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Abstract— Zero-shot visual question answering (VQA) poses
a formidable challenge at the intersection of computer vision
and natural language processing. Traditionally, this problem
has been tackled using end-to-end pre-trained vision-language
models (VLMs). However, recent advancements in large lan-
guage models (LLMs) demonstrate their exceptional reasoning
and comprehension abilities, making them valuable assets in
multi-modal tasks, including zero-shot VQA. LLMs have been
previously integrated with VLMs to solve zero-shot VQA in
a conversation-based approach. However, while the focus in
VQA tasks is often on specific regions rather than the entire
image, this aspect has been overlooked in previous approaches.
Consequently, the overall performance of the framework relies
on the ability of the pre-trained VLM to locate the region of
interest that is relevant to the requested visual information
within the entire image. To address this challenge, this paper
proposes Grounded Multi-modal Conversation for Zero-shot
Visual Question Answering (GMC-VQA), a region-based frame-
work that leverages the complementary strengths of LLMs
and VLMs in a conversation-based approach. We employ a
grounding mechanism to refine visual focus according to the
semantics of the question and foster collaborative interaction
between VLM and LLM, effectively bridging the gap between
visual and textual modalities and enhancing comprehension
and response generation for visual queries. We evaluate GMC-
VQA across three diverse VQA datasets, achieving substantial
average improvements of 10.04% over end-to-end VLMs and
2.52% over the state-of-the-art VLM-LLM communication-
based framework, respectively. Our code is publicly available
at https://github.com/mrzarei5/GMC-VQA,

I. INTRODUCTION

Visual Question Answering (VQA) refers to a challenging
task that lies at the intersection of language processing and
image understanding and involves generating accurate textual
answers to the questions about the visual content of an in
image [1], [2]. This cognitive challenge demands a deep
understanding of object interactions, relationships, actions,
events, quantities, and textual elements present in the visual
scene. Compared to other computer vision tasks like image
captioning and text-to-image generation, VQA exhibits a
greater level of complexity. This complexity stems from a
variety of factors, including the diverse ways questions can
be formulated, the vast array of relevant visual information,
and the different types of questions that need to be answered.

Recent advancements in vision-language models (VLMs)
have significantly impacted VQA tasks, including zero-
shot VQA. However, VLMs face several challenges: 1)
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Limited factual knowledge: VLMs are primarily trained
on image-text pairs, which might not contain sufficient
factual knowledge to accurately answer complex questions
in zero-shot scenarios. 2) Limited understanding: VLMs
might not fully grasp common sense reasoning in zero-
shot scenarios, leading to incorrect answers for questions
that necessitate an understanding of everyday phenomena or
established physical laws. 3) Overreliance on visual cues:
In the context of zero-shot VQA, VLMs may overly rely on
visual information, potentially overlooking logical reasoning
based on textual context. 4) Question/Image ambiguity:
VLMs can be confused by ambiguous questions, leading to
incorrect or irrelevant answers. Furthermore, VLMs might
struggle with images containing multiple objects or complex
scenes, leading to difficulty in identifying the correct visual
information.

While VLMs address these challenges by significantly
increasing model sizes, utilizing extensive datasets, and
employing advanced pre-training techniques [3]-[5], their
size requires substantial infrastructure, making on-premise
deployment difficult. For instance, Pixtral Large [4] demands
over 300 GB of GPU RAM. Providers such as OpenAl,
Google, and Mistral Al offer serverless access through APIs;
however, using APIs for multi-modal models in vision tasks
can be expensive and raise privacy concerns due to the sensi-
tive nature of image data, unlike text. As a result, leveraging
VLMs with the possibility of local deployment is crucial
for both managing costs and maintaining privacy in zero-
shot VQA. However, improving the performance of such
VLMs remains essential to fully address the complexities of
VQA tasks, particularly in bridging gaps in reasoning and
knowledge integration.

Recent studies have explored the possibility of leveraging
large language models (LLMs) in VQA tasks [6]-[8] to
overcome VQA challenges. LLMs have demonstrated excep-
tional capabilities in reasoning [9], [10]. Their proficiency in
processing and comprehending intricate language structures
enables them to effectively interpret question nuances, extract
critical information, and construct logical reasoning chains.
Moreover, LLMs excel at knowledge integration, allowing
them to incorporate external and world knowledge into
the VQA process [11], [12]. This capacity to reason over
language and knowledge is indispensable for addressing
questions that require inferential or deductive reasoning,
significantly enhancing VQA system performance.

A key challenge when utilizing LLMs for VQA is ef-
fectively bridging the gap between textual and visual infor-
mation, which is essential for enabling LLMs to accurately
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interpret and understand image content [8]. The predominant
solution to this challenge involves transforming images into
textual representations, with image captioning serving as the
most straightforward method for achieving this goal. How-
ever, image captions often lack the specific details necessary
to accurately answer questions related to the image [13],
[14]. To address this shortcoming, recent approaches have
integrated the question into the image captioning process
[14]. Nonetheless, such methods may still fail to capture all
relevant details [8].

A promising advancement involves leveraging the LLM
itself to inquire about essential visual information while
utilizing a pre-trained VLM to provide the LLM with the
requested visual details, thus preparing all necessary in-
formation for answering the initial question [7]. Although
this LLM-VLM conversational framework has demonstrated
effectiveness in zero-shot VQA scenarios, the information
presented by VLM has been extracted from the entire image
while both the initial VQA query and the subsequent requests
from LLM typically focus on specific regions, rather than
the entirety of the image. Therefore, the overall performance
hinges on the VLM’s capability to accurately identify regions
of interest relevant to the requested visual information within
the entire image.

This paper introduces Grounded Multi-modal Conversa-
tion for Zero-shot Visual Question Answering (GMC-VQA),
a novel framework for zero-shot VQA. By incorporating im-
age grounding, GMC-VQA enables the VLM to concentrate
on image regions that are relevant to the given question.
The model establishes an iterative question-answering con-
versation between the LLM and VLM for each identified
region, facilitating the collection of region-specific visual
information that aids LLM in generating a precise final
answer to the initial query. Experimental results across three
VQA datasets demonstrate the effectiveness of our proposed
model, showing significant improvements compared to both
end-to-end VLMs and previous VLM-LLM communication-
based framework.

Our contributions are summarized as follows:

o We propose GMC-VQA, a multi-modal conversation-
based approach which integrates a grounding mech-
anism to focus on specific regions of interest within
images.

e GMC-VQA establishes an individual question-
answering conversation between the pre-trained VLM
and LLM for each relevant image region, resulting
in enhanced targeted comprehension and response
generation for visual queries.

e GMC-VQA outperforms existing end-to-end and
conversation-based VQA approaches across three di-
verse VQA datasets.

II. RELATED WORK
A. Vision-Language Models

The advancement of vision-language pre-training models
has led to significant achievements in vision-language tasks.

VLMs aim to learn alignments between visual and textual
information using large-scale image-text pairs, then use the
model in zero-shot setting or fine-tune it on downstream tasks
[15]-[17]. Based on their capabilities and initial objectives,
VLMs can be categorized as either discriminative or genera-
tive models. Discriminative VLMs [18], [19] focus on learn-
ing robust representations for both image and text, facilitating
recognition and matching tasks. In contrast, generative VLMs
[20], [21] concentrate on tasks that require text or image
generation capabilities, such as image captioning and visual
question answering. Recent VLMs with text generation capa-
bilities support multiple text generation tasks. Among these
models, LLaVA [20] trained an end-to-end large multimodal
model that connects a vision encoder with an LLM for
general-purpose visual and language understanding. BLIP-
2 [22] bridged the modality gap between image and text
with a lightweight Querying Transformer, pre-trained in two
stages, bootstrapping vision-language representation learning
from a frozen image encoder and bootstrapping vision-to-
language generative learning from a frozen language model
in the first and the second stages, respectively. In GMC-
VQA, we leverage the capability of pre-trained VLMs in
image captioning and question-answering, suitable for local
deployment.

B. Visual Question Answering

A variety of methods have been proposed for VQA
in recent years. Li et al. [23] explored three VQA ap-
proaches: GAN-based methods generated answer embed-
dings but struggled with complexity; autoencoders learned
question and image embeddings, performing comparably;
and attention mechanisms with MCB addressed language
priors and attention modeling, balancing complexity and per-
formance. Bao et al. [24] approached the VQA problem with
a confidence-based neural-symbolic model which evaluates
the uncertainty of neural network inferences and uses that
information to guide reasoning. Yu et al. [25] proposed a
graph-based recurrent reasoning network (GRUC) for VQA,
leveraging cross-modal knowledge reasoning through graph-
structured multimodal knowledge representations. ViLT, pre-
sented in [26], is a minimal model that incorporates text
embeddings into a Vision Transformer. This model converts
VQA task to a classification task. While the mentioned
models focus on designing and training a more powerful
VQA model, we propose a training-free VQA framework
aimed at enhancing zero-shot performance by leveraging the
reasoning and understanding capabilities of an external LLM.

C. Prompting Large Language Models for Visual Question
Answering

Reasoning and understanding capabilities of LLMs have
recently been used in VQA. Liang et al. [27] introduced
a novel approach for knowledge-based VQA that leverages
LLMs to actively and progressively gather visual information
in a task-oriented manner. This approach involves generating
initial hypotheses, collecting relevant visual evidence, and
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Fig. 1.

Overview of the GMC-VQA framework for zero-shot VQA. The Locator extracts relevant image patches, which are then captioned by the

Captioner. An iterative dialogue between the Question Generator and Question Responder generates auxiliary questions and answers for each patch to aid
in resolving the initial query. After each iteration, the Inferencer synthesizes the information and attempts to infer the answer with high confidence; if

unsuccessful, the process continues with additional iterations.

verifying these hypotheses through multiple rounds of rea-
soning. Lan et al. [6] presented a method to enhance zero-
shot VQA by leveraging reasoning question prompts. The
approach involves generating self-contained questions that
clarify the original ambiguous queries, enabling LLMs to
better understand and answer them. Img2LLLM [28] enables
frozen LLMs to perform zero-shot VQA by first extracting
candidate answers from image captions and then generat-
ing corresponding synthetic questions, along with question-
relevant captions, to construct effective prompts. LAMOC
[29] improves zero-shot VQA by training a captioning model
to generate task-aware image descriptions using feedback
from a frozen language model, enhancing its relevance to
the question and utility for answer prediction. Wang et al. [8]
enables LLM to proactively ask questions and gather more
detailed information about images. A refinement module
is then adopted to summarize the collected information,
allowing the LLM to predict the answer based on the
summarized data. IdealGPT [7] also leverages LLM-VLM
communication, introducing an iterative framework in which
an LLM asks supporting questions in multiple iterations,
and a pre-trained VLM responds to those questions con-
cerning the image. GMC-VQA also lies in communication-
based VLM-LLM frameworks. However, unlike the previous
methods, we enable our framework to concentrate on image
regions that are relevant to the given question by leveraging
image grounding and establishing an individual LLM-VLM
conversation for each region.

III. METHOD

A. Overview

In this section, we introduce GMC-VQA, a novel frame-
work for zero-shot VQA. The model is comprised of four key

modules: Locator, Question Generator, Question Responder
and Inferencer. Given the query image I and the question ¢, a
visual grounding model (Locator, Section [[II-B) is leveraged
to identify relevant patches in I pertaining to g. Then, an
iterative question-answering conversation is initiated between
a pre-trained LLM (Question Generator, Section and
a pre-trained VLM (Question Responder, [[II-D) to extract
grounded knowledge relevant to the ¢ for each patch. Finally,
a pre-trained LLM (Inferencer, Section [[II-E) synthesizes
the information from all patches to infer the answer to the
question g. The iterative conversation between the Question
Generator and Question Responder continues until the In-
ferencer can infer the answer to the initial question with
high confidence or until a predefined limit on the number of
iterations is reached. The framework is presented in Fig. [I]

B. Locator

In vqa tasks, the question ¢ pertaining to the query image
may often focus on specific regions rather than the entire
image. This specificity can pose challenges for the VQA
model in accurately associating the question with the relevant
parts of the image and providing an accurate answer. To
address this challenge, we employ a pre-trained open-set
visual grounding model as the Locator module. This module
receives ¢ and I as the input, associates ¢ with key object
regions of the image, and extracts the relevant patches. The
patches P = [p1; pe;...; px] are identified by the grounding
model L as:

P=L(I,q) ¢))

The number of extracted regions is dynamic, varying from
one sample to another. We also treat the original image as
an individual patch and append it to P.



C. Question Generator

LLMs have shown strong capability in following instruc-
tions and performing reasoning tasks [9], [10]. We harness
this capability to generate questions about each patch that
complements the original question ¢. These auxiliary ques-
tions are collected in multiple iterations through a communi-
cation with Question Responder and provide evidence for the
Inferencer module to answer the initial question q. For each
patch p; € P, we first utilize an image captioning model M
to generate a caption for p;:

ci = M(p;) 2

This caption serves as the preliminary information for
the patch presented to a pre-trained LLM, acting as the
Question Generator (G, along with the original question ¢ to
generate auxiliary questions that help gather supplementary
information for answering the original question. We also
present the auxiliary questions generated in the previous
interactions and their corresponding answers to the Question
Generator, to prevent it from generating repetitive questions
and aid in generating questions that complement the previous
ones. The questions for the patch p; in iteration ¢ are
generated as:

Qi(t) =G(q, ¢, Qi) Ai) 3)

where Q; and A; are the set of questions and their corre-
sponding answers for the patch p; from all previous itera-
tions. These sets are empty in the first iteration. Since some
patches may be less relevant to the initial question g, we ask
LLM to limit the number of generated questions in this case.

At the end of the iteration, Q; and A; are updated by
appending Q;® and A;" to them, respectively:

Qi+ QiUQM A« A UAY “4)

Where A;*) is the set of answers to the questions generated
in the iteration ¢. The answering process is presented in the
next section.

D. Question Responder

The Question Responder answers the auxiliary questions
,® generated by the Question Generator for the patch p;
in iteration t. We use a pre-trained VLM as the Question
Responder without any further fine-tuning. Each auxiliary
question ¢’ € ;™ is answered individually by the Question
Responder:

Qg = R(qlapi) ®)
E. Inferencer

We utilize the reasoning capabilities of pre-trained LLMs
to synthesize information from all patches and infer the
answer to the initial question g. At the end of each iteration,
the initial question q is presented alongside a collection of
information from each patch, formatted as [c;, Q;, .A;] for
i = 1,2,...,k + 1. Here, ¢; represents the caption for
the i-th patch, Q; denotes the generated auxiliary questions
related to that patch, and .A; contains their corresponding

Algorithm 1 Pipeline of the proposed method

Input: Query image I, the question ¢ and the maximum
iteration number mazx_iter

Output: Answer to ¢

P = L(I,q) {Locate the patches P = [p1;p2;...;px] in
image I relevant to the query ¢}
P «+ P UI {Append the initial image to set of patches}
C=1[192=11 A=1[] {Initialize captions, questions
and answers list}
for all p; in P do
¢; = M(p;) {Generate caption}
C+CuU C;
Q; =11, A; =[] {initialize patch-specific questions
and answers sets}
end for
t = 0 {Iteration number}
repeat
t=t+1
for all p; in P do
;'Y = G(q, ¢, Qi, A;) {Generate questions}
AW =11
for all ¢’ in Q;' do
aqy = R(q',p;) {Answer generated questions}
.Ait — Ait Uag
end for
Qi + Qi UQW A+ A U4
end for
a, Teaptain = F (¢, {[ci, Q, Ai}}fill) {Infer the answer
to ¢ and provide the inference process}
until ¢ == max_iter or a != "not sure’

answers. This aggregated information is then provided to a
pre-trained LLM designated as Inferencer F'. The module
is tasked with delivering the answer to the initial question
a if it is confident in its response, as well as detailing
the reasoning and inference process Tegpiqin based on the
supplied information:

a, Texplain = F <q7 {[Ci7 Qi’ Al]}f:ill) (6)

If Inferencer is uncertain about the answer and the pre-
defined iteration limit is not reached, the procedure continues
with a new iteration. The framework pipeline is summarized
in Algorithm [I]

IV. EXPERIMENTS AND EVALUATION
A. Experimental Setup

Datasets and experimental settings. We conduct ex-
periments on three VQA datasets, VQAv2 [30], OK-VQA
[31], and ST-VQA [32], covering diverse VQA challenges.
VQAV2 focuses on vision, language, and commonsense rea-
soning using COCO images, while OK-VQA extends this by
requiring external knowledge beyond the visuals. ST-VQA
focuses on understanding scene text and comprises images
from various sources like COCO-Text [33] and ICDAR2015
[34]. For each dataset, 2,000 samples were randomly selected



for zero-shot evaluation: validation and test sets for VQAv2
and OK-VQA, respectively, and the training set for ST-VQA
(which lacks labeled test data).

Implementation details. We employ Grounding DINO [35],
an open-set object detector, as the Locator module. For the
Question Responder, we utilize three practically deployable
vision-language models (VLMs): BLIP-2 (FlanT5-XL), In-
structBLIP (FlanT5-XL) (each with 3.4 billion parameters),
and LLaVA (LLaMA-2 7B) (7.3 billion parameters). The size
of the object detector is negligible compared to the VLMs,
comprising only 172 million parameters. In each experiment,
the same VLM used as the Question Responder also serves
as the Image Captioning model. For the Question Generator
and Inferencer, we primarily use GPT-40 mini due to its
affordability and strong performance. We also evaluate our
model with GPT-3.5-Turbo and three open-source LLMs:
Llama 2 13B, Mistral 7B Instruct v0.2, and Mixtral 8x7B
Instruct vO.1. In each experiment, the same LLM is used
for both generating questions and inference. All models in
our framework are pre-trained and used without further fine-
tuning. The temperature of all LLMs is set to 0 to ensure
reproducibility. Following IdealGPT [7], four questions are
generated and asked per iteration, with the maximum number
of iterations maz;ter fixed at four for all experiments. The
base prompts for GMC-VQA are adapted from [7] and
modified to fit our framework. All experiments are conducted
on a machine equipped with an NVIDIA RTX 3090 GPU.

Evaluation method. While exact string matching accuracy
has long been the primary metric for automatically evaluating
VQA models, this approach is no longer suitable due to the
recent shift in VQA research towards zero-shot transfer and
the increased diversity in the formats of generated answers
[36]. To address this limitation and inspired by the recent
success of LLMs as evaluators, referred to as LLM-as-a-
Judge [37], [38], we evaluate the accuracy of all approaches
using GPT-40 mini. Specifically, we assess whether a gen-
erated answer is semantically aligned with the ground truth
answer. We also request intermediate reasoning steps from
GPT 40 mini to further enhance evaluation reliability [39].

Comparable methods. In addition to comparing GMC-VQA
with off-the-shelf VLMs used for VQA, including BLIP-
2 (FlanT5-XL), InstructBLIP (FlanT5-XL), and LLaVA
(LLaMA-2 7B), we also evaluate it against IdealGPT [7],
which leverages VLM-LLM communication for zero-shot
VQA. The VLMs were chosen for their moderate size that
enables deployment on local machine. Additionally, these
VLMs are the same as ones used within our framework as the
Question Responder, ensuring fairness in our comparisons.
Furthermore, we maintain the same LLM/VLM configura-
tions for both our model and IdealGPT across experiments
to further ensure a fair comparison

B. VQA Performance Comparison

We compare the zero-shot VQA accuracy of GMC-VQA
with baselines on VQAv2, OK-VQA and ST-VQA in Table
The results of our model and IdealGPT are reported
with GPT-40 mini as the LLM, and the VLM with the

TABLE I
ACCURACY COMPARISON BETWEEN GMC-VQA AND COMPETITORS ON
THREE VQA DATASETS.

Method \ VQAvV2 OK-VQA ST-VQA
LLaVA 50.5 44.65 24.1
BLIP-2 51.3 41.85 22.2
InstructBLIP 52.1 41.65 23.1
Ideal GPT 59.7 50.25 30
GMC-VQA 61.8 51.85 33.9

best accuracy from LLaVA, BLIP-2 and InstructBLIP. VLM-
specific results are presented in the next section.

As demonstrated, the proposed model consistently outper-
forms all baseline VLMs across the three datasets. Moreover,
it surpasses the IdealGpt by an average margin of 2.52%. The
performance gap between the LLM-VLM communication-
based models and the VLM baselines underscores the value
of integrating LLMs with VLMs. Moreover, the proposed
model’s superior performance relative to the IdealGPT high-
lights the efficacy of grounding in enhancing overall perfor-
mance.

C. Performance Comparison with ldealGPT: Effect of VLM
Variation

We evaluated GMC-VQA with different VLMs and com-
pared it to Ideal GPT, a communication-based framework, as
shown in Table In all experiments, GPT-40 Mini was
used as the LLM. GMC-VQA achieved the best accuracy on
VQAvV2 and OK-VQA when paired with InstructBLIP, likely
due to its ability to handle complex questions and reason over
image content. On ST-VQA, however, BLIP-2 performed
better, as this dataset focuses heavily on text recognition and
interpretation. In this case, the Locator identified relevant
regions, while the VLM primarily handled text extraction.

Across all three datasets, GMC-VQA consistently outper-
formed IdealGPT, with accuracy improvements of 2.43%,
1.98%, and 6.25% on VQAv2, OK-VQA, and ST-VQA,
respectively. The larger improvement on ST-VQA highlights
the importance of precise region grounding and accurate text
understanding, areas where Ideal GPT struggles compared to
GMC-VQA'’s region-based approach.

D. Performance Comparison with IdealGPT: Effect of LLM
Variation

We evaluated GMC-VQA with various commercial and
open-source LLMs, including GPT-40 Mini, ChatGPT, Mis-
tral 7B Instruct v0.2, Mixtral 8x7B Instruct v0.1, and Llama
2 (13B), and compared its performance to IdealGPT (Table
[). Given the considerably better results achieved with GPT-
40 Mini and ChatGPT, we focused on reporting results for all
LLMs with BLIP-2, while results for LLaVA and Instruct-
BLIP are shown only with GPT-40 Mini and ChatGPT.

Across all tested LLMs, GMC-VQA consistently outper-
formed Ideal GPT, which can be attributed to its region-based
LLM-VLM communication. The best overall performance
was achieved using GPT-40 Mini, demonstrating its strong
capabilities despite being a cost-effective option. While com-
mercial LLMs like GPT-40 Mini and ChatGPT delivered



TABLE 11
PERFORMANCE COMPARISON BETWEEN GMC-VQA AND IDEALGPT USING VARIOUS VLMS AND GPT-40 MINI AS LLM.

VLM VQAV2 OK-VQA ST-VQA
IdealGPT  GMC-VQA | IdealGPT GMC-VQA | IdealGPT GMC-VQA
LLavA 548 56.35 196 50.75 30 BI5
BLIP-2 55.65 59.3 46.6 49.8 22.65 339
InstructBLIP 59.7 61.8 50.25 51.85 26.1 3045
TABLE III

PERFORMANCE COMPARISON OF GMC-VQA AND IDEALGPT ACROSS VARIOUS LLMS. RESULTS FOR LLAVA AND INSTRUCTBLIP ARE SHOWN
ONLY WITH CHATGPT AND GPT-40 MINI, AS THESE LLMS OUTPERFORMED OTHERS WHEN USED WITH BLIP-2.

VQAV2 OKVQA STVQA

VIM LIM IdealGPT  Ours | IdealGPT  Ours | IdealGPT  Ours
Mistral 78 Tnstruct v0.2 86 94 33 3995 | 20.1 274

Mixtral 8x7B Instruct vO0.1 46.95 48.95 43.35 41.3 194 28.7

BLIP-2 Llama 2 13b £ 474 | 388 3605 | 161 212
ChaiGPT 532 55 4635 418 214 3005

GPT-4o mini 5565 593 46.6 498 | 2265 339

LLava ChaiGPT 5095 5155 | 493 7 [ 2705 301
GPT-4o mini 548 5635 | 496 5075 30 33.15

oLy CHAGPT 554 571 B0 B8 | 2015 296
GPT-4o mini 597 618 | 5025 5185 | 261 3045
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caption: a sandwich on a tray with tomatoes, lettuce, and cheese
What type of vegetable is present in the image? Tomato and lettuce

What is the color of the vegetable? Green
What is the context or setting of the tray with the sandwich? in a

caption: a close up of a slice of tomato and cheese
What type of vegetable is present in the image? Tomato
What is the typical location where this vegetable is grown? in the garden

What other food items are included with the red vegetable? cheese

caption: two baseball players on a baseball field, with one running

Original answer: garden

Predicted answers
BLIP-2: in sandwiches InstructBLIP: tomato
LLaVA: sandwich IdealGPT: restaurant
GMC-VQA: In a garden

Explanation: The provided captions and auxiliary questions
consistently identify the red vegetable as a tomato, which
is confirmed across multiple patches of the image. The
context of the image is primarily centered around a
sandwich served in a restaurant setting. Additionally, one
of the captions mentions that tomatoes are typically
grown in gardens, which suggests a common location for
finding this vegetable. Therefore, based on the information
gathered, it can be inferred that the red vegetable, the

What number is written
on the black shirt?

towards the base and the other attempting to catch the ball

Auxiliary questions and answers:
What color is the shirt of the player running towards the base? white
What color is the shirt of the player attempting to catch the ball? black
What details can be seen on the black shirt? name and number

tomato, can be found in gardens.

Original answer: 28
Predicted answers

The player is about to throw

Auxiliary questions and answers:
What number is written on the black shirt? 28

larger image of a black and blue jersey
Auxiliary questions and answers:

Are there any name on the jersey? no

Fig. 2.

caption: a baseball player in a black shirt, with a baseball bat in his hand.

What other details can be seen on the shirt? The player's shirt features a number
What is the style or font of the number on the shirt? bold

caption: a black jersey with the number 28 on it. The image is part of a

BLIP-2: 2 InstructBLIP: 25
LLaVA: 20 IdealGPT: 25
GMC-VQA: 28

Explanation : One of the provided captions indicates that
there is a player wearing a black shirt, and one of the
captions specifically mentions that the black jersey has the
number 28 on it. This suggests that the number written on
the black shirt is indeed 28, as it is consistently referenced
across the patches. The details about the color and style
of the number further support this conclusion.

What is the significance of the number 282 The number 28 is a common number
Are there any numbers on the jersey besides 282 no

Qualitative examples of our GMC-VQA. GMC-VQA can effectively focus on important regions, extract relevant visual information from those

regions through a region-based conversation, and infer the final answer from the information collected from different patches.

the highest gains, GMC-VQA exhibited the most significant
improvements on VQAv2 and ST-VQA (2.18% and 6.73%,
respectively) compared to OK-VQA (0.6%). This highlights
the influence of dataset characteristics—OK-VQA requires
external knowledge beyond the image and benefits less from
region-based reasoning compared to the visually focused
VQAV2 and text-heavy ST-VQA datasets.

E. Qualitative Examples

To illustrate how GMC-VQA performs in zero-shot VQA,
we present two examples in Fig. with one from OK-
VQA (top) and the other from ST-VQA (bottom). Both
examples demonstrate how GMC-VQA effectively processes
image regions in just one iteration of question-answering
communication.

In the first example, the image shows a sandwich with
tomato, lettuce, and cheese, and the question asks, "Where
can this red vegetable be found?” The Locator identifies a

patch highlighting a tomato slice in the sandwich. During
the conversation, while the full image provides a distracting
context ("in a restaurant”), the patch-specific communication
focuses on the tomato, inferring its growing location as “in
a garden.” Unlike other models that failed to answer cor-
rectly, GMC-VQA integrates region-specific insights, even
leveraging complementary decisions from multiple patches
when some information is inaccurate.

In the second example, two baseball players are pictured,
one in a black shirt and the other in white, with the
question asking for the number displayed on the black shirt.
Competing models fail to locate the target region and identify
the text simultaneously. In contrast, GMC-VQA successfully
extracts the relevant patch of the black shirt, allowing the
pre-trained VLM to provide the correct number during the
region-based communication.

These examples demonstrate GMC-VQA’s ability to focus
on critical regions, extract relevant information, and combine



Question: Is it Irvine Center Dr or Ave?
Ground truth answer: Dr

Generated answer: Irvine Center Drive.
Answers matched: yes

Verification process: The predicted answer
"Irvine  Center Drive" includes the
abbreviation "Dr" as part of the full name,

Question: What are the beds in this photo
used for?

Ground truth answer: hospital

Generated answer: The beds in this photo
are used for sleeping or accommodation.
Answers matched: no

Verification process: The predicted answer
specifies that the beds are used for sleeping

or accommodation, which is a general use,
while the ground truth answer indicates a
specific context (hospital). Therefore, the
predicted answer does not match the
ground truth answer.

which corresponds to the ground truth
answer "Dr." Therefore, the essential
information is consistent.

Fig. 3. Examples of performance evaluation using GPT-40 Mini, illustrating
its ability to accurately match VQA model answers with ground truth and
provide a detailed verification process.

insights to produce precise, context-aware answers.

F. Performance Analysis

We analyzed GMC-VQA’s performance to understand the
kinds of questions it answers correctly compared to Ideal GPT
and to identify cases where errors persist. Unlike Ideal GPT,
which relies solely on the entire image for its question-
answering dialogue, GMC-VQA primarily addresses errors
related to questions that require attention to specific parts of
the image. We found that when multiple objects are present,
the VLM struggles to provide accurate answers to questions
that ask for detailed information about a specific object or
part of the image. As a result, IdealGPT often has difficulty
generating precise responses.

However, there are specific cases where GMC-VQA fails
to correct the errors present in IdealGPT. For instance,
when the Locator is unable to extract any patches, our
model defaults to a question-answering process based on
the entire image, similar to IdealGPT. Consequently, the
answer will depend on information from the whole image,
leaving the error unresolved. This often happens when the
original question does not refer to a specific object in the
image, making it impossible for the grounding model to
identify any relevant objects. For example, the question ”Is
this in America?” does not point to a particular object, so
the Locator cannot extract any relevant patches.

G. Validating LLM Performance in VQA Accuracy Assess-
ment

We used GPT-40 Mini to assess model accuracy in zero-
shot VQA task. Since this is the same LLM employed in
our model, we conducted a manual validation to investigate
potential evaluation bias. Specifically, we randomly selected
100 samples from each dataset, using InstructBLIP as the
VLM and GPT-40 Mini as the LLM, and manually reviewed
the evaluation results. Our analysis revealed that GPT-40
Mini demonstrates human-level performance as an evaluator
for VQA: for VQAV2 and ST-VQA, there were no discrepan-
cies between the model’s and human judgments, while only
one partial mismatch was found in OK-VQA’s validation set.
These findings confirm the reliability of GPT-40 Mini for
automatic evaluation and highlight its strong reasoning and
comprehension capabilities. Example evaluations are shown

in Fig.

TABLE IV
IMPACT OF VARYING NOISE LEVELS ON GMC-VQA ACCURACY,
DEMONSTRATING THE ROLE OF BOUNDING BOX PRECISION IN THE
LOCATOR MODULE’S PERFORMANCE.

Noise level | VQAv2  OK-VQA  ST-VQA

0 618 51.85 30.45

0.2 61.5 51.05 295

0.5 60.75 50.9 27.6

0.8 59.25 50.4 25.95
TABLE V

AVERAGE NUMBER OF ITERATIONS PER QUESTION USING GMC-VQA,
WITH 95% CONFIDENCE INTERVALS. GPT-40 MINI IS USED AS LLM.

VLM |  VQAV2 OKVQA STVQA

LLaVA 1.21 £0.02 1.14 £0.02 1.37 £ 0.03
BLIP-2 1.36 £ 003 142+ 004 1.81 £ 0.05
InstructBLIP | 1.51 & 0.04 1.56 &£ 0.09  1.96 + 0.05

H. Locator Sensetivity Analysis

To examine GMC-VQA’s sensitivity to patches identified
by the Locator, we conducted experiments introducing con-
trolled noise into the bounding box coordinates. Noise was
generated as a randomized adjustment proportional to the
bounding box dimensions, drawn from a uniform distribution
over (—1,1) and scaled by a noise level parameter. The
modified coordinates were clamped to remain within image
boundaries, and degenerate boxes (e.g., collapsing into a line
or point) were discarded.

Table[[V]summarizes the results. As noise levels increased,
the model’s accuracy declined slightly, underscoring the
importance of precise grounding. However, the performance
drop remained small in most cases, as the model can still
utilize partially accurate patches. Additionally, GMC-VQA
leverages the original image as a fallback source of informa-
tion, enabling it to maintain a baseline level of performance
even when patches are noisy or imprecise.

1. Experiment on Number of Iterations

We report the average number of iterations used to answer
each question using GMC-VQA on each dataset with 95%
confidence interval in Table [Vl While the maximum iteration
number max_iter is set to 4 in all our experiments, we can
understand from the averages and confidence intervals that
it is more than adequate for the majority of samples.

V. CONCLUSION

In this paper, we introduced Grounded Multi-modal Con-
versation for Zero-shot Visual Question Answering (GMC-
VQA), a framework that effectively combines the strengths
of VLMs and LLMs by initializing region-based conversa-
tions between VLM and LLM. By incorporating a grounding
mechanism, GMC-VQA enables the selective focus on rele-
vant image regions based on the semantics of the questions,
improving VQA performance. Experiments across three
VQA datasets demonstrated performance enhancements over
both traditional end-to-end VLMs and existing VLM-LLM
communication framework.
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