98.5)

85 (63.1—-93.4)
90.3 (70—96.11)

79.6 (77.3-82) - -
95.8 (88.6—99.3) 97.1 (95.4—99.4) 96.2 (91.5—99)
97.2 (76.8—99.3) 99.4

92.1 (75.4—-98.4) 97.6 (92.6—99.5) 96.4 (89.5—-99.0) 96.6 (92.4—99)

96.3 (91.8-99.2) 91.6 (82.5-96.5) 97.4 (89.2—95)
95 (93.1-97.5)  98.2 (91.2—99)  99.8 (98.7—99.9)

96.7 (94.9-98.9)
97.7 (95.4-99.3) 97.4 (94.5-98.3)

12-lead (n=149)
Two-lead (n=13)
One-lead (n=11)

ECG sources
In-patient (n=174)

Out-patient (n=5)

Smart watch (n=3)

Pre-processed ECG
No pre-processed
ECG (n=76)
Pre-processed

94.2 (88—98.2)
91.7 (83.5-95.6)
99.5 (95.5-99.9)

94.1 (88.6—98.5)
94.9 (88.4—-99.7)
93 (85.4—100.0)
91.9 (87.5-98.2)

93.9 (89—98.6)

95.1 (88.1—-99)
97.5 (93.1-98.6)
98.2 (94.3-99.6)

97.8 (88.3—-99.1)
98.6 (92.2—99.9)
95 (82.4—100.0)
94.6 (89.9-99.1)

95 (86.3—98.6)

91.3 (76.9-98.4)
87.5 (80.3—-94.7)
99.7 (99.5-99.9)

90.3 (74.9-98.4)

89.5 (72.8—98.5)

93 (76.9-98.1)

96 (91.3-99)
99.78

97.1 (94.3-99.5)

98.3 (94.6—99.6)

96 (90—99.3)

95 (89.1—98.8)
99 (98.9-99)
99.6 (99.1-99.9)

95.8 (89.9-99)
99.4 (98.9-99.9)

96.5 (90.6—99)

96.1 (89.5-98.9)

97.1 (92.6—-99.1)
94 (91-97)
9.7

96.7 (92—98.9)

99.3 (97.5-99.7)

95.5 (91.9-97.9)

ECG (n=106)

time, augmenting the algorithm’s efficacy in MI detection
scenarios.

A more detailed description of the AI technologies is pro-
vided in Supplementary material 3.

Overall diagnostic performance of artificial
intelligence techniques

Al algorithms exhibit strong overall diagnostic performance,
with median sensitivity and specificity of 89.0% (82.7—95.9%)
and 93.3% (84.9—97.7%), respectively. The PPV and NPV were
85.0% (63.9—93.4%) and 96.3% (91.8—99.2%), and the accuracy
and area-under-curve (AUC) were 91.6% (82.5-96.5%) and
91.9% (89.2—97.0%) (Table 2 and Supplementary Table S5).
Neural networks were the most used Al technique (n=95),
achieving consistently strong performance, with a median
(IQR) sensitivity, precision, and specificity of 95.4%
(89.8-98.5%), 95.8% (88.6—99.3%), and 96.2% (88.8—99.1%),
respectively. Traditional machine learning-based techniques,
although still effective, appear to have slightly lower precision
with median (IQR) sensitivity, precision, and specificity of
94.1% (91.8—98.9%), 90.3% (70—96.1%), and 96.7% (90.7—99.5%),
respectively (Table 2). Fewer studies examined hybrid and
signal processing-based methods, reflecting their emerging
status. Detailed diagnostic values are provided in Table 2.

Diagnostic performances within neural networks

Within the neural network family, performance improved
progressively from ANN, CNN, to the more advanced ResNet,
highlighted in Table 2. The median (IQR) recall (sensitivity),
precision, and specificity of the ANN technique, including ANN
Bayesian, ANN Hermite representation, and ANN Glasgow
techniques, are 88.6% (83.9—96.7%), 87.9% (77.7—93.0%), and
89.2% (78.4—96.2%). The CNN technique showed improved
performance with a recall (sensitivity), precision, and

specificity of 94.2% (87—97.1%), 89.8% (82.2—96.6%), and 93.2%
(90—97.7%), respectively. The most advanced, ResNet,
demonstrated the highest diagnostic accuracy with recall
(sensitivity), precision, and specificity of 98.4% (96.2—99.0%),
99.8% (99.1-99.8%), and 99.1% (97.6—99.5%), respectively.

Diagnostic performance between different ECG leads

Most studies used intermittent ECG strips composed of 12-lead
ECG records (n=156), followed by two-lead ECG records (n=13)
and one-lead ECG records (n=11). Other formats (three-, six-,
eight-, nine-, and 15-leads) were used in nine studies com-
bined. The median (IQR) recall (sensitivity), precision, and
specificity for 12-lead ECG were 94.2% (88.0—98.2%), 91.3%
(76.9-98.4%), and 95.1% (88.1—-99.0%), respectively. The diag-
nostic performances in two-lead ECG and one-lead ECG are
comparable and are listed in Table 2.

Diagnostic performances between different settings

Most studies were retrospective studies using in-patient data.
Only six studies prospectively collected ECG data; however,
they had small samples (median=204 patients), with the
smallest being a case report of one patient.>! ECG data were
collected via smart watch in three studies: one case report of
‘inconclusive’ single-lead ECG despite 3 days of chest pain, and
two studies with patients repositioning the device to simulate
12-lead ECGs. The patients in these studies were symptomatic
or suspected of acute coronary syndromes, in or en-route to
the emergency department or cardiac critical care unit, with
mostly intermittent ECG strips, and none were collected as
continuous perioperative ECGs.

When evaluating different sources of ECG data collected
using in-patient, out-patient, and smart watch data, the
comparison resulted in median (IQR) recall (sensitivity) values
of 94.1% (88.6-98.5%), 94.9% (88.4-99.7%), and 93.0%
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(85.4—100.0%), and specificity values of 95.8% (88.3—99.1%),
98.6% (92.2—99.9%), and 95% (82.4—100.0%), respectively.

Diagnostic performances without signal processing
techniques

More than half of the studies (n=109) used pre-filtered ECG
segments (i.e. only clean ECG segments were used to construct
the AI algorithms). Notably, many Al algorithms were applied
to the data after pre-processing filtering. If studies that used
pre-processed data are excluded, the median (IQR) recall
(sensitivity), precision, and specificity of Al algorithms are
91.9% (87.5-98.2%), 89.5% (72.8-98.5%), and 94.6%
(89.9-99.1%), respectively. Pre-processed data have median
(IQR) recall (sensitivity), precision, and specificity of 93.9%
(89.0-98.6%), 93.0% (76.9-98.1%), and 95.0% (86.3—98.6%),
respectively, suggesting comparable diagnostic performance
between studies with and without a pre-processing filter.

Discussion

This scoping review outlines the current landscape of Al al-
gorithms for diagnosing MI and myocardial ischaemia.
Whereas there has been robust exploration in developing Al
for MI detection, real-time perioperative applications, partic-
ularly for ST depressions/non-ST-segment elevation myocar-
dial infarction (NSTEMI), remain limited. Research largely
follows two paths: (1) developing Al algorithms to improve
diagnostic accuracy, albeit without taking the crucial next step
of integrating these Al algorithms into perioperative practice,
and (2) exploring wearables with embedded Al algorithms for
ST-segment elevation myocardial infarction (STEMI) detection
in ambulatory settings.

Most studies focus on engineering Al algorithms based on
open-source ECG databases containing both normal and
abnormal ECGs (e.g. ST elevation). Most of these studies
applied a very similar methodology: databases are split into
model derivation, validation, and testing datasets, followed by
developing a new Al algorithm. The performance of these al-
gorithms (test) is then compared against physician interpre-
tation of ECGs, typically by two cardiologists, serving as the
reference standard. Few studies used the diagnosis of coro-
nary angiogram as the reference standard (Supplementary
Table S4). Only five studies were prospective, but with meth-
odological concerns: poorly defined inclusion criteria, small
sample sizes (i.e. one study included only one patient, another
with two patients), and underrepresentation of women (13%).
The selection of the validation cohort in these prospective
studies was also unclear. For instance, the validation cohort in
the study of Chen colleagues® included only 10 patients
without clear inclusion or exclusion criteria. The target con-
dition in all these prospective studies was STEMI, with none
addressing ST depression/NSTEMI. Importantly, no algorithms
were tested intraoperatively or after surgery, either during the
hospital stay or after discharge as part of a remote home
monitoring programme.

Among ambulatory wearables, the smart watch emerged as
a popular choice recently in several studies (n=3). However, a
significant limitation hindering its perioperative use is its
ability to detect only a single-lead ECG.>* To overcome this
limitation, study designs aimed to enhance lead detection by
adjusting the smart watch’s positioning using the Einthoven

triangle as a guide. For instance, the study of Avila®* focused
on obtaining Lead 1 as intended, whereas Leads 2 and 3 were
achieved by having the patient hold the left or right thumb on
the crown of the watch and placing the watch’s back against
the mid-abdomen. One study used an Apple Watch to detect
pre-diagnosed STEMI and NSTEMI in 54 and 27 patients;
sensitivity and specificity for STEMI were reported as 93% and
95%, and for NSTEMI, as 94% and 92%.>' The other reports
primarily served as a demonstration of feasibility with small
subject numbers (Avila®*: n=2, Stark and colleagues®: n=1).
These studies aimed to demonstrate the accuracy of STEMI
detection on the Apple Watch against expert cardiologist
readings on traditional ECGs. Challenges such as variability in
wearable positioning for reliable lead detection highlight the
need for further advancements in wearables and algorithm
development in perioperative settings.

Interpretation

Although recent AI algorithms show strong diagnostic per-
formance, caution is needed when interpreting these high
values, especially when they are applied in perioperative
settings.

Real-time ECG data often contain noise and artifacts that
can challenge the accuracy of Al algorithms. Many studies
used pre-processing filters to try to eliminate these, but diag-
nostic performances remained relatively unchanged between
pre-processed and non-pre-processed data. This observed
phenomenon could be attributed to several factors. Firstly,
many pre-existing databases are often meticulously curated,
providing clean and well-annotated data. Consequently, the
addition of pre-processing filters may not yield substantial
changes in performance metrics as the data are already of high
quality. Filtering may also have been unhelpful because the
hardware instrumentation used to collect data often contain
inherent hardware filters, making the additional digital
filtering redundant. Furthermore, some studies deliberately
chose not to incorporate extensive pre-processing filters. This
decision might stem from the inherent robustness of their
algorithms to noise and variations in input data. By focusing
on algorithmic designs that inherently handle such chal-
lenges, these studies may have achieved consistent perfor-
mance metrics without relying heavily on pre-processing
techniques. In essence, the combination of high-quality
training data from pre-existing databases and algorithmic
robustness to data variations could explain the limited impact
of pre-processing filters on the diagnostic performances in
these studies. Ultimately, although algorithms trained on pre-
processed data may perform well in controlled settings, their
accuracies in real-time, noisy ECG data in perioperative set-
tings with frequent artifacts remains uncertain.

Moreover, concurrent arrhythmias or ECG abnormalities (e.
g. electrolyte imbalances, left bundle branch block) may limit
Al interpretation accuracy. Most studies failed to address
these major confounders in their ECG datasets, restricting
their real-life applicability.

Additionally, there was no discernible indication that
either the type of ECG lead or the collection setting signifi-
cantly influenced AI diagnostic performance—although
interpretation is limited by the small number of out-patient
(n=6) and smart watch (n=3) data compared with in-patient
data (n=178).
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Table 3 Current limitations and knowledge gaps in implementing Al for ECG interpretation of myocardial ischaemia and infarction in
perioperative and remote home monitoring settings. Al, artificial intelligence; NSTEMI, non-ST-segment elevation myocardial
infarction; STEMI, ST-segment elevation myocardial infarction.

Limitations and
knowledge gaps

Explanation

Limited or unclear ECG
database for Al
algorithm development

Lack of ECG sources from
perioperative and
remote home
monitoring settings

Unclear and unaligned
target conditions

Unaligned ECG lead
monitoring
configuration

Unaligned reference
standards

Static ECG interpretation

Lack of clinical validation

Most existing Al algorithms were developed using a few open-source ECG databases, resulting
in limited external validity. Additionally, many studies do not specify the ECG sources used
for their Al algorithm creation

None of the open-source ECG databases contain ECGs from perioperative or remote home
monitoring settings. Moreover, these ECGs are typically pre-processed to remove all artifacts
and contain only one diagnosis per ECG strip. Consequently, Al algorithms may struggle to
diagnose myocardial ischaemia or infarction in noisy environments or in patients with co-
existing conditions that affect ECG waveforms, such as electrolyte imbalances, potentially
leading to false alarms

Many Al algorithms do not clearly define their target conditions. Most studies (n=58) list
myocardial infarction as the target condition, some specify STEMI (n=16), whereas others
vaguely mention ischaemic changes (n=11) or ST changes (n=7). Only one study specifically
targets NSTEMI.

For perioperative and remote home monitoring after surgery, the target conditions should
include any myocardial ischaemic changes or myocardial infarction, typically presenting as
ST depression or T wave inversions in the lateral ventricular wall. In contrast, Al algorithms
designed for MI detection in cardiology or emergency medicine often focus on anterior,
inferior, and posterior wall MI. Because the target conditions in previous studies may not
align with the perioperative use, the reported diagnostic accuracies are uncertain

The most common data type used in these studies was 12-lead ECG records (n=67), followed by
two-lead ECG records (n=13) and one-lead ECG records (n=6). Other ECG records included
three-lead, 15-lead, nine-lead, and six-lead configurations (combined n=7). In perioperative
settings, where myocardial ischaemia and infarction commonly occur in the lateral
ventricular wall, the standard monitoring strategy is two-lead ECG (leads II and V5).
Therefore, diagnostic accuracy from the literature may not be directly transferable to the
perioperative setting

Most studies used physician interpretation of the same ECG strip as the reference standard.
Consequently, the reported diagnostic accuracies reflect how well the Al algorithm mimics
physician interpretation, not the accurate diagnosis of MI. Thus, the translation of ECG
interpretation accuracy to the accurate diagnosis of MI in patients is uncertain. Importantly,
because most studies use existing ECG databases for development, they often lack actual
event rates of myocardial ischaemia or infarction in their datasets

Existing Al algorithms are designed to interpret a single ECG strip. However, in clinical practice,
physicians typically compare the current ECG with previous ones and make diagnoses based
on patient history, pre-existing risk factors, and the surgical course. Al has the potential to
integrate all this information for dynamic interpretation throughout the patient’s journey,
but this integration has yet to be developed

None of the Al algorithms have been tested in clinical settings, so their actual performance
remains unknown

Deep learning models,

although potentially offering

often results from oxygen supply—demand mismatch, pro-

improved performance, require extensive datasets owing to
their complexity. Current data availability is constrained by
labelling errors (e.g. a 1.86% error rate in the PTB-XL dataset>®)
and the lack of labelled records, which impact model training
and evaluation. Data augmentation and self-supervised
learning (SSL) may help overcome these limitations by
enabling pattern recognition without extensive labelling;
however, they may risk amplifying any biases that pre-exist in
datasets®.

Current limitations and knowledge gaps

The current limitations and knowledge gaps are summarised
as follows in Table 3. Firstly, most Al algorithms were trained
on curated, open-source ECGs, limiting their generalisability to
high-risk surgical populations and noisy perioperative envi-
ronments. Secondly, perioperative myocardial ischaemia

ducing ECG patterns distinct from acute MI in non-surgical
settings, which complicates algorithm applicability. Thirdly,
most studies used physician ECG interpretation as the refer-
ence standard rather than definitive diagnosis of myocardial
ischaemia or MI, potentially introducing bias. Lastly, inte-
grating Al-based diagnostic tools into perioperative workflows
presents technical challenges. Wearable devices often require
deliberate positioning, restricting practicality in perioperative
settings. With more than 60% of perioperative MI cases being
asymptomatic'® and frequently occurring at night,'* more
advanced, clinically validated Al algorithms are required for
critical perioperative applications.

Future directions

Al has garnered significant interest in perioperative medicine,
extending beyond ECG monitoring. In a systematic review by
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Bellini and colleagues,®® Al was highlighted across various
perioperative fields, including predicting risk of perioperative
mortality,39 cardiovascular complications,‘w’42 and acute
kidney injury after major surgeries, such as cardiac surgery or
total knee arthroplasty.*>** Many of these studies relied on
preoperative variables, including patient characteristics,
medical history, and laboratory values, to estimate risks.
Notably, six studies explored real-time prediction using real-
time data feeding into Al algorithms for early warning sys-
tems, specifically targeting overly deep sedation, hypotension,
hypoxemia, and bradycardia.®® These studies used machine
learning techniques such as gradient boosting, random forest,
and logistic regression, with less frequent use of neural net-
works such as ANNs or SVMs. None of the real-time studies
utilised advanced AI methods such as CNNs or ResNet,
commonly used for ECG interpretation. This gap emphasises
the need to develop high-accuracy Al tools tailored to real-
time, noisy perioperative ECGs across intraoperative, post-
operative, or remote settings. Such advancements could
enhance monitoring capabilities and potentially improve pa-
tient outcomes.

Limitations

Primarily, our interpretation of the results does not include
quantitative meta-analysis because of insufficient reporting of
the primary studies. However, we can identify patterns and
provide context to the existing literature. The systematic re-
view on non-ECG studies by Bellini and colleagues>® reinforces
our sentiments, concluding that the current research land-
scape is heterogeneous in terms of settings and the algorithms
evaluated, and this diversity makes uniform evaluation and
conducting a meta-analysis impossible. Additionally, the
practical aspects of ECG reporting, such as the number of
segments, number of subjects, use of pre-processing filters,
and the optimal number of ECG leads, varied significantly
across studies. These inconsistencies may have also impacted
how findings were incorporated into our review. The vari-
ability in reference standards may also contribute to hetero-
geneity in model development and performance.
Furthermore, another limitation is the limited inclusion of
grey literature and proprietary datasets commonly found in
technology and industry domains, despite our comprehensive
search across databases in four areas including clinical, engi-
neering, and allied health. It is likely that additional relevant
sources remain inaccessible because of commercial re-
strictions or unpublished status. This highlights the impor-
tance of fostering a multidisciplinary approach to Al
integration in healthcare. While medical leadership must
continue to guide Al tool development, evaluation, and
implementation, the meaningful inclusion of engineering
expertise and industry resources are essential to fully realise
the potential of Al in perioperative care. Equally important is
the adoption of Al-specific reporting frameworks such as the
DECIDE-AI guideline® for early-stage clinical evaluation of Al-

based decision support systems. Future ECG-AI studies should
align with these Al-specific guidelines to improve trans-
parency, reproducibility, and credibility.

Conclusions

This scoping review identifies a translational gap in Al algo-
rithm development in its ability to be used in a perioperative
context, noticed by (1) a lack of a perioperative ECG database to
develop and test Al algorithms for perioperative and remote
home monitoring applications, (2) a lack of clinical testingin a
more realistic noisy ECG collection environment, and (3) a lack
of development and integration of AI algorithms into the
wearable device for remote home monitoring setting. By
addressing these knowledge gaps, we believe a more
dependable perioperative and remote MI monitoring strategy
for surgical patients can be developed that might enable early
hospital discharge.
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