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Abstract

Background: Perioperative electrocardiographic monitoring can offer immediate detection of myocardial ischaemia, yet 

its application in perioperative and remote monitoring settings is hampered by frequent false alarms and signal 

contamination. We performed a scoping review for the current state of artificial intelligence (AI) in perioperative ECG 

interpretation.

Methods: A literature search in Ovid MEDLINE, EMBASE, Compendex, and CINAHL databases was performed from 

inception to May 10, 2023. All original research of ECG monitoring for myocardial ischaemia, myocardial infarction, or 

both was included.

Results: A total of 182 original research articles published between 1991 and 2023 were included. Most studies (n=132) 

used a pre-existing ECG database to develop AI algorithms retrospectively, and the rest did not specify their sources. 

Processing filters were used in 58% of the studies to remove ECG noises/artifacts before AI algorithm development. 

Amongst the AI technologies used, ResNet demonstrated the highest median sensitivity, precision, and specificity at 

98.4%, 99.8%, and 99.1%, respectively. There are only five studies with intermittent prospective ECG collection on ST-

segment elevation myocardial infarction. No studies prospectively collected continuous ECG perioperatively, with 

frequent false alarms and signal contamination.

Conclusions: AI technology can achieve high diagnostic accuracy for myocardial ischaemia detection in clean inter-

mittent electrocardiograms. However, almost all these algorithms were developed from a few open-source clean ECG 

databases without testing on ‘noisy data’, which limited their clinical applicability in the perioperative setting where 

signal contamination is frequent. AI algorithms on perioperative electrocardiography, tested in a noisy perioperative and 

remote monitoring environment, including wearable devices, are needed.
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Editor’s key points

• Artificial intelligence (AI) algorithms can detect 

myocardial infarction on clean ECG data with rela-

tively high accuracy, but their performance in real-

time perioperative and noisy ECG settings remains 

largely untested.

• This review highlights current AI applications avail-

able for ECG-based myocardial infarction detection 

and highlights critical gaps in perioperative use.

• Future efforts should validate AI models in real 

perioperative settings, which could allow integration 

into wearable devices for continuous monitoring.

Perioperative myocardial infarction can occur in one of 33 in-

hospital patients after noncardiac surgery. 1 Early studies of 

myocardial ischaemia, a preceding event of myocardial 

infarction (MI), noted an incidence of ischaemia in up to 41% of 

postoperative patients, linked to a 2.8-fold increase in all 

adverse cardiac outcomes and a 9.2-fold increase in the odds 

of any ischaemic event. 2 The incidence of true perioperative 

MI in patients who underwent noncardiac surgery, according 

to recent studies, ranged from 3.5% to 19.1%. 3,4 Perioperative 

MI is mainly caused by an imbalance of oxygen supply and 

demand, termed as Type 2 MI, which may be prevented with a 

timely restoration of the imbalance by treating with beta-

blockers 5—8 or nitroglycerin. 5-9 However, more than 60% of 

perioperative MIs are asymptomatic, 10-11 making the timely 

diagnosis and intervention challenging.

Current monitoring for myocardial injury after noncardiac 

surgery 4 involves daily assessment of troponin levels. 12 

Although troponins have prognostic value for perioperative 

and long-term outcomes, the intermittent nature of this 

monitoring strategy lacks an effective, timely mechanism to 

detect and interrupt the ischaemia cycle. In the ambulatory 

surgery setting, high-risk patients often face a dilemma: pro-

longed hospitalisation for monitoring or early discharge with 

potential missed complications. In contrast, continuous 

monitoring of ST-segment changes in ECG signals can provide 

immediate detection of myocardial ischaemia. Monitoring ST 

segments of five-lead ECG, leads II and V 5 , intraoperatively has 

been used to detect intraoperative myocardial ischaemia and 

Type 2 MI for decades. 13 Anecdotal reports suggest that remote 

postoperative ECG monitoring may also allow for the timely 

detection of cardiac events to interrupt the ischaemia cycle 

and reduce postoperative MI. 14—16 However, frequent false 

alarms from signal noise in remote settings can lead to alarm 

fatigue (desensitisation and ignoring the alarm), 17,18 hence 

compromising patient safety. 17-19

Recent studies show that artificial intelligence (AI) has 

improved ECG interpretations. We conducted this scoping re-

view to map out the current state of knowledge on imple-

menting AI technology for ECG interpretation of myocardial 

ischaemia and infarction in perioperative and remote settings.

Methods

Before commencing this scoping review, we confirmed no 

similar articles in the JBI Database of Systematic Reviews and 

Implementation Reports, Cochrane Database of Systematic

Reviews, or the International Prospective Register of System-

atic Reviews (PROSPERO).

Our research question was: ‘What evidence supports the 

use of AI for ECG diagnosis of myocardial ischaemia and MI in 

the perioperative and remote monitoring settings?’ The pop-

ulation was ‘post-surgical patients, either in-hospital or dis-

charged from the hospital’, the concept ‘AI’, and the context 

‘ECG diagnosis of perioperative myocardial ischaemia or MI in 

noncardiac surgery patients’. Reporting followed the Preferred 

Reporting Items for Systems Reviews and Meta-Analyses 

Reporting Guideline Extension for Scoping Reviews (PRISMA-

ScR) guidelines. 20

Search strategy

A comprehensive search strategy was developed in collabo-

ration with a medical librarian. Upon the librarian’s recom-

mendation, the search scope included atrial fibrillation (AF) 

alongside MI, inclusive of any in-patient (e.g. medical patients) 

and out-patient (e.g. Holter) settings. This strategic decision 

was made to reduce the likelihood of missing relevant studies, 

as some studies may be indexed under AF owing to inconsis-

tent database indexing, and to ensure comprehensive 

coverage of relevant literature.

Articles were systematically identified from the Ovid 

MEDLINE, EMBASE, Compendex, and CINAHL databases, along 

with snowballing of references from the included articles, 

conducted on May 10, 2023. There was no restriction on pub-

lication dates. We limited our search to ‘human study’ and 

‘English language’. Key search terms included AI, ECG, MI, 

myocardial ischaemia or injury, AF, and STEMI. We also 

accounted for ‘older’ terminology such as bioinformatics, 

automated learning, computational intelligence, machine 

learning, and deep learning. Detailed strategies and results 

appear in Supplementary material 1. References were expor-

ted to COVIDENCE™ (Covidence, Melbourne, Australia) with 

duplications removed.

Screening and selection

Two authors (AK and JC) independently screened titles and 

abstracts, followed by full-text reviews of selected articles. 

Disagreements were resolved through discussion; a third 

reviewer (HY) was available to resolve conflicts but was not 

needed. We included all original research articles that specif-

ically assessed the ECG detection of myocardial ischaemia or 

MI using AI. Notably, we excluded data that exclusively 

focused on AF, as this was not our primary aim and based on 

our search, we had found numerous systematic reviews 

looking at AI in detecting AF. 21—23 There were no restrictions 

on AI model type or ECG data source, including studies that 

explored wearable ECGs.

Data extraction

The extracted information was categorised into three main 

areas: (1) general study details, including study design, publi-

cation year and country, cohort sizes, patient characteristics, 

ECG type, and databases used; (2) AI technology and reference 

standards used; and (3) the recall (or sensitivity), specificity, 

precision (or positive predictive value [PPV]), negative predic-

tive value (NPV), and overall diagnostic test accuracy of the AI 

technology assessed.
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The terminology used to describe diagnostic accuracy in 

engineering literature slightly differs from that used in clinical 

epidemiology literature. We listed the definitions of these 

metrics in Supplementary Table S1 for clarification.

Data analysis

As this was a scoping review, the analysis was primarily 

narrative, addressing the following questions:

1. What AI algorithms have been developed for perioperative 

MI/ischaemia ECG diagnosis?

2. How accurate are AI-based algorithms compared with 

physician interpretation?

3. How do different AI models (e.g. machine learning, deep 

learning) or specific patient subsets affect diagnostic 

accuracy?

4. What are the key limitations and knowledge gaps in peri-

operative and remote monitoring AI applications?

Because of the heterogeneity of the study’s aims and 

limited reporting qualities across studies (e.g. sample sizes 

were missing in most studies), quantitative meta-analysis was 

not feasible. Instead, we adopted a descriptive analysis 

approach, primarily summarising available data with median 

(interquartile range [IQR]) and counts (frequency), while 

acknowledging its inherent limitations.

Results

Our initial systematic search yielded 12 634 records. After 

removal of 5068 duplications, we first screened the titles and 

abstracts of 7566 records and followed with a full-text review 

of 910 articles. We extracted data from 182 studies to construct 

our results (see Supplementary material 2 for full citations). 

We excluded reports lacking clear, quantifiable components or 

deviating from our predefined outcomes and methods (see 

Appendix 1). Of note, we identified 355 studies on AI-assisted 

AF interpretation that were excluded as they were out of 

scope for this review.

Study characteristics

The 182 studies included in this review span from 1991 to 2023, 

in which the number of studies increased exponentially in the 

past 5 yr (Supplementary Fig. S1). These studies originated 

from various countries, and notably, the leading countries 

were China and India (n=47 and n=28, respectively).

ECG data source

The majority of these studies are of retrospective design 

(n=177) and used existing open-source ECG databases to 

construct their AI algorithms; specifically, the PTB/PTB-XL 

database 24 was used in 91 studies, the European Society of 

Cardiology ST-T database 25 was used in 22 studies, and MIT 

Physionet/MIT-BIH databases were used in nine studies. 26 A 

summary of the characteristics of the commonly used open-

source ECG databases is listed in Supplementary Table S2. A 

substantial number of studies (n=54) did not specify the 

sources of their ECGs. In all included studies, both the training 

and validation datasets were derived from the same ECG 

database; none used an external validation dataset. Case

reports and series were excluded from the analysis, except for 

those involving wearables, which were included in the 

narrative review to explore their application in remote ECG 

monitoring. The study characteristics of all included studies 

are listed in Supplementary Table S3.

Reference standards

Among the 177 included studies, the most used reference 

standard was ECG interpretations manually annotated by 

cardiologists (n=171). Two studies relied on ECG interpretation 

by attending physicians, whereas four studies used coronary 

angiography as the confirmatory diagnostic method. The 

remaining studies did not specify the reference standard.

Types of artificial intelligence techniques used

AI techniques investigated in the primary studies were broadly 

categorised into algorithm based (n=51), traditional machine 

learning (n=27), signal processing (n=2), neural network 

(n=90), and hybrid network (n=12) (Table 1 and Supplementary 

Table S4). Historically, AI algorithms for detecting MI or 

myocardial ischaemia have evolved from expert systems to 

classical machine learning, and more recently, to deep 

learning, reflecting the increasing sophistication of AI 

algorithms.

Expert systems (AI algorithms) in ECG interpretation 

typically rely on predefined rules or established thresholds to 

identify ischaemic changes, such as ST-segment deviations. 27 

For instance, a rule-based system might detect an ST-

segment elevation or depression exceeding a set amplitude 

or duration as myocardial ischaemia. Such expert systems, 

although effective in controlled settings, may struggle with 

complex or noisy ECG signals that fall outside predefined 

parameters.

Traditional machine learning approaches, such as support 

vector machines (SVMs) and decision trees, involve manual 

feature engineering, where relevant ECG characteristics (such 

as ST segment and T wave) are manually selected to train and 

build predictive models for identifying ischaemic events in 

new ECG data. 28 Although effective for simpler tasks, these 

methods may not fully capture complex, non-linear relation-

ships inherent in ECG data.

Deep neural networks (DNNs) address this by learning 

intricate patterns and non-linear relationships directly from 

raw ECG signals without manual feature extraction. 29 

Amongst these, convolutional neural networks (CNNs) use 

convolutional layers adept at discerning spatial patterns 

within input ECG data to apply specialised filters or kernels to 

ECG signals and capture nuanced features such as ST seg-

ments. 28 29 By interconnecting all detection-specific layers, 

CNNs can learn and interpret higher-level representations and 

make more accurate predictions than more general artificial 

neural networks (ANNs), as CNNs are targeted to interpret 

grid-like data, such as ECGs. 29

The use of Residual Networks 30 and Densely Connected 

Convolutional Networks (DenseNet) marks a significant 

advancement in CNN architectures, capable of delving deeper 

into data complexities. ResNet, with its capacity to encompass 

hundreds of layers compared with CNN’s tens to hundreds, 

uses residual blocks to incorporate shortcut connections, 

known as skip connections, circumventing one or more layers
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and seamlessly amalgamating all layers’ learnings into an 

outcome 30 . DenseNet, by contrast, relies on dense connections 

between layers, facilitating efficient gradient flow throughout 

the network and mitigating challenges such as vanishing 

gradients or data overload often encountered in traditional 

CNNs.

Hybrid networks such as the CNN-LSTM hybrid network 

harness Long Short-Term Memory (LSTM) networks’ capabil-

ities to address the vanishing gradient problem and capture 

temporal dynamics within data. This hybrid approach em-

powers CNNs to extract intricate features from ECG signals 

while LSTM networks adeptly detect temporal patterns over

Table 1 Summary of AI technology. AI, artificial intelligence; STEMI, ST-segment elevation myocardial infarction.

Type of AI Description Detection of ECG 

changes

Advantages Limitations

Rule-based

algorithms

Operate on predefined

rules or conditions 

set by the study

Rely on predefined

fixed thresholds in 

ECG parameters to

determine what is 

called an ST-segment 

change (elevation,

depression, duration, 

or amplitude) to 

determine as MI

• Highly interpretable;

logic is transparent 

and easy to audit

• Customisable for 

specific study points:

sensitivity to ST 

depressions vs STEMI

• Lack flexibility

• Performance not 

consistent when

applied to real-world 

ECGs with atypical/ 

noisy features

• Do not learn from 

data; cannot 

improve with input 

over time

Traditional

machine learning 

(i.e. support

vector machine, 

decision trees)

Trained with relevant

features and clinical 

data to build

predictive models by 

using specifically 

extracted ECG 

features (ST slopes, 

QRS duration)

Use manually

engineered features 

from clinical ECG

data (with ECG 

changes or control) to 

identify ischaemic or 

MI changes and 

classify as normal vs 

ischaemic

• Better generalisation

ability

• Simple to implement 

and validate

• Unable to capture

more complex 

signals

• Require expertise for 

initial feature 

extraction (subject to 

human bias)

• Unable to perform 

well in raw high-

noise environments

Artificial neural

networks

Learns intricate

patterns and non-

linear relationships

from data, and

interconnects these

layers via weighted 

sums and non-linear 

transformations

Can adapt to variations

and noise to capture

more complex ECG

signals. Can detect

ischaemic patterns

from non-linear 

relationships across 

features

• Feedforward neural

network, complex

information features

can be extracted and

predicted

• Flexible: can handle 

structured and 

unstructured data

• Not architecturally

optimised for spatial

or temporal data,

such as ECG

• Requires more data

to generate network

Convolutional

neural networks

Designed for grid-like

data; incorporates

convolutional layers

adept at discerning

spatial patterns, can

apply specialised

filters or kernels to

each layer

Filters applied to

extract specific ECG

spatial patterns, i.e.

ST-segment

elevation/depression;

more targeted for

grid-like data (ECG)

• Highly effective in

ECG signal

processing: for

classification

• Fast training process

• Automatically learns

features without

manual input

• Limited in depth:

confined to tens

—hundreds of con-

volutional layers,

cannot incorporate

more

• Cannot capture long

range temporal

patterns

• Performance 

degrades in highly 

noisy environments

Residual Networks 

(ResNet)

Encompass hundreds 

of layers, can 

incorporate skip 

connections (residual 

blocks) to 

circumvent/bypass 

intermediate layers 

or amalgamate layers

More complex ECG 

signals captured 

owing to its ability to 

encompass more 

specialised layers, 

such as deep 

hierarchical 

representations. Can

identify subtle 

changes in ECG 

spanning longer 

sequences (i.e. 

ischaemia)

• Can support 

networks with 

hundreds of layers 

without training 

degradation

• High accuracy in 

detecting complex 

ECG patterns

• Better generalisation 

to real-world vari-

ability in ECG

• Not as well studied 

for use of ECG 

changes, especially 

in real-time periop-

erative contexts, 

despite being most 

complex/promising

• Computationally 

expensive
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time, augmenting the algorithm’s efficacy in MI detection 

scenarios.

A more detailed description of the AI technologies is pro-

vided in Supplementary material 3.

Overall diagnostic performance of artificial 
intelligence techniques

AI algorithms exhibit strong overall diagnostic performance, 

with median sensitivity and specificity of 89.0% (82.7—95.9%) 

and 93.3% (84.9—97.7%), respectively. The PPV and NPV were 

85.0% (63.9—93.4%) and 96.3% (91.8—99.2%), and the accuracy 

and area-under-curve (AUC) were 91.6% (82.5—96.5%) and 

91.9% (89.2—97.0%) (Table 2 and Supplementary Table S5). 

Neural networks were the most used AI technique (n=95), 

achieving consistently strong performance, with a median 

(IQR) sensitivity, precision, and specificity of 95.4% 

(89.8—98.5%), 95.8% (88.6—99.3%), and 96.2% (88.8—99.1%), 

respectively. Traditional machine learning-based techniques, 

although still effective, appear to have slightly lower precision 

with median (IQR) sensitivity, precision, and specificity of 

94.1% (91.8—98.9%), 90.3% (70—96.1%), and 96.7% (90.7—99.5%), 

respectively (Table 2). Fewer studies examined hybrid and 

signal processing-based methods, reflecting their emerging 

status. Detailed diagnostic values are provided in Table 2.

Diagnostic performances within neural networks

Within the neural network family, performance improved 

progressively from ANN, CNN, to the more advanced ResNet, 

highlighted in Table 2. The median (IQR) recall (sensitivity), 

precision, and specificity of the ANN technique, including ANN 

Bayesian, ANN Hermite representation, and ANN Glasgow 

techniques, are 88.6% (83.9—96.7%), 87.9% (77.7—93.0%), and 

89.2% (78.4—96.2%). The CNN technique showed improved 

performance with a recall (sensitivity), precision, and

specificity of 94.2% (87—97.1%), 89.8% (82.2—96.6%), and 93.2% 

(90—97.7%), respectively. The most advanced, ResNet, 

demonstrated the highest diagnostic accuracy with recall 

(sensitivity), precision, and specificity of 98.4% (96.2—99.0%), 

99.8% (99.1—99.8%), and 99.1% (97.6—99.5%), respectively.

Diagnostic performance between different ECG leads

Most studies used intermittent ECG strips composed of 12-lead 

ECG records (n=156), followed by two-lead ECG records (n=13) 

and one-lead ECG records (n=11). Other formats (three-, six-, 

eight-, nine-, and 15-leads) were used in nine studies com-

bined. The median (IQR) recall (sensitivity), precision, and 

specificity for 12-lead ECG were 94.2% (88.0—98.2%), 91.3% 

(76.9—98.4%), and 95.1% (88.1—99.0%), respectively. The diag-

nostic performances in two-lead ECG and one-lead ECG are 

comparable and are listed in Table 2.

Diagnostic performances between different settings

Most studies were retrospective studies using in-patient data. 

Only six studies prospectively collected ECG data; however, 

they had small samples (median=204 patients), with the 

smallest being a case report of one patient. 31 ECG data were 

collected via smart watch in three studies: one case report of 

‘inconclusive’ single-lead ECG despite 3 days of chest pain, and 

two studies with patients repositioning the device to simulate 

12-lead ECGs. The patients in these studies were symptomatic 

or suspected of acute coronary syndromes, in or en-route to 

the emergency department or cardiac critical care unit, with 

mostly intermittent ECG strips, and none were collected as 

continuous perioperative ECGs.

When evaluating different sources of ECG data collected 

using in-patient, out-patient, and smart watch data, the 

comparison resulted in median (IQR) recall (sensitivity) values 

of 94.1% (88.6—98.5%), 94.9% (88.4—99.7%), and 93.0%

Table 2 Summary of diagnostic values of AI algorithms in different settings. Data are presented as median (interquartile range). Hybrid 

network refers to a combination of convolutional neural network (CNN), CNN-Long Short-Term Memory (LSTM), and Residual

Network (ResNet) methods. AI, artificial intelligence; AUC, area-under-curve; PPV, positive predictive value; NPV, negative predictive 

value.

Recall (sensitivity) Specificity Precision (PPV) NPV Accuracy AUC

Overall (n=182) 94 (87.9—98.5) 95.2 (88.2—98.9) 92.1 (75.4—98.4) 97.6 (92.6—99.5) 96.4 (89.5—99.0) 96.6 (92.4—99)

Specific AI technique 

Algorithm based (n=51) 89.0 (82.7—95) 93.3 (84.9—97.7) 85 (63.1—93.4) 96.3 (91.8—99.2) 91.6 (82.5—96.5) 97.4 (89.2—95)

Traditional machine

learning (n=27)

94.1 (91.8—98.9) 96.7 (90.7—99.5) 90.3 (70—96.11) 95 (93.1—97.5) 98.2 (91.2—99) 99.8 (98.7—99.9)

Signal processing (n=2) 78.9 (73.6—84.3) - 79.6 (77.3—82) - - -

Neural network (n=90) 95.4 (89.8—98.5) 96.2 (88.8—99.1) 95.8 (88.6—99.3) 97.1 (95.4—99.4) 96.2 (91.5—99) 96.7 (94.9—98.9)

Hybrid network (n=12) 97.1 (91.7—98.8) 93.3 (90—98.5) 97.2 (76.8—99.3) 99.4 97.7 (95.4—99.3) 97.4 (94.5—98.3)

Type of ECG

12-lead (n=149) 94.2 (88—98.2) 95.1 (88.1—99) 91.3 (76.9—98.4) 96 (91.3—99) 95 (89.1—98.8) 97.1 (92.6—99.1)

Two-lead (n=13) 91.7 (83.5—95.6) 97.5 (93.1—98.6) 87.5 (80.3—94.7) 99.78 99 (98.9—99) 94 (91—97)

One-lead (n=11) 99.5 (95.5—99.9) 98.2 (94.3—99.6) 99.7 (99.5—99.9) - 99.6 (99.1—99.9) 96.7

ECG sources

In-patient (n=174) 94.1 (88.6—98.5) 97.8 (88.3—99.1) 90.3 (74.9—98.4) 97.1 (94.3—99.5) 95.8 (89.9—99) 96.7 (92—98.9)

Out-patient (n=5) 94.9 (88.4—99.7) 98.6 (92.2—99.9) - - 99.4 (98.9—99.9) -

Smart watch (n=3) 93 (85.4—100.0) 95 (82.4—100.0) - - - -

Pre-processed ECG

No pre-processed

ECG (n=76) 

91.9 (87.5—98.2) 94.6 (89.9—99.1) 89.5 (72.8—98.5) 98.3 (94.6—99.6) 96.5 (90.6—99) 99.3 (97.5—99.7)

Pre-processed

ECG (n=106)

93.9 (89—98.6) 95 (86.3—98.6) 93 (76.9—98.1) 96 (90—99.3) 96.1 (89.5—98.9) 95.5 (91.9—97.9)
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(85.4—100.0%), and specificity values of 95.8% (88.3—99.1%), 

98.6% (92.2—99.9%), and 95% (82.4—100.0%), respectively.

Diagnostic performances without signal processing 
techniques

More than half of the studies (n=109) used pre-filtered ECG 

segments (i.e. only clean ECG segments were used to construct 

the AI algorithms). Notably, many AI algorithms were applied 

to the data after pre-processing filtering. If studies that used 

pre-processed data are excluded, the median (IQR) recall 

(sensitivity), precision, and specificity of AI algorithms are 

91.9% (87.5—98.2%), 89.5% (72.8—98.5%), and 94.6% 

(89.9—99.1%), respectively. Pre-processed data have median 

(IQR) recall (sensitivity), precision, and specificity of 93.9% 

(89.0—98.6%), 93.0% (76.9—98.1%), and 95.0% (86.3—98.6%), 

respectively, suggesting comparable diagnostic performance 

between studies with and without a pre-processing filter.

Discussion

This scoping review outlines the current landscape of AI al-

gorithms for diagnosing MI and myocardial ischaemia. 

Whereas there has been robust exploration in developing AI 

for MI detection, real-time perioperative applications, partic-

ularly for ST depressions/non-ST-segment elevation myocar-

dial infarction (NSTEMI), remain limited. Research largely 

follows two paths: (1) developing AI algorithms to improve 

diagnostic accuracy, albeit without taking the crucial next step 

of integrating these AI algorithms into perioperative practice, 

and (2) exploring wearables with embedded AI algorithms for 

ST-segment elevation myocardial infarction (STEMI) detection 

in ambulatory settings.

Most studies focus on engineering AI algorithms based on 

open-source ECG databases containing both normal and 

abnormal ECGs (e.g. ST elevation). Most of these studies 

applied a very similar methodology: databases are split into 

model derivation, validation, and testing datasets, followed by 

developing a new AI algorithm. The performance of these al-

gorithms (test) is then compared against physician interpre-

tation of ECGs, typically by two cardiologists, serving as the 

reference standard. Few studies used the diagnosis of coro-

nary angiogram as the reference standard (Supplementary 

Table S4). Only five studies were prospective, but with meth-

odological concerns: poorly defined inclusion criteria, small 

sample sizes (i.e. one study included only one patient, another 

with two patients), and underrepresentation of women (13%). 

The selection of the validation cohort in these prospective 

studies was also unclear. For instance, the validation cohort in 

the study of Chen colleagues 32 included only 10 patients 

without clear inclusion or exclusion criteria. The target con-

dition in all these prospective studies was STEMI, with none 

addressing ST depression/NSTEMI. Importantly, no algorithms 

were tested intraoperatively or after surgery, either during the 

hospital stay or after discharge as part of a remote home 

monitoring programme.

Among ambulatory wearables, the smart watch emerged as 

a popular choice recently in several studies (n=3). However, a 

significant limitation hindering its perioperative use is its 

ability to detect only a single-lead ECG. 33 To overcome this 

limitation, study designs aimed to enhance lead detection by 

adjusting the smart watch’s positioning using the Einthoven

triangle as a guide. For instance, the study of Avila 34 focused 

on obtaining Lead 1 as intended, whereas Leads 2 and 3 were 

achieved by having the patient hold the left or right thumb on 

the crown of the watch and placing the watch’s back against 

the mid-abdomen. One study used an Apple Watch to detect 

pre-diagnosed STEMI and NSTEMI in 54 and 27 patients; 

sensitivity and specificity for STEMI were reported as 93% and 

95%, and for NSTEMI, as 94% and 92%. 31 The other reports 

primarily served as a demonstration of feasibility with small 

subject numbers (Avila 34 : n=2, Stark and colleagues 35 : n=1). 

These studies aimed to demonstrate the accuracy of STEMI 

detection on the Apple Watch against expert cardiologist 

readings on traditional ECGs. Challenges such as variability in 

wearable positioning for reliable lead detection highlight the 

need for further advancements in wearables and algorithm 

development in perioperative settings.

Interpretation

Although recent AI algorithms show strong diagnostic per-

formance, caution is needed when interpreting these high 

values, especially when they are applied in perioperative 

settings.

Real-time ECG data often contain noise and artifacts that 

can challenge the accuracy of AI algorithms. Many studies 

used pre-processing filters to try to eliminate these, but diag-

nostic performances remained relatively unchanged between 

pre-processed and non-pre-processed data. This observed 

phenomenon could be attributed to several factors. Firstly, 

many pre-existing databases are often meticulously curated, 

providing clean and well-annotated data. Consequently, the 

addition of pre-processing filters may not yield substantial 

changes in performance metrics as the data are already of high 

quality. Filtering may also have been unhelpful because the 

hardware instrumentation used to collect data often contain 

inherent hardware filters, making the additional digital 

filtering redundant. Furthermore, some studies deliberately 

chose not to incorporate extensive pre-processing filters. This 

decision might stem from the inherent robustness of their 

algorithms to noise and variations in input data. By focusing 

on algorithmic designs that inherently handle such chal-

lenges, these studies may have achieved consistent perfor-

mance metrics without relying heavily on pre-processing 

techniques. In essence, the combination of high-quality 

training data from pre-existing databases and algorithmic 

robustness to data variations could explain the limited impact 

of pre-processing filters on the diagnostic performances in 

these studies. Ultimately, although algorithms trained on pre-

processed data may perform well in controlled settings, their 

accuracies in real-time, noisy ECG data in perioperative set-

tings with frequent artifacts remains uncertain.

Moreover, concurrent arrhythmias or ECG abnormalities (e. 

g. electrolyte imbalances, left bundle branch block) may limit 

AI interpretation accuracy. Most studies failed to address 

these major confounders in their ECG datasets, restricting 

their real-life applicability.

Additionally, there was no discernible indication that 

either the type of ECG lead or the collection setting signifi-

cantly influenced AI diagnostic performance―although 

interpretation is limited by the small number of out-patient 

(n=6) and smart watch (n=3) data compared with in-patient 

data (n=178).
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Deep learning models, although potentially offering 

improved performance, require extensive datasets owing to 

their complexity. Current data availability is constrained by 

labelling errors (e.g. a 1.86% error rate in the PTB-XL dataset 36 ) 

and the lack of labelled records, which impact model training 

and evaluation. Data augmentation and self-supervised 

learning (SSL) may help overcome these limitations by 

enabling pattern recognition without extensive labelling; 

however, they may risk amplifying any biases that pre-exist in

datasets 37 .

Current limitations and knowledge gaps

The current limitations and knowledge gaps are summarised 

as follows in Table 3. Firstly, most AI algorithms were trained 

on curated, open-source ECGs, limiting their generalisability to 

high-risk surgical populations and noisy perioperative envi-

ronments. Secondly, perioperative myocardial ischaemia

often results from oxygen supply—demand mismatch, pro-

ducing ECG patterns distinct from acute MI in non-surgical 

settings, which complicates algorithm applicability. Thirdly, 

most studies used physician ECG interpretation as the refer-

ence standard rather than definitive diagnosis of myocardial 

ischaemia or MI, potentially introducing bias. Lastly, inte-

grating AI-based diagnostic tools into perioperative workflows 

presents technical challenges. Wearable devices often require 

deliberate positioning, restricting practicality in perioperative 

settings. With more than 60% of perioperative MI cases being 

asymptomatic 10 and frequently occurring at night, 14 more 

advanced, clinically validated AI algorithms are required for 

critical perioperative applications.

Future directions

AI has garnered significant interest in perioperative medicine, 

extending beyond ECG monitoring. In a systematic review by

Table 3 Current limitations and knowledge gaps in implementing AI for ECG interpretation of myocardial ischaemia and infarction in

perioperative and remote home monitoring settings. AI, artificial intelligence; NSTEMI, non-ST-segment elevation myocardial 

infarction; STEMI, ST-segment elevation myocardial infarction.

Limitations and 

knowledge gaps

Explanation

Limited or unclear ECG 

database for AI 

algorithm development

Most existing AI algorithms were developed using a few open-source ECG databases, resulting 

in limited external validity. Additionally, many studies do not specify the ECG sources used 

for their AI algorithm creation

Lack of ECG sources from 

perioperative and 

remote home 

monitoring settings

None of the open-source ECG databases contain ECGs from perioperative or remote home 

monitoring settings. Moreover, these ECGs are typically pre-processed to remove all artifacts 

and contain only one diagnosis per ECG strip. Consequently, AI algorithms may struggle to 

diagnose myocardial ischaemia or infarction in noisy environments or in patients with co-

existing conditions that affect ECG waveforms, such as electrolyte imbalances, potentially 

leading to false alarms

Unclear and unaligned 

target conditions

Many AI algorithms do not clearly define their target conditions. Most studies (n=58) list 

myocardial infarction as the target condition, some specify STEMI (n=16), whereas others 

vaguely mention ischaemic changes (n=11) or ST changes (n=7). Only one study specifically 

targets NSTEMI.

For perioperative and remote home monitoring after surgery, the target conditions should 

include any myocardial ischaemic changes or myocardial infarction, typically presenting as 

ST depression or T wave inversions in the lateral ventricular wall. In contrast, AI algorithms 

designed for MI detection in cardiology or emergency medicine often focus on anterior, 

inferior, and posterior wall MI. Because the target conditions in previous studies may not 

align with the perioperative use, the reported diagnostic accuracies are uncertain

Unaligned ECG lead 

monitoring 

configuration

The most common data type used in these studies was 12-lead ECG records (n=67), followed by 

two-lead ECG records (n=13) and one-lead ECG records (n=6). Other ECG records included 

three-lead, 15-lead, nine-lead, and six-lead configurations (combined n=7). In perioperative 

settings, where myocardial ischaemia and infarction commonly occur in the lateral 

ventricular wall, the standard monitoring strategy is two-lead ECG (leads II and V5). 

Therefore, diagnostic accuracy from the literature may not be directly transferable to the 

perioperative setting

Unaligned reference 

standards

Most studies used physician interpretation of the same ECG strip as the reference standard. 

Consequently, the reported diagnostic accuracies reflect how well the AI algorithm mimics 

physician interpretation, not the accurate diagnosis of MI. Thus, the translation of ECG 

interpretation accuracy to the accurate diagnosis of MI in patients is uncertain. Importantly, 

because most studies use existing ECG databases for development, they often lack actual 

event rates of myocardial ischaemia or infarction in their datasets

Static ECG interpretation Existing AI algorithms are designed to interpret a single ECG strip. However, in clinical practice, 

physicians typically compare the current ECG with previous ones and make diagnoses based 

on patient history, pre-existing risk factors, and the surgical course. AI has the potential to 

integrate all this information for dynamic interpretation throughout the patient’s journey, 

but this integration has yet to be developed

Lack of clinical validation None of the AI algorithms have been tested in clinical settings, so their actual performance 

remains unknown
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Bellini and colleagues, 38 AI was highlighted across various 

perioperative fields, including predicting risk of perioperative 

mortality, 39 cardiovascular complications, 40—42 and acute 

kidney injury after major surgeries, such as cardiac surgery or 

total knee arthroplasty. 43,44 Many of these studies relied on 

preoperative variables, including patient characteristics, 

medical history, and laboratory values, to estimate risks. 

Notably, six studies explored real-time prediction using real-

time data feeding into AI algorithms for early warning sys-

tems, specifically targeting overly deep sedation, hypotension, 

hypoxemia, and bradycardia. 38 These studies used machine 

learning techniques such as gradient boosting, random forest, 

and logistic regression, with less frequent use of neural net-

works such as ANNs or SVMs. None of the real-time studies 

utilised advanced AI methods such as CNNs or ResNet, 

commonly used for ECG interpretation. This gap emphasises 

the need to develop high-accuracy AI tools tailored to real-

time, noisy perioperative ECGs across intraoperative, post-

operative, or remote settings. Such advancements could 

enhance monitoring capabilities and potentially improve pa-

tient outcomes.

Limitations

Primarily, our interpretation of the results does not include 

quantitative meta-analysis because of insufficient reporting of 

the primary studies. However, we can identify patterns and 

provide context to the existing literature. The systematic re-

view on non-ECG studies by Bellini and colleagues 38 reinforces 

our sentiments, concluding that the current research land-

scape is heterogeneous in terms of settings and the algorithms 

evaluated, and this diversity makes uniform evaluation and 

conducting a meta-analysis impossible. Additionally, the 

practical aspects of ECG reporting, such as the number of 

segments, number of subjects, use of pre-processing filters, 

and the optimal number of ECG leads, varied significantly 

across studies. These inconsistencies may have also impacted 

how findings were incorporated into our review. The vari-

ability in reference standards may also contribute to hetero-

geneity in model development and performance. 

Furthermore, another limitation is the limited inclusion of 

grey literature and proprietary datasets commonly found in 

technology and industry domains, despite our comprehensive 

search across databases in four areas including clinical, engi-

neering, and allied health. It is likely that additional relevant 

sources remain inaccessible because of commercial re-

strictions or unpublished status. This highlights the impor-

tance of fostering a multidisciplinary approach to AI 

integration in healthcare. While medical leadership must 

continue to guide AI tool development, evaluation, and 

implementation, the meaningful inclusion of engineering 

expertise and industry resources are essential to fully realise 

the potential of AI in perioperative care. Equally important is 

the adoption of AI-specific reporting frameworks such as the 

DECIDE-AI guideline 45 for early-stage clinical evaluation of AI-

based decision support systems. Future ECG-AI studies should 

align with these AI-specific guidelines to improve trans-

parency, reproducibility, and credibility.

Conclusions

This scoping review identifies a translational gap in AI algo-

rithm development in its ability to be used in a perioperative 

context, noticed by (1) a lack of a perioperative ECG database to 

develop and test AI algorithms for perioperative and remote 

home monitoring applications, (2) a lack of clinical testing in a 

more realistic noisy ECG collection environment, and (3) a lack 

of development and integration of AI algorithms into the 

wearable device for remote home monitoring setting. By 

addressing these knowledge gaps, we believe a more 

dependable perioperative and remote MI monitoring strategy 

for surgical patients can be developed that might enable early 

hospital discharge.
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