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Abstract— In many scenarios, human decisions are explained
based on some high-level concepts. In this work, we take a step
in the interpretability of neural networks by examining their
internal representation or neuron’s activations against concepts.
A concept is characterized by a set of samples that have specific
features in common. We propose a framework to check the
existence of a causal relationship between a concept (or its
negation) and task classes. While the previous methods focus
on the importance of a concept to a task class, we go further
and introduce four measures to quantitatively determine the
order of causality. Through experiments, we demonstrate the
effectiveness of the proposed method in explaining the rela-
tionship between a concept and the predictive behaviour of a
neural network.

I. INTRODUCTION

Applications of Machine Learning (ML) and Artificial
Intelligence (AI) as methods to help with automatic decision-
making have grown to the extent that it has raised concerns
about the trustworthiness of these methods. There have been
rules and regulations all around the world that organizations
should provide explanations for decisions made by their au-
tomated decision-making systems [1]. These concerns often
exist whenever the problem at hand is not fully understood,
explored or our knowledge of the problem is not complete.
Knowing the reasoning of machine learning methods may
also help with catching their unwanted behaviours by com-
paring the reasoning to experts’ understanding of problems.
On the other hand, explanations can be used to extract the
knowledge gained by these black boxes as well. Knowledge
extraction can help with a better understanding of the AI
view of the problem and the machine learning methods.

Neural networks as one of the most promising forms
of AI with high performance on classification problems
like ImageNet challenge [2], [3] have been criticized for
their black box decision-making process. One of the most
important questions asked about neural network’s decisions
is how a certain concept influences the internal representation
and eventually the output of the neural network. Here, a
concept is a representation of a feature and is defined by
a set of samples with that feature, against a random set [4].

Breaking down of the decision, output or task class of
a given pretrained neural network into high-level humanly
meaningful concepts presented in the input (post-hoc anal-
ysis) have been an active area of research in the past
few years. This process is done by inspecting the internal
representations or activations of the neural network. This
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approach may be called concept-based explanation of neural
networks. The training phase of the original network and the
explanation phase can be completely separate with different
datasets (one for task classes and one for concept classes)
and done by different parties. For instance, for predicting
the job title of a person from their image, the goal is to
determine whether having a clinic as an image’s background
or a stethoscope around the neck affects the prediction of
the job title to be a doctor. These methods do not require
concept labels and task labels to be from the same set of
samples. For example, the task of predicting the job title of
a person is doctor can be represented by a set of physician
images. But, the concept clinic may be represented by a set
of clinic images.

A. Nonlinear Concepts

Most concept-based methods often assume that a concept,
if present in an activation space, should be linearly sepa-
rable from non-concept samples [5], [4], [6], [7], [8]. This
assumption, however, does not necessarily hold, especially
in the earlier layers of a network where the learned features
are often not abstract enough to linearly separate concepts
[9] or in later layers when they fuse to form higher-level
concepts. This hinders these methods’ ability in tracking
the presence of a concept throughout the network. Another
limitation comes from the assumption that the gradient of a
section of a network with respect to the input is a good
representation of that section [4], [7]. Such a first-order
approximation might be misleading. This issue has been
extensively discussed for saliency maps –which are also
based on gradients approximations– and have been proven
misleading [10], [11].

In our method, we check the presence of a concept in a
layer’s activations by training a concept classifier –a network
with the same structure as the task classifier from that layer
onward but trained to detect the concept. The accuracy of
concept classification gives us a good understanding of the
importance and possible influence of the concept on a task
class. If in a particular layer, a concept cannot be detected by
the concept classifier, it is safe to say that the network cannot
recall the concept –i.e. the concept is forgotten (not neces-
sarily universally but to the capacity and power of the given
network). Such a conclusion can be made only if the concept
classifier shares the same structure as the task classifier
since the network structure is the upper limit for extraction
power of the network. Moreover, the concept classifier is
initialized by the weights of the network under inspection.
This initialization will reduce the number of concept samples
required for training the concept classifier. This particular
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choice of the concept classifier’s structure allows us to track
the concept information across the original network’s layers.
This initialization will reduce the number of concept samples
required for training the concept classifier. This particular
choice of the concept classifier’s structure allows us to track
the concept information across the original network’s layers.

B. Causality

Another shortcoming of the previous methods is that most
methods yield a score that captures the correlation between
concepts and output and cannot give any further details about
the nature of such a relation [5], [4], [7]. Following the
above example about job title classification from images, the
correlation between clinic background and being classified
as a doctor cannot answer the questions like do all images
classified as doctor have clinic background or all images with
clinic background are classified as doctors. This problem
is sometimes referred to as causality confusion. Note that
the goal is not to investigate causal relationships in the
training dataset. We aim to investigate the causal relationship
“learned” by a neural network.

Based on the trained concept classifier and the existing net-
work for task classification, we evaluate whether a concept
is necessary, sufficient, or irrelevant for a specific task class.
To avoid unnecessary assumptions like linear assumption or
first-order approximation, we use a distribution sample set
–i.e. a set of samples representing the distribution of data
manifold. This set is a representative of the likely inputs
of the network. Then we directly measure four relationship
scores based on the concept and target predictions for the
distribution sample set. The four measures will be extracted
in terms of causal expressions, showing whether a concept
causes a task class or vice-versa. Unlike the previous works
in [5], [7], which are limited to specific network structures
like convolutional layers, the proposed method can be applied
to a wide range of network structures.

Contributions of this work are as follows. We propose a
framework to capture the existence of a given concept in a
layer of a neural network without the linear assumption or
first-order approximation. We also propose a set of scores to
quantify the nature of the relationship between the concept
and the network decisions in the form of causal expressions.
We show practical applications of our method based on
several experiments. Through experiments, we also compare
our method with two existing methods, namely TCAV [4]
and IBD [7], in determining relationships of concepts and
tasks. The results show that our method succeeds in cases
previous methods fail.

II. RELATED WORK

TCAV works based on whether the gradient of the neural
network is in the direction of the concept. The direction
of the concept is defined as the direction orthogonal to
the linear classification decision boundary between concept
and non-concept samples. The TCAV score captures the
correlation between the network output and the concept and

lacks detailed information about the nature of the relation-
ship. Moreover, it assumes that concepts can be represented
linearly in the activations space, an assumption that does
not necessarily hold [9]. They also represent a section of
the network only by its gradient (first-order approximation),
which might be misleading. A similar approach has also been
explored in methods Net2Vec [12] and Network dissection
[5], but they assume that the concepts are aligned with single
neurons’s activation.

In another work, Interpretable Basis Decomposition for
visual explanation (IBD) [7], the authors tried to explain
the activations of a neural network by greedily decomposing
gradient into some concept directions. They use the resulting
decomposition as explanations for the image classification
task. One of the drawbacks of such an approach is its
linear assumption which comes from the usage of linear
decomposition of the gradient in the activation space. Using
greedy methods can also potentially result in inaccurate and
unstable results. Another limitation of the IBD method [7]
is that it can only explain convolutional layers and therefore
they had to modify the network that include dense layers.

The linear assumption indicates that a concept in hidden
layers corresponds to a vector and the representation of
data in each layer is a vector space. Such methods as-
sume that addition, subtraction, scalar product and inner
product (as projecting an activation to a concept vector)
operations in an activations space are always meaningful.
The linear assumption is originated in feature visualization
methods. Most feature visualization methods optimize for
inputs that maximally activate certain neurons or directions.
Early studies on neural network activation space tried to find
samples that maximally activate a single neuron to associate a
concept to the neuron. In [13] the authors argued that random
linear combinations of neurons may also correspond to
interpretable meaningful concepts. The general idea of using
a linear classifier to check the information of intermediate
layers originated in [14]. They proposed to use linear probes
– trainable linear classifiers independent of the network – to
get an insight into the network representations. In contrast
to what was mentioned in [13], in [5], [15] the authors
reported that the basis (each neuron) direction activation is
more often corresponding to a meaningful concept than just
random vectors. Still feature visualization methods, ignore
the distribution of the input data which results in inputs that
are not consistent with real samples.

Linear interaction of concepts has been even less studied
in feature visualization methods. In [15] the authors showed
in some cases the addition of two concepts’ activations
will result in inputs with both concepts present. But they
cast doubt on whether this finding is always true. Linear
assumption lacks enough evidence to be considered reliable
for being the basis of interpretability methods that try to gain
the trust of humans and justify neural network decisions.

Some other methods have tried to automatically discover
new concepts from neural networks, [16], [8], rather than
taking a concept as input. Though these methods can help
with cases that no principle exists for rational behaviour of



the network, in many cases, the experts have a good principle
about the problem at hand and the principle’s concepts are
predefined. For example for the prediction of a patient having
flu, medical experts know that fever is a symptom, and they
want to know exactly what is the relation between the fever
and patient being classified as having flu.

Our work relates to CACE [6] in that, both try to ad-
dress the shortcoming of TCAV [4] by capturing causal
expressions. The CACE method [6] measures the influence
of concept by the difference of conditional expected values.
This requires highly controllable datasets or very accurate
generative models that may not be available in practice.
Our method relates to works that define and train neural
networks with concept-based explanations in mind [9], [17],
[18], though our method explains existing pretrained neural
networks.

Our work relates to [19] in that both use a specific visual
method to examine the influence of different input features
on the output of a machine learning model. But our method
goes further and inspects the nature of the relationship and
quantifies these visualizations. We also consider high-level
concepts instead of raw input features.

In the next section, we will propose a framework for a
concept-based explanation for neural networks, which simul-
taneously addresses the linear assumption, first-order approx-
imation and causality confusion issues discussed above.

III. FRAMEWORK

A. Background

Logical expressions are usually expressed as a causality
clause in the mathematical notation form of A⇒ B. In this
notation, phenomenon A is the reason for the phenomenon
B and whenever A happens, B will follow.

In fundamental math, concepts are represented by sets. We
use the same representation to visualize the relation between
concept and task in a neural network. Members of a set are
samples that the corresponding feature is present, and not
being in the set means the feature is not present.

There can be several possible relations of the concept set
C to the task class set T . Each of these relations can also
be represented as a causality clause.
• Necessary: T ⊆ C (T ⇒ C).
• Sufficient: C ⊆ T (C ⇒ T ), reverse of necessary.
• Negative Necessary: C ∩ T = ∅ meaning C and T are

inconsistent (C ⇒ ¬T or T ⇒ ¬C).
• Negative Sufficient: C ∪ T = M meaning either C or

T or both should happen (¬C ⇒ T or ¬T ⇒ C). (M
is a set that contains all the elements).

B. Methodology

In our method, we base the explanations on a certain
layer’s activations and explain whether and how the concept
interacts with a task class based on the activations. We break
up the neural network into two sections, the section before
the hidden layer (f(x)) and the section after the hidden layer
(gw(z)). w denoted the trainable parameters of the second

section and the whole network can be expressed as gw(f(x))
(Figure 1c).

As shown in Figure 1, we only need two sets of samples
for our analysis. (1) Concept set labelled on the concept
information only (Figure 1a). (2) Distribution sample set,
without any labelling (Figure 1b). Note that access to the
original training task data is not required.

For the sake of explaining the proposed method, let us
consider a neural network trained on colour-coded hand-
written digits. In the training set, a unique colour was
assigned to each class, and samples within each class were
coloured accordingly. For instance, all 0’s in the training
set are red, and all 1’s are blue, etc. One would expect the
network decision to be influenced by the colour as well as
the digit itself. We aim to determine, how the concept, i.e.
red, influences the decision-making of this neural network.

The first step in our analysis is to check whether the
concept is present in the layer. We check if the second
section of the network has adequate power and capacity to
distinguish the concept set (colour red) in that layer. The
number of output neurons are adjusted to match the concept.

For representing the concept, a set of positive and negative
concept examples are used, in our case red samples against
other colours (Figure 1a). Then the concept classifier with
structure of the second section of the neural network is
trained (g(z)) to distinguish the concept from non-concept
activations. As a result, we will have two networks with iden-
tical structures but different parameters (w amd w′). gw(z)
is the task classifier, whereas gw′(z) is the concept classifier.
For learning gw′ , we initialize the trainable parameters of g
as w. Note that the parameters of the first section (f(x)) do
not change while w′ is learned.

Other than showing the concept is present and extractable
by the network, training another network with the same
structure gives us a way to generalize over concept samples.
And since now we have generalizable representations of both
task classes and concepts, we can proceed with our causal
analysis.

Checking if a set is a subset of another, can be easily
done by checking the definition. Since we cannot sample
every possible instance in our input space, we only check
the relationship on a distribution sample set (Figure 1b).
Note that this sample set is chosen randomly and it is not
specifically selected like prototyping methods [20]. The set
T is a subset of set C if every sample in T is also in C,
which is equivalent to C being a necessary condition for
T or T ⇒ C. Checking the negation of this definition is
much easier (just checking that no counter-example exists).
For this purpose, a scatterplot is generated by evaluating the
task classifier and concept classifier on distribution sample
set (each point in the scatterplot is a sample of the set)
(Figure 1d). A counter-example, in this case, is a sample
in C and not in T , equivalently the top left corner of the
scatterplot (e.g. a sampled classified as 0 and not red). Note
that the points of the scatter plots are only outputs of the
task classifier (gw(z)) and concept classifiers (gw′(z)) based
on the layer and are not necessarily close to true labels. This
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Fig. 1. (a) samples of positive and negative concepts, (b) distribution sample set, (c) representation of task class and concept in network, (d) analysis of
the relationship between the task class and concept showing the concept is a necessary condition for the task class.

is a positive point since we want to measure the relationship
based on network information and not the true labels.

Two observations support our choice for using the same
structure for the detection of concepts. First, if the concept
is present and the network is using it, the network has
to extract information using its structure so the network
structure should be able to detect it. Second, if the concept
is not detectable by the existing structure there is no way
of it being involved in the network decision. Of course,
if the network is not using the concept but it’s present in
the layer, the evaluation analysis will detect the concept not
being involved in task class decision making.

Though concepts like colour can be easily learned by
much simpler network structures, more complex concepts
like the presence of objects (a stethoscope) might not be
as simple to detect. Since this network is pre-trained (on
task classification), using it for simpler concepts is not a
restriction. Moreover, the structural coherence of the network
is kept intact. In other words, the limitations, powers and
local behaviour of the network (as initial parameters) are
considered in the detection of concept, keeping the convo-
lutional activations as convolution representations (with the
spatial information preserved).

C. Quantifying the Relationships

Since the concept classifier and task class are represented
by soft decisions (outputs of the two networks), we propose a
method to quantify the absence of counter-examples similar
to the ROC curve (see Figure 2).

Consider the fact that the logical expression C ⇒ T is
equivalent to C ∨ ¬T . For the expression to be true either
C or ¬T has to true. Assuming the threshold t for both
expressions and calculating ¬T by 1 − T , we get the fact
that the expression holds for any sample that is not in the F
section.

For better handling of imbalanced classes we use the
adapted F1 score instead of accuracy:

F1 =
2PR

P +R
. (1)

TN

TPF

t

t
concept

class

Fig. 2. The process of creating quantification curve for necessary score.

where P and R are adapted precision and recall defined as:

P =
TP

TP + F
, R =

TN

TN + F
. (2)

TP, TN and F denote the number of samples in the
corresponding part of Figure 2.

Based on the introduced parameters, for each threshold t,
an F1 score can be calculated. The measure of the strength
of a necessary relationship is then calculated as the area
under the F1 versus threshold curve (quantification curve).
Intuitively the strongest relationships in this measure, hold
with stronger accuracy for smaller thresholds t.

For simplicity here, we assumed that the threshold for C
and ¬T are equal, but in general, these thresholds can be
considered as threshold tC for C and threshold tT for T .
In that case, the quantitative curve will be a 3d surf (the F1
score vs. tC and tT ) and the volume under the curve should
be used as the measure of the strength of the relationship.

The four possible relationships mentioned above, respec-
tively, correspond to (1) bottom right, (2) top right, (3) top
left, (4) bottom left corners of the Figure 1d being empty.
Each of these relationships can logically be converted to
an OR (∨) expression and evaluated in the same manner
we evaluated the necessary relationship. A simpler way is
to logically convert them to a necessary evaluation and
quantified with the mentioned process. For instance C being



sufficient for T is equivalent to T being necessary for C.
The negation of concepts and tasks (¬C) is calculated by
just subtracting them from one, i.e. (1−C), so for negative
necessary measurement, we do the same calculation with the
negative of concept values.

For any of our experiments, we create four quantification
curves based on the scatterplot. We further use the Area
Under quantification Curve (AUC) to summarize each curve
into a real-valued score between 0 and 1. The area under the
curve is a good estimate of how strong the relationship is. For
instance, an area under the curve close to one is a very strong
relationship while an area of zero means there is no basis
for that relationship. In the next section, we demonstrate the
proposed methods over several experiments.

IV. EXPERIMENTS AND RESULTS

In this section, we explore the application of the proposed
method in the evaluation of the relationship of neural network
task classes and concepts in a controlled setting and a
real-world setting. The controlled settings explain neural
networks with alexnet structure and the real-world setting
explains a pretrained Resnet18. We compare our results with
TCAV [4] and IBD [7] methods as they are the most related
works to the proposed method.

We construct a dataset by adding a hint caption to two
classes of the ImageNet dataset [2], [3], namely class dog
and class cat. The hint is added as a white text on the
image (by changing the pixels of the image). So part of the
sample pixels has some extra information about the class.
We consider two scenarios: 1) The caption always reads the
same as the image. We call this dataset CaptionDataset1.
2) The caption is always a random word and hence does
not include any information about the classification task
(dogs vs. cats). We call this dataset CaptionDataset2. The
captions have random rotation and scaling associated with
them. Figure 3 shows two samples of the CaptionDataset1
images.

Fig. 3. Two samples from CaptionDataset1.

For generating the concept samples (caption concept), we
shuffled pixels of images (to wipe out the image information)
and then add a caption to the resulting shuffled image. This
technique makes sure that the concept is only present in these
samples and our representation of the concept is the most
accurate.

A. Analysis of Concept Influence

In this experiment, we show the effectiveness of the
proposed method in detecting the causal relationship between
a concept and task classes of neural networks. We train
a neural network on each of our datasets. The results for
CaptionDataset1 and CaptionDataset2 are shown in Figure
4. On the left side, it can be seen that the concept (caption
dog) was detected to have a 98% necessary relationship with
the class dog. The results for CaptionDataset2 are shown on
the right of Figure 4. It can be seen that there is no tangible
relationship between the dog class and the caption concept
i.e. the AUC of all four measures are small. This confirms
that the proposed method detects the causal relationship
between the concept and the task classification.

Fig. 4. Comparison of two networks with the same structure, trained on
CaptionDataset1 (left side), and CaptionDataset2 (right side). The area of
one under the necessary curve shows that the concept is necessary for the
task class. The values for each AUC are mentioned at the bottom of the
figure. These results are extracted from the last layers of a neural network
with an alexnet structure.

Now that we have established that the method can detect
the usefulness of the hints, from now on we only use the
CaptionDataset1.

B. Comparison with TCAV Method

In many methods, the directional derivation of a classifier
with respect to activations or input is considered a good
representation of the model’s local behaviour (first-order
approximation) [4], [7]. Here we demonstrate that this score
is not accurate. We test the score on a neural network trained
on our CaptionDataset1. We test the relationship between
the dog class and the caption cat. As we know, by design,



these two information are inconsistent in the training data,
–i.e. no training data have both. Figure 5 shows that the
proposed measures capture the negative relationship between
the class dog and the concept caption cat correctly –i.e. the
area under the negative necessary (green) curve is very close
to one. The third row of Figure 5 shows the distribution
of directional derivatives. Though the concept and class are
by design inconsistent, directional derivatives are positive
on all samples of distribution sample set, showing it is not
a reliable explanation. Distribution sample set (points that
the evaluations were done) consists of dog and cat images
with both dog and cat captions. To show that the linearity
of concept classifier does not change this, we repeated the
same experiment with linear concept classifier as well (right
side of 5).

Fig. 5. Results of the caption experiment for linear (right) and nonlinear
(left) concept classifiers show that directional derivative can be misleading
in both cases. scatterplot (first row). Quantification curve (second row).
Distribution of directional derivative (third row).

C. Comparision with IBD method
Since the IBD method [7] is limited to convolutional

networks, in this experiment we change our method to be
comparable to IBD. By limiting the proposed method, the
concept highlighting as suggested by IBD can be achieved
in a similar manner.

We examine the last hidden layer of a Resnet18 trained
on the Places365 dataset [21] – a dataset where each class

is a place. This network was the benchmark of the IBD
method. We use the same set of concept classifiers they
trained (with the parameters they provided). We use 10,000
samples from the places365 validation set without their labels
as the distribution sample set. Our concepts come from the
same dataset IBD method used as their benchmark, Broden
[5] – a dataset with segmentation annotations. For a better
comparison, we use only use the concepts originally used in
the IBD benchmark.

class M Concepts
topiary P plant, hedge, tree, brush, flower, bush, sculpture
garden I hedge, brush, tail, palm, flower, sheep, sculpture
cross- P crswlk, road, sidewalk, post, container, strtlght, trfc lght
walk I crosswalk, minibike, pole, rim, porch, cntrl resrv, van

indoor P pedestal, sales booth, shop, case, bag, bulletin board, food
market I sales bth, pedestal, food, fluorescent, shop, shops, apparel
soccer P grass, pitch, grandstand, court, person, post, goal
field I pitch, field, cage, ice rink, tennis court, grass, tel booth

forest P tree, bush, trunk, cactus, brush, fire, leaves
I tree, trunk, bush, leaves, semidesert, grid, clouds

shoe P shoe, bottle, shelf, box, gym shoe, boot, bag
shop I shoe, gym shoe, hndbg, hat, catwalk, shop win, minibike

butte P mountain, hill, desert, badlands, rock, valley, land
I hill, badlands, desert, cliff, cloud, mountain, diffusor

canyon P mountain, rock, cliff, hill, badlands, land, desert
I cliff, mountain, badlands, desert, pond, bumper, hill

coast P sea, sand, land, embankment, rock, mountain, water
I sea, wave, land, mountain pass, sand, cliff, cloud

creek P bush, river, rock, land, cliff, tree, earth
I river, waterfall, land, pond, leaf, ice, fire

TABLE I
EXPLANATIONS OF PLACES365 CLASSES USING PROPOSED METHOD

AND IBD METHOD. HIGHLIGHTED CONCEPTS WERE CONSIDERED

IRRELAVANT TO CLASS BY MAJORITY OF 3 ANNOTATORS.

This experiment is designed to find the most important
concepts for classifying each class of the Places365 dataset.
For each concept, a concept classifier is trained, and then
each task class (a class of Places365) is examined against
each concept. The necessary scores of concepts for each task
class are sorted and the highest values are reported as the
most necessary concepts for the class. The most necessary
concepts are then compared against IBD recommended con-
cepts, by decomposition of the decisions into concept space.
The top seven are reported for both methods. Then three
different annotators were asked to highlight concepts that are
not relevant to the class, their majority vote is considered as
irrelevant concepts (highlighted in the Table I). The concepts
are from left to right in decreasing importance score.

Examining the results of the experiment (by a majority
of three annotators), it is apparent that our method assigns
more reasonable values of necessary scores to the concepts
(compared to what IBD calculates based on its decompo-
sition process). For instance for their benchmark topiary
garden, in IBD’s top 7 concepts, IBD suggested tail and
sheep (among five others) which are irrelevant to the class
of topiary garden. On the other hand, our method suggests
plant and tree which are quite relevant concepts to the topiary
garden class. For soccer field class our method proposes



grass, pitch, grandstand, court, person, post and goal which
are all are relevant. But IBD suggests pitch, field, cage, ice
rink, tennis court, grass, and telephone booth. Among these
concepts, cage, ice rink, tennis court, and telephone booth
are irrelevant to the soccer field class (see Table I).

V. DISCUSSIONS

The distribution sample set, the set that represents the
distribution of likely inputs of the network plays an important
role in our analysis as all measure evaluations are based
on the samples of this set. Most methods that predict the
behaviour of the network need such sample sets, for instance,
TCAV [4] need samples from the task class.

The distribution sample set represents likely cases of input
and should be a good representation of the inputs that the
network will be tested on. The fact that distribution sample
set does not need any kind of labelling, enables us to use
any set of inputs like a held-out part of data or even inputs
recorded from other sources, as long as they are a good
representation of likely task classification inputs.

The choice of which layer to inspect is not a straightfor-
ward decision. Of course, the inspection of later layers is
computationally cheaper (since the training of the concept
classifier is cheaper). But there is no guarantee that the
concepts are still present in those layers since the network
might have traded them with higher levels of abstraction for
the task classification. For this reason, we start our analysis
from the last layer in the network and work our way back till
we reach a layer that the concept is present (classifiable with
good accuracy) or reach the first layer (which will guarantee
that the concept is too hard to be detected by the network).

VI. CONCLUSION

We proposed a framework for verifying the presence of
high-level concepts in the activations of the intermediate
layers of neural networks. We also determine the type or
nature of the causal relationship between a concept and
the neural network task classes by quantification of the
causal relationship between the task classes and the concept.
We showed the effectiveness of the proposed measurements
through several comparative experiments, demonstrating im-
proved performance compared with previous methods.
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