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Abstract— The objective of a continuous authentication
system is to continuously monitor the identity of subjects using
biometric systems. In this paper, we proposed a novel feature
extraction and a unique continuous authentication strategy
and technique. We proposed One-Dimensional Multi-Resolution
Local Binary Patterns (1DMRLBP), an online feature extrac-
tion for one-dimensional signals. We also proposed a continu-
ous authentication system, which uses sequential sampling and
1DMRLBP feature extraction. This system adaptively updates
decision thresholds and sample size during run-time. Unlike
most other local binary patterns variants, 1DMRLBP accounts
for observations’ temporal changes and has a mechanism to
extract one feature vector that represents multiple observa-
tions. 1DMRLBP also accounts for quantization error, tolerates
noise, and extracts local and global signal morphology. This
paper examined electrocardiogram signals. When 1DMRLBP
was applied on the University of Toronto database (UofTDB)
1,012 single session subjects database, an equal error rate
(EER) of 7.89% was achieved in comparison to 12.30% from
a state-of-the-art work. Also, an EER of 10.10% was resulted
when 1DMRLBP was applied to UofTDB 82 multiple sessions
database. Experiments showed that using 1DMRLBP improved
EER by 15% when compared with a biometric system based on
raw time-samples. Finally, when 1DMRLBP was implemented
with sequential sampling to achieve a continuous authentication
system, 0.39% false rejection rate and 1.57% false acceptance
rate were achieved.

Index Terms— Biometrics, continuous authentication, pattern
recognition, electrocardiogram, local binary patterns.

I. INTRODUCTION

PASSWORD is an intuitive approach to prevent unautho-
rized subjects from accessing a specific media. Usually

after logging-in to a system with a password, the system
would either be logged-in until the user logs-out, or the system
logs-out the user after a ‘grace period’ of inactivity. Several
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gaps exist in such authentication process. Some scenarios
illustrating the gap include: an intruder is able to access the
system in the absence of the genuine user if the system is
accessed within the session’s grace period, and an intruder
with the user’s password is capable of accessing the system
at any given time. As a result of these issues, research in
continuous authentication (hereafter CA) systems has emerged.
CA is referred to the task of continuously authenticating users
while flagging intruders who attempt to access the system.
There are several applications where CA can be utilized as
a safeguard, such as computers [3], aircraft cockpits [4],
cellphones, machines operating, cars, and other applications.

One stage towards achieving a robust CA system is
by replacing the traditional authentication access methods
(e.g. passwords and tokens) with biometrics, the field of
study that models people’s identity using their physical or
behavioral traits [5]. For a CA system, it is desired to have
a biometric system that does not require the cooperation
of the subject (passive biometrics), cannot be spoofed, and
available to all living human beings. Medical signals are
viable candidates for such biometric systems. Some medical
signals, namely Electromyogram (EMG) [6], muscle signal;
Electrocardiogram (ECG) [7], heart electrical activities; and
Electroencephalogram (EEG) [8], brain electrical signals were
used as biometrics in the last decade. ECG is widely used and
studied worldwide to diagnose heart problems, and it can be
an inexpensive system to deploy.

ECG is recorded by attaching sensors to the body. This
method of acquisition makes ECG biometrics superior to
several other biometric systems where acquiring the biometric
signal may distract the user. For example, face recognition,
the user may need to look at the camera; fingerprint recogni-
tion, the user may need to swipe his/her finger; and speaker
recognition, the user needs to speak. Another feature of ECG
signal is that the signal is quasi-periodic; hence, observations
are continuously available.

CA systems decide whether a subject is a genuine or an
intruder subject by examining a pool of a classifier’s outputs
collected from several observations. Each classifier is fed by
an observation, heartbeat in this paper; or a representation of
the observation, feature extraction; and it outputs a decision
confidence value (hereafter confidence). The class, genuine or
intruder, on which an observation belongs to is decided based
on the classifier confidence. In statistics, including machine
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learning, the term garbage-in garbage-out is well understood,
undesired output is produced when an unrepresentative input is
supplied. Therefore, having undiscriminating features that do
not have small intraclass variation and large interclass variation
among subjects jeopardize the CA system performance.

Many challenges are encountered while processing ECG
signal as biometrics. There are several sources for signal
artifacts that interfere with ECG acquisition. EMG interference
is an electrical signal due to muscles contractions. Power
line interference, on the other hand, interferes at 50Hz or
60Hz. Furthermore, due to respiration, a baseline wander of
0.15-0.30Hz [9] interferes with ECG signals. Also, con-
tact noise affects the signal in the range from 1-10Hz.
Another challenge is dealing with observations collection
speed. ECG signal usually has a period frequency of
1-1.5 heartbeat/second. It is a slow signal if compared to
another type of biometric system such as video face recogni-
tion that may stream at a rate of 30 frames/second. As a result,
in a specific time-frame, significantly less number of obser-
vations are collected from ECG signal than from a video of
faces. The challenge here is that if we require 100 observations
to train a classifier, then we need around 3 minutes of ECG
signal data acquisition, which may not be possible. Similar
issue persists when the biometric system makes a decision
from observations. Therefore, designing an ECG biometric
system requires a system that can make a reliable decision
using small sample size. Finally, ECG signal variates due to
physiological and psychological changes, and it changes due
to activity, diet [7], diseases, positions of the electrodes [10],
and other factors. Proper techniques and feature selections are
usually applied to overcome these challenges.

It is desired to design a robust ECG biometric system
that can detect and flag intruders continuously. We propose
One Dimensional Multi-Resolution Local Binary Patterns,
1DMRLBP. These features are inspired by the image based
Local Binary Patterns (LBP) [11], yet they are modified and
enhanced to be applicable to 1D signals; to tolerate quantiza-
tion error and noise, in particular, noise that causes shifting and
scaling of ECG signal, and noise due to signal segmentation
misalignment; to preserve ECG heartbeats morphology; and
to account for ECG signal temporal variations through an
extraction mechanism. Furthermore, 1DMRLBP features type
is an online feature extraction in a sense that it can be applied
in real-life scenarios, and it depends on past observations only.
A conventional method to implement a CA system is that
the designer pre-allocates a segment size that corresponds to
the number of confidences the CA needs in order to make
a decision. The designer also pre-sets decision thresholds to
decide on the class of the subject from each segment of con-
fidences. In this work, we propose a novel method that allows
us not to pre-allocate segment size and decision thresholds.
This contribution uses sequential sampling to achieve a CA
system that utilizes 1DMRLBP features properties. Together,
1DMRLBP and sequential sampling, constructs a CA system
that dynamically adjusts segment size and decision thresholds
while the biometric system keeps collecting input data.

This paper is organized as follows: Section II reviews
literature in ECG biometrics and in CA. Section III presents

Fig. 1. ECG signal illustrating the main characteristic points.

filtration, classification, and the proposed 1DMRLBP and CA.
Section IV describes the examined databases and the method
of evaluation. Section V provides experiments and results.
Section VI concludes this work. Lastly, the Appendix section
compares the proposed feature extraction to other related
feature types from the literature.

II. LITERATURE REVIEW

This section presents the state of the art for 1) ECG signals
as a biometric system and 2) CA systems.

A. ECG as Biometrics

One of the earliest works that examined ECG for biometric
systems dates back to 1977 [12]. However, the need for
biometric systems using biomedical signal did not catch much
attention until the millennium [13]. In general, healthy ECG
heartbeat has six characteristic or fiducial points, namely P,
Q, R, S, T, and U. These points are illustrated in Figure 1.
Based on these fiducial points, two mainstreams of ECG
analyses have been proposed in the literature: fiducial and non-
fiducial points based approaches. ECG heartbeats are isolated
from ECG signals then aligned together to have a persistent
feature extraction. Most of the techniques, whether they are
fiducial or non-fiducial points based approaches, perform
heartbeat isolation and alignment. Some exceptions exist such
as the works in [14]–[16]. In fiducial points based approaches,
features are extracted from fiducial points. Features can be
distances between points, angles, areas, amplitudes, etc. One
of the most pertinent works to this paper in the fiducial
points based approach is in [17] because it deploys sequential
sampling to make verification biometric decision. Multiple
filtration stages were used as a first stage. Nine attributes
extracted from fiducial points were considered as the fea-
tures. These features were modeled as a multivariate Gaussian
distribution. Decisions were made using sequential sampling
criterion examining the claimed identity (null hypothesis) and
the closest imposter identity (alternative hypothesis). Since
non-fiducial points based approach is used in this paper, it
is reviewed in more details.

Non-fiducial points based analysis technique is a holistic
approach that considers the ECG signal or the isolated ECG
heartbeat as a whole. Non-fiducial points based analysis can
be further subdivided into two mainstreams: an approach that
isolates and/or aligns the data as in [18] and [19] while the
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other approach does not require any information about the
signal as in [14], [16], and [20].

The approach in [21] applied Lyapunov exponents spec-
trum and correlation to capture the indexes of chaotic ECG
signal. The research in [18] and [19] applied Discrete Wavelet
Transform (DWT) directly to the raw ECG signal. The work
in [22] detected and aligned P, QRS, and T waveforms then
used wavelet distance measure for classification. While all
mentioned techniques require heartbeat segmentation and/or
alignment, the research in [16] is one of the earliest methods
that does not require any information about ECG heartbeats.
The authors acknowledged that there is no definitive and
universally accepted rule about the onset and offset of an ECG
heartbeat. In [16], auto-correlation (AC) was calculated on a
window size of more than the duration of one heartbeat. The
method in [23] is oriented in the same direction as [16]. Lastly,
Ensemble Empirical Mode Decomposition (EEMD) in [24]
was utilized for ECG biometrics.

B. Continuous Authentication (CA)

There are few papers on CA and ECG biometrics together.
The work in [25] extracted QRS waveform from ECG signals
and applied cross-correlation. Afterwards, several decision
making strategies were experimented including median, mean,
75th percentile, 90th percentile, 95th percentile, and max to
obtain a single classification decision. The segment size, which
is the number of samples (observations) needed to make a
decision, was pre-determined. In [26], the research was fiducial
based approach. It extracted 24 features from ECG heartbeats,
used Mahalanobis distance for classification, then applied
majority voting to make decisions on collected predefined size
of observations.

The work presented in [14] used autocorrelation on an ECG
signal then applied Linear Discriminative Analysis (LDA) for
classification. Majority voting was used for decision making
and continuous authentication. The research paper [27] applied
a string matching technique based on Ziv-Merhav (ZM) cross-
parsing [28]. In their CA system, the authors continuously
updated the genuine subject model once a positive authenti-
cation occurred. These are papers that use both ECG and CA
together.

Nevertheless, CA was examined for other biometric traits,
especially keyboard keystroke and mouse movement, among
others. The work in [29] examined mouse movement with
different strategies and settings including static and dynamic
trust model, fusion, and score boosting algorithms. In [30],
mouse movements were examined as well. Neural Network
was applied for classification, and sequential sampling was
examined for CA. In [31], one class detector including
Nearest-Neighbor detector, Support Vector Machine (SVM),
and Neural Network were used. Segment size, in this case
authentication time, was also pre-determined, and it showed
that the longer the authentication period the higher the
accuracy.

On the other hand, for keyboard CA systems, the work
in [32] was trained by making users type predefined and
frequently used words to generate a model. The algorithm was

Fig. 2. Proposed CA system diagram.

based on word by word decision. The score was compared to
predefined thresholds, and a decision was made accordingly.
Furthermore, a work similar to the work in [29] was applied
to keystroke biometrics in [33]. The authors in [33] suggested
a method to reduce the needed sample size by predicting a
future desired probability from a smaller sample size.

Most, if not all, of the mentioned literature in ECG biomet-
rics extract a feature vector for each observation independently,
and these works do not consider the possible temporal changes
among consecutive observations. Hence, a fusion and decision
making stages are incorporated to make an identity decision
from these observations. The literature of CA either uses multi-
modal biometrics or require a pre-set segment size (sample
size or number of observations) and decision thresholds. These
techniques cannot be used to achieve the objective of this
paper, which is a CA system that does not require decision
making strategy or fusion, and does not need a pre-set segment
size and decision thresholds. For comparison purposes, we
compared 1DMRLBP feature extraction to the AC/LDA [14]
state-of-the-art work. On the other hand, for CA, the work
in [30] by Ahmad et al. if adapted for ECG biometrics would
be the closest study to compare our method to. Therefore it
was adapted. Also, another comparison to state-of-the-art CA
system by Labati et al. [25] was conducted.

III. METHODOLOGY

To develop an ECG biometric CA system that is highly
accurate, and can adaptively decide on the number of observa-
tions and accept/reject decision thresholds, this paper proposes
a unique CA strategy and technique by using sequential
sampling and 1DMRLBP features.

This paper also proposes 1DMRLBP that can be effectively
utilized with sequential sampling. 1DMRLBP is fast to extract,
extracts ECG discriminative features, extracts observations
temporal variation, and has the capability to transfer n ECG
heartbeats into 1 feature-space vector using a merging mech-
anism. 1DMRLBP is classified using Bootstrap Aggregating
(bagging) [34]. After classification, sequential sampling assists
in constructing a CA system and decides whether to make a
final identity decision or to ask for more observations. Figure 2
illustrates the overall system design.

A. Preprocessing Stage

ECG signal spans the frequencies between 0.05-40Hz [23].
Other works claim that ECG signal spans useful frequen-
cies up to 100Hz [9]. Similar to [23] and [35], a fourth
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order band-pass Butterworth filter with cutoff frequencies of
1-40Hz was applied. With this filter, baseline wander and
higher frequencies of power line interference were reduced.

Heartbeats were isolated and aligned based on their R peaks.
Pan-Tompkins procedure [36] was used for this task. The
isolated heartbeat was 1 second duration and was centered
at the R peak. Several works, including [37]–[39], align ECG
heartbeats based on R peaks.

B. Feature Extraction

1DMRLBP feature extraction is an adaptation, a modifica-
tion, and an advancement of the two dimensional image based
Local Binary Patterns (LBP) [11] to suit one dimensional (1D)
ECG signals. We first introduce background research about
works that attempted transferring LBP features into One
Dimensional Local Binary Patterns (1DLBP) features then we
propose 1DMRLBP.

1) Review of One Dimensional Local Binary Pat-
terns (1DLBP): Work to apply LBP for 1D signal was
proposed in [40]. Other studies have also applied the work
of [40] for 1D signal as in [41] and [42]. In [41], the authors
utilized 1DLBP on a 1D signal; however, the authors in [42]
applied 1DLBP to 2D images after projecting the images into
1D space. The work in [40] extracts binary patterns (BP) of
time-sample x(t) as:

B P(x(t)) =
p−1∑

i=0

sign(x(t + i − p)− x(t))2i

+ sign(x(t + i + 1)− x(t))2i+p (1)

Where t is the time index of the heartbeat, p is the number
of points (time-samples) to be considered on each side of
x(t), and x(t) is the time-sample that 1DLBP is desired to
be extracted for. Also, sign(.) is defined as the following:

sign(x) =
{

1 if x ≥ 0

0 otherwi se
(2)

All proposed 1DLBP features in [40]–[42] used one specific
BP resolution. The 1DLBP feature vector is the distribution
of these BP values.

2) One Dimensional Mutli-Resolution Local Binary
Patterns (1DMRLBP): 1DMRLBP preserves texture of
multiple time domain signals in one feature vector. Like
1DLBP and LBP, 1DMRLBP captures and encodes the shape
of an ECG signal using binary patterns. Unlike 1DLBP, LBP,
and most of their variations in the literature, 1DMRLBP
extracts a feature vector that captures temporal changes of
observations, and it has a mechanism to merge n time domain
heartbeats into 1 feature vector such that:

1DM RL B P(x(t)) : {x(t) ∈ R
k×n , 1DM RL B P(.) ∈ Z

m}
(3)

where n is number of heartbeat samples, k is dimensionality
of a time domain heartbeat sample, and m is the dimen-
sionality of a feature vector. Subsequent sections, in partic-
ular Algorithm 1, explains the transformation mechanism of
Equation (3) that changes n observations into 1 feature vector.

Fig. 3. Multi-resolution BP with d = 4, p = 5.

Extracting 1DMRLBP is a low computational complexity
operation; hence, it can be implemented in low power devices.
The features and properties of 1DMRLBP are:

a) 1DMRLBP accounts for quantization error:
In 2D images, pixel values have a known range (e.g. [0,...,255]
in the case of gray scale image); hence, Equation (2) per-
forms well when used. In such case, the influence of step
size is known (i.e. the difference between two consecutive
levels is numerical 1 with a maximum difference of 255).
In ECG signal, however, that’s not the case, and this is an
issue. Despite quantization level for the acquisition instrument
could be known, the highest peak of the ECG signal stays
unknown. Consequently, Equation (2) might not be adequate
to capture the morphology of an ECG signal. Equation (2)
is modified by adding a leeway in binary patterns extraction
to accommodate such issue. A parameter, ε, is included in
Equation (4) to account for quantization error. Also, adding
this leeway reduces the influence of ripples (noise) on ECG
signals.

sign(x) =
{

1 if x + ε ≥ 0

0 otherwi se
(4)

b) 1DMRLBP captures multiple resolutions: Unlike
1DLBP in [40] and [42], 1DMRLBP does not capture texture
based on fixed number of points only. It considers different
distances, d , and points, p, where d is how far from the desired
time-sample, x(t), the features start to get extracted, and p is
how many time-samples are considered for 1DMRLBP feature
extraction from each side. Figure 3 demonstrates the multi-
resolution concept.

B P(x(t)) =
p−1∑

i=0

sign(x(t + i − p − d + 1)− x(t))2i

+ sign(x(t + i + d)− x(t))2i+p (5)

Where sign(.) is as in Equation (4). B P(x(t)) is assigned
to a value of zero when its parameters require information that
is out of boundaries. It becomes out of boundaries when t+i+
d > k, where k is the heartbeat length, and when t+i < p+d .
From Figure 3, with different p and d , multiple resolutions can
be captured for the same time-sample. Such structure retrieves
more signal characteristics than single resolution. Up to this
point of the discussion, the 1DMRLBP as in [1] does not have
the capability to capture the changes occur to ECG signal over
time.
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Algorithm 1 1DMRLBP Feature Extraction

Data: XXX ∈ Z
k×n , binary patterns for n observations

�, windows shifting steps, w, windows sizes
Result: xxx ∈ Z

m×1, 1DMRLBP
Start with first observation i = 1, first window j = 1,
and an empty feature vector of the 1DMRLBP=[ ];
Calculate l, number of windows, l = 1+ � k−w

� � ;
while j ≤ l do

Initiate Sj ← [ ] ;
while i ≤ n do

Sj ← wi, j , the j th window in the i th observation;
end
1DMRLBP j ← distribution of (Sj ) ;
Normalize 1DMRLBP j ;

end
return Concatenate (1DMRLBP j )

l
j=1 for all windows

c) 1DMRLBP considers temporal changes: In most vari-
ants of LBP, 1DLBP, and earlier stages of our work in [1],
a feature vector is extracted from every observation. How-
ever, this is not the case for this paper’s 1DMRLBP [2].
This paper’s 1DMRLBP accounts for observations’ temporal
deviation through an algorithm that extracts one feature vector.
This feature vector represents several consecutive observations
that may undergo temporal changes. The advantage of this
mechanism is that it results in one feature vector from multiple
time-domain observations, and this characteristic is crucial for
the CA system in this paper.

Some binary patterns works in the literature, especially
image based LBP variants such as [43], [44], and others,
have proposed extracting binary patterns features that capture
temporal changes. Comparison between such approaches and
the proposed 1DMRLBP is explained in Appendix VI.

1DMRLBP is desired to capture both local and global fea-
tures of a signal. Also, it is preferred to have tolerance towards
sparse noise and segments misalignment. Hence, similar to
other LBP variants, BP values distribution is calculated.

To extract 1DMRLBP feature vector from n observations,
first, BP is extracted for all n observations. Afterwards, we
pre-assign overlapping and/or non-overlapping windows. The
windows have two parameters, window size, w; and shift, �.
At last, we apply the feature extraction mechanism that we
propose in Algorithm 1 to extract one feature vector from n
observations.

From the algorithm, it can be deduced that 1DMRLBP
accounts for temporal changes of observations seamlessly
without applying sophisticated fusion methods. The temporal
changes extraction is achieved by modeling the distribution of
binary patterns for a specific window from several consecutive
observations. The result is always one feature vector. Since
the feature extraction is based on finding the binary patterns
distribution of each window over several observations, rather
than finding the distribution from every single observation,
then statistically this larger sample size leads to a more
descriptive model, hence, higher accuracy in 1DMRLBP based
biometric system. This is empirically proven in Section V-C.
Extracting features using different window sizes allow

Fig. 4. An example of some micro-texture patterns that 1DMRLBP features
capture.

1DMRLBP to capture both local and global features. Most, if
not all, LBP variants calculate binary patterns distribution for
each observation separately. This loses possible observations’
temporal changes and produces a less descriptive distribution
than 1DMRLBP because it is calculated from a smaller
number of samples (i.e. one observation).

Through the stages that lead to the extraction of 1DMRLBP
features, the discriminative power of this type of features is
constructed by two stages: first, BP encodes the micro-texture
of time-samples, x(t). Micro-textures can be thought of as
a template. The micro-textures have 2p patterns, and they
capture edges, flat areas, or special pattern as in Figure 4.
Second, frequency of these patterns from local and global
windows within the same observation, and frequency of the
patterns through multiple observations emphasize on specific
patterns of a subject, thus, increase 1DMRLBP discriminative
power.

d) 1DMRLBP achieves robustness towards noise:
Throughout the explained sections on the parts that comprise
1DMRLBP features, theoretically, these features can tolerate
noise due to their method of extraction. Apart from quantiza-
tion error, noise that causes shifting and scaling of the signal,
signal segmentation misalignment, and other noise that may
defect some heartbeats are other issues that 1DMRLBP can
tolerate. Similar concept to [11], we capture micro-texture
patterns, M , revolving around each time-sample, x(t), and
we do that by calculating the joint distribution of the micro-
texture patterns, m, for all p points in the 1DMRLBP. Let
k = 1− p − d , then we have

M(x(t)) = m(x(t), x(t + k), x(t + 1+ k), . . . ,

x(t + p − 1+ k)) (6)

Shift invariance is achieved by subtracting the time-sample,
x(t), from neighboring time-samples. So the distribution
becomes:

M(x(t)) = m(x(t), x(t + k)− x(t), x(t + 1+ k)− x(t), . . . ,

x(t + p − 1+ k)− x(t)) (7)

We assume the term x(t) as carrying just the level or the
average value of the micro-texture of that time-sample and no
micro-texture information. So it is independent of the terms
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x(t + i + k), where i ∈ 0, 1, . . . , p − 1. Therefore, we can
factor it out [11]. As a result, the distribution becomes:

M(x(t)) = m(x(t))m(x(t + k)− x(t), . . . ,

x(t + 1+ k)− x(t), x(t + p − 1+ k)− x(t))

(8)

Next, M(x(t)) is approximated by omitting the independent
term m(x(t)). The micro-texture of x(t), M(x(t)), is:

M(x(t)) ≈ m(x(t + k)− x(t), x(t + 1+ k)− x(t), . . . ,

x(t + p − 1+ k)− x(t)) (9)

Despite the fact that the distribution is approximated, doing
so achieves shift invariant features. To construct scaling
invariant features, Equation (4) is applied to every term in
Equation (9). With the explained steps thus far, 1DMRLBP
features are invariant to noise that causes shifting and scaling,
and it can tolerate quantization error.

The micro-texture, M(x(t)), has a binary value, which is
encoded into a decimal value. This is the binary pattern,
BP, of a sample. Instead of classifying each BP by itself
as in [45], we applied histogram on overlapping and/or non-
overlapping windows. Histogram does not only capture mor-
phological information, but it eliminates spatial information,
hence, reduces misalignment error that may arise due to noise
interference or signal segmentation error. Lastly, we capture
the distribution of multiple observations using Algorithm 1.
Such step captures temporal variation among ECG signals and
reduces the effect of abnormal ECG heartbeats that may appear
between normal heartbeats.

To summarize 1DMRLBP contributions and properties:
• Unknown signal amplitude, quantization error, shifting,

scaling, and misalignment issues are tolerated.
• To extract 1DMRLBP, four parameters are needed

d, p, w and �.
• Different combinations of d and p capture different

feature-space resolutions.
• 1DMRLBP has a mechanism to extract temporal changes

from observations, and it captures local and global mor-
phological features. These properties along with sequen-
tial sampling construct the CA system proposed in this
paper.

C. Classification

There are several classification methods in the literature,
and bagging [34] is one of them. In a nutshell, bagging
is a machine learning technique that generates weak classi-
fiers/predictors. The aggregated average of weak classifiers
makes a decision. We used bagging in particular because we
observed an unstable classifier prediction when we examined
ECG heartbeats data. It is unstable in a sense that slight
change in the training data led to a significant change in
the construction of the classifier and a significant change in
accuracy. Bagging usually reduces this issue [34]. Comparison
to other classifiers, SVM [46] and single decision tree, are
presented in Section V-A.1.

Suppose a training dataset, L, is populated with data
{yn, xn, n = 1, . . . , N}, where y is the data class and x is the

input data. From these samples, bagging generates multiple
bootstrap samples, L(B), from L. For each L(B), it finds a
predictor, φ(x,L(B)), that predicts the class, y. Bootstrapping
samples, L(B), are constructed by drawing N samples with
replacement from L. The predictor used in this paper is simple
decision tree. The final decision on the class is made by voting.

D. Sequential Sampling

Conventionally, CA systems use a predefined number of
observations along with a pre-set decision threshold to make a
positive (authenticate) decision or a negative (reject) decision.
Setting the number of observations and decision threshold
parameters has a trade-off between accuracy and time. Hence,
a method that can avoid setting these parameters is desired.
For such purpose we examined sequential sampling [47].

Sequential sampling is a statistical approach that follows
criteria to accept a hypothesis, reject a hypothesis, or ask for
more samples to decide. In a similar manner, we use sequential
sampling for ECG signal CA system such that the three criteria
are: authenticate region, reject region, and continue region.
Along with these criteria, we propose using “segments”. The
onset of the first segment is on the first observation tested
while the offset is when a decision is made. The second
segment onsets on the first observation after the offset of the
previous segment, and so on. The temporal information for
observations are extracted using 1DMRLBP for the duration
of each segment only.

During operation, when authenticate region criterion is met
(positive authentication), it means a genuine person is provid-
ing his/her signal. Hence, CA system ends the current segment
and initiates another one. On the other hand, when reject
region criterion is met (negative authentication), it means an
imposter (intruder) has provided his/her signal. Therefore, CA
ends the segment and flags the signal provider as an intruder.
Lastly, when CA is in continue region, it means a bigger
sample size is needed. Figure 10 illustrates real-life continuous
authentication system in action using sequential sampling.
It shows 14 segments where each segment has its criterion
getting updated progressively as the segment’s sample size
increases. Figure 10 also shows the segment re-initialization
once a criterion is met. The upper lines represent the minimum
classification confidence to accept a sample while the lower
lines represent the minimum classification confidence in order
not to reject a sample. As the number of samples increases, the
acceptance and rejection thresholds change accordingly (upper
and lower lines in Figure 10, respectively). Unlike traditional
works, an acceptance/rejection threshold is not set.

The main advantage of sequential sampling is that it is opti-
mized to minimize the sample size needed to make a decision.
Sequential sampling has two alternative hypotheses where
each hypothesis is a one-sided hypothesis. When a sample
is not significantly different from both hypotheses, a decision
cannot be made and more observations are needed. Since a sin-
gle confidence value is needed to check significance from the
hypotheses, then the usefulness of the property of 1DMRLBP
that achieves one feature vector from multiple observations
becomes crucial in this stage. One of the sequential sampling
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Fig. 5. Genuine and imposter distances distributions.

conditions is that the data should be drawn from a binomial
distribution. The hypotheses for the sequential sampling are
constructed from two distributions: genuine confidences and
imposter confidences. Figure 5 illustrates the hypotheses.

The parameters that control the sequential sampling criteria
are: Type I error, α, Type II error, β; and the hypotheses means,
μ1, μ2 for the imposter and genuine scores distributions,
respectively. On segment onset, the alternative hypotheses are
set as in Equation (10) [48]:

H 1 : classification distance ≥ μ1

H 2 : classification distance ≤ μ2 (10)

Setting up α and β is setting up risks such that α corre-
sponds to the risk of rejecting H1 and accepting H2 while the
sample belongs to H1. Similarly, β corresponds to the risk of
rejecting H2 and accepting H1 while the sample is actually
from H2.

After setting up the hypotheses, the decision criteria need
to be updated based on the number of samples observed. The
criteria are represented by the parallel lines separating the
regions as seen in Figure 10. The equations for the lines are
as in Equation (11).

Upper Line (UL) : Y = bn + h1

Lower Line (LL) : Y = bn + h2 (11)

The slope, b, can be calculated as b = μ1+μ2
2 . The

y-intercept can be calculated from the following two equa-
tions [48]:

h1 = Bσ 2

μ1 − μ2
, h2 = Aσ 2

μ2 − μ1
(12)

Where A = log 1−α
β , and B = log 1−β

α . σ is the standard
deviation of the distances. To compute the decision up to
observation n, cn , and check whether it meets any of the
criteria then Equation (13) is used.

Cn =
n∑

1

c(n) (13)

c(n) is the classification confidence for 1DMRLBP feature
vector, which is calculated using Algorithm 1 for sample n.
It is worth mentioning that the wider the undecided area (the
area between the lines in Figure 10) the more aggressive the
criteria are. By aggressive we mean more observations are
needed to make a decision. The closer the means are in the

hypotheses, Figure 5, the more aggressive the criteria are.
Same concept applies to α and β such that the smaller the
number the more aggressive the criteria are.

IV. EXPERIMENTAL SET UP

Several databases are available for ECG analyses; however,
most of these databases are collected and dedicated for medical
applications. This section presents the examined databases
and lay down the method of evaluation used to examine the
proposed system.

A. University of Toronto Database (UofTDB)

This database was collected at the University of
Toronto [49]. It was collected in 6 sessions that spanned
a 6-month period. Not all subjects were involved in all 6
sessions. UofTDB was recorded from fingertips with single
lead. The sampling rate for the signal is 200Hz. This database
has 1,020 subjects. Out of the 1,020 subjects, 1,012 subjects
had come in the first session, 82 subjects had come twice,
and out of the 82 subjects, 43 subjects had come for the 6
sessions. For this paper, we considered single and multiple
sessions subjects, 1, 012 and 82 subjects, respectively.

We constructed the training and testing datasets as follows:
in the multiple sessions experiment, one session from each
subject was used as genuine training dataset and the other ses-
sion(s) for that subject were used as genuine testing dataset(s).
This was repeated for every session and every subject. In other
words, every session for every subject was once treated as
genuine training dataset and in other times as genuine testing
dataset. The other 81 multiple sessions subjects formed the
imposter testing dataset. The imposter training dataset to train
the classifier was randomly drawn from subjects that did not
belong to the 81 multiple sessions subjects. In single session
experiments, the first 80% of each subject’s heartbeats were
used as genuine training dataset while the other 20% were
used as genuine testing dataset. Subjects randomly drawn from
the other 1,011 subjects constructed imposter training dataset.
The other subjects that were not part of the imposter training
dataset created the imposter testing dataset.

Heartbeats from fingertips are susceptible to noise. In order
to remove outliers, Interquartile Range (IQR) [50] for R
peaks for ECG heartbeats was calculated. The heartbeats were
isolated as explained in Section III-A. Statistically, I Q R =
Q3 − Q1, where Q3 corresponds to 75th percentile while
Q1 corresponds to the 25th percentile. Outliers limits are
defined as:

Uoutlier = Q3 + 1.5× I Q R

Loutlier = Q1 − 1.5× I Q R (14)

Heartbeats with R peak amplitude greater than Uoutlier

or less than Loutlier were considered as outliers and were
removed.

B. PTB Database

A publicly available database called the PTB Diagnostic
ECG Database [51] was also used. This database was collected
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from healthy and non-healthy subjects and is usually used
for medical diagnosis. The non-healthy subjects suffer from
different heart related diseases. This database was recorded
using 12-lead ECG configuration and three Frank leads. Each
ECG signal is sampled at 1KHz. The database has 549 records
from 290 subjects. The database has 52 healthy subjects. Out
of the 52 subjects, 14 subjects have more than one recording.
Some of these multiple recordings are several years apart.
Heartbeats were isolated and healthy and non-healthy datasets
were constructed for experimentation.

C. Method of Evaluation

Performance Rate (P R), False Acceptance Rate (F AR),
False Rejection Rate (F RR), number of Genuine Observa-
tions (GO), number of Intruder Observations (I O), Receiver
Operating Characteristic (ROC) curve, and Equal Error
Rate (E E R), were the main measures used in this paper. Each
examined dataset has G + I samples, with G is being the
number of genuine samples (observations), and I is being the
number of imposter (intruder) samples.

We define number of true positive, nT P , as the number
of correctly classified genuine samples. Similarly, the number
of true negative, nT N , is defined as the number of correctly
classified imposter samples. Moreover, number of false pos-
itive, nF P , is the number of misclassified imposter samples
as genuine samples. Likewise, the number of false negative,
nF N , is the the number of misclassified genuine samples as
imposter samples. Following these definitions,

F AR = nF P

I
, F RR = 1− nT P

G
, P R = nT P + nT N

G + I
(15)

Despite the fact that P R might seem the most appeal-
ing quantity since it includes all measures, all quantities in
Equations (15) should be considered as P R would be mis-
leading when I	 G or I
 G.

GO is the average number of observations needed to reach a
decision in a CA segment when a genuine person is examined.
On the other hand, I O is the average number of observations
to reach a decision in a CA segment when an imposter person
is examined. Quantities similar to GO and I O were used and
reported in [29]. ROC curve measures the performance of a
system in different operating points. ROC curve plots F RR
versus F AR. Closely related is E E R. E E R is the error on
the operating point on which F AR = F RR.

Lastly, the terms training error and testing error are usually
used in machine learning literature. The term training error
is called on the error resulted when examining classifiers on
training set. However, testing error is called on the error
resulted when examining classifiers on testing set.

V. EXPERIMENTATION

A. 1DMRLBP as a Feature Extraction

The capability of using 1DMRLBP for ECG analysis was
examined on two databases for two different applications to
show that 1DMRLBP is not restricted for a single application
or a database. The applications are medical and biometrics

applications. In the medical application [1], classification of
healthy versus non-healthy ECG heartbeats were conducted on
the PTB database. For the biometrics application, 1DMRLBP
was examined on UofTDB for a verification biometric system.
A verification biometric system is a binary pattern recognition
problem where the output is to accept or reject a claimed
identity. A verification system was designed since it is a
required stage in a CA system which needs to verify the
identity of a person or to flag the person as an intruder.

1) Experiment on PTB Database for Medical Application:
In this experiment, 1,000 healthy ECG heartbeats and 1,000
non-healthy ECG heartbeats randomly selected from the data-
base were used to train classifiers. All 1DMRLBP feature
vectors were extracted as explained in Algorithm 1. The
number of observations in the algorithm was set to n = 1
because neither CA nor observation temporal consideration
were desired to be examined in this experiment. The classifiers
in Section III-C were deployed. By setting the operating
threshold of choosing between classes (healthy and non-
healthy) to 50%, the results are tabulated in Table I.

It can be observed that p was set to 4 in most cases in
Table I. The parameter p controls the number of histogram
bins for each window. Number of histogram bins is 22×p =
256 bins for each window. The reason to slightly lower results
when p = 5 is associated with the need for more training
data than that when p = 4 since p = 5 has a feature
vector of 10,240 features in comparison to 2,560 features
when p = 4. However, when we examined a smaller p
value, p = 2, the result did not change dramatically, but
the feature vector was significantly reduced to 160 features.
We used two sets of parameters throughout this work: d =
(100, 200), p = (4, 4),� = (100, 200),w = (500, 400), and
d = (100, 200), p = (2, 2),� = (100, 200),w = (500, 400).
These parameters are relative to ECG heartbeat length, k. They
can be presented as a proportion to k so they can be applicable
to other signals with different sampling rate. For example, PTB
heartbeats have 1,000 samples per heartbeat because the heart-
beat is sampled at 1KHz, and we considered each heartbeat
to span one second as explained in Section III-A. When d =
(100, 200), p = (4, 4),� = (100, 200),w = (500, 400), and
d = (100, 200), p = (2, 2),� = (100, 200),w = (500, 400),
the parameters can be expressed as d = (0.1×k, 0.2×k), p =
(4, 4),� = (0.1 × k, 0.2 × k),w = (0.50 × k, 0.4 × k), and
d = (0.1×k, 0.2×k), p = (2, 2),� = (0.1×k, 0.2×k),w =
(0.50× k, 0.4× k), respectively. As can be seen from Table I,
these parameters achieved the highest performance.

The following explains how the feature vector length of
2,560 was constructed. In case of d = 100, p = 4,� =
100, w = 500, we have 6 windows calculated using l = 1 +
� k−w

� �. Each window has 22×p = 256 bins. Windows’ feature
vectors are concatenated to have 6 × 256 = 1, 536 features.
Furthermore, in the next resolution when d = 200, p =
4,� = 200, w = 400, there are 4 windows with 256 features
for each window. All windows are concatenated to achieve
4 × 256 = 1, 024 features. The total is 2, 560 features per
feature vector.

It can be noticed from Table I that SVM has significantly
worse performance than bagging. SVM with Gaussian Radial
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TABLE I

1DMRLBP CAPABILITY TO CLASSIFY ECG HEARTBEATS. MULTIPLE RESOLUTIONS ARE READ RESPECTIVELY,
FOR EXAMPLE p = (4, 4) AND d = (100, 200) MEANS p = 4 AND d = 100, THEN AGAIN p = 4 AND d = 200

Basis Function (RBF) was used. Data over-fitting and bias
are some of the reasons that achieved the low performance
since training error for SVM was 0% while testing error was
significantly higher. Signal instability is another reason for the
bad performance of SVM. Bagging performance is in Table I.
The improvement of bagging over single decision tree was
also experimented. Its result is also reported in Table I. This
table clearly shows that bagging achieves better results than
SVM and single decision tree.

The effect of modification by adding the leeway parameter ε
in Equation (4) and the improvement due to the preprocessing
stage are also noted in Table I. When we extract BP, we
should consider that the ECG heartbeat might have some
noise, and we do not want the noise to affect the extraction.
Hence, we use Equation (4). This is an advantage over the
hard binary patterns extraction in most LBP feature variants
that are based on Equation (2). The value ε should not be
of a high value such that it can conceal signals features. We
chose ε of a value proportional to the standard deviation of the
examined signals; e.g. 10% of ECG signals standard deviation
was ≈ 0.001. Table I reports experiments with ε values of
0.001, 0.01, 0.02, and 0.05.

2) Experiment on UofTDB for Biometrics Application:
After examining 1DMRLBP’s capability to extract ECG dis-
criminative feature for medical application, it was experi-
mented for a verification biometrics application. First part of
this experiment examined 1DMRLBP parameters choice. It
was experimentally discovered that the best results among the
examined parameters were achieved using the same parameters
that resulted in the highest performances in Section V-A.1.
This experiment also showed that having different resolutions
affect the result, and this is plotted in Figure 6. In Figure 6,
the highest performing two sets of parameters achieved almost
identical accuracy; however, the set of parameters with p =
(2, 2) produced a feature vector of dimensions that is only
6.25% of that with the parameters using p = (4, 4).

Fig. 6. 1DMRLBP in a verification biometric system.

To prove the capability of 1DMRLBP to perform well for
biometrics purposes, two types of experiments were designed
for the task: one experiment used one session subjects in order
to utilize the whole database of 1,012 subjects, hence, ensure
scalability in lower variance in performance and compare
to state-of-the-art method that examined single session. The
other experiment considered subjects with multiple sessions
(82 subjects) to illustrate 1DMRLBP’s capability to be applied
in real-life situations and to avoid possible classifier bias. The
training and testing datasets are non-overlapping and their
construction is discussed in Section IV-A. Figure 6 reports
the ROC curves for 1,012 single session subjects biomet-
rics experiment. Multiple sessions experiment was conducted,
and its results was compared to single session experiment.
Figure 7 illustrates this result. After presenting that 1DMRLBP
performs well on multiple sessions database, the experiments
onward will be diverted back to single session to obtain a
robust results based on 1,012 subjects.

To summarize the outcomes of this experiment:
• 1DMRLBP is capable of extracting ECG heartbeat dis-

criminative features.
• Multi-resolution increased performance accuracy by 16%.
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Fig. 7. Multiple sessions versus single session experiment. EER for single
session is 7.89% and for multiple sessions is 10.10%.

• Ensemble classifier with decision tree achieved higher
accuracy than SVM and single decision tree.

• Preprocessing increased accuracy by 7% F RR, 5% F AR,
and 2% P R in comparison to the experiment without
preprocessing that had F RR = 24%, F AR = 28%,
P R = 73%.

• The modified sign(.) with ε = 0.001 in Equation (4)
improved the result by 12% F RR, 11% F AR and 7%
P R in comparison to the experiment that did not use ε
in the sign(.) which had F RR = 29%, F AR = 34%,
P R = 68%.

• 1DMRLBP can be applied for biometrics applications.
It achieved an E E R of 7.89% on 1,012 single session
database and an E E R of 10.10% on 82 multiple sessions
database.

B. 1DMRLBP Features Contribution to Accuracy

We desired to investigate whether 1DMRLBP feature type
has a substantial contribution in improving accuracy of a
biometric system, and it is not due to other factors only such as
the bagging classifier. Therefore, two biometric systems were
compared. In both systems, bagging classification was not
used, and Euclidean distance was utilized instead. One system
implemented 1DMRLBP features, and the other system used
same set of heartbeats but without 1DMRLBP, in other words
it used raw time-samples. The parameters in Section V-A.1
that yield 2,560 dimensions feature vector were used in the
biometric system that utilized 1DMRLBP features. The raw
time-samples has feature vectors of 200 samples. Principal
Component Analysis (PCA) with number of components that
achieved small performance variance across subjects in the
raw time-samples was selected. Ten components were cho-
sen. Same number of components was used for PCA with
1DMRLBP to have the same feature vector length as that
in raw time-samples after PCA projection. The advantage of
1DMRLBP is apparent from Table II with an improvement of
15% in E E R.

C. Capability and Advantage of Temporal
Variation Extraction

The 1DMRLBP feature extraction capability to cap-
ture observations’ temporal changes using the mechanism

TABLE II

1DMRLBP FEATURES CONTRIBUTION TO ACCURACY

Fig. 8. 1DMRLBP with consideration to temporal variation versus
1DMRLBP without consideration to temporal variation among observations.

explained in Algorithm 1 was compared to 1DMRLBP
where temporal variation extraction was not exploited i.e.
Algorithm 1 with n = 1.

When temporal changes were not considered, majority
voting decision-making scheme was deployed. No extra steps
were required when 1DMRLBP utilized temporal changes
extraction algorithm since the algorithm results in one feature
vector. Figure 8 illustrates the comparison. Such experiment
was conducted by fixing all other 1DMRLBP parameters. We
can conclude that capturing observations’ temporal changes
improve biometric system accuracy.

D. Comparison to State-of-the-Art-Work ECG Biometrics

We compared the implemented biometric verification
system to a state-of-the-art biometric verification system,
AC/LDA [14]. AC/LDA biometric system does not require
signal segmentation, and it uses autocorrelation (AC) as
features. It applies LDA. Lastly, it uses Euclidean distance
for classification. Figure 9 demonstrates the performance of
1DMRLBP using Algorithm 1 versus AC/LDA method.

Training to testing proportion of 80% to 20%, respectively,
was used for AC/LDA. In AC/LDA, majority voting was
used for the decision making while that was not needed for
1DMRLBP. For heartbeats outliers elimination, IQR elimina-
tion as explained in Section III-A was utilized in 1DMRLBP,
while autocorrelation coefficient based outlier removal was
used in AC/LDA. IQR outlier removal is not applicable to
AC/LDA since it requires the extraction of individual heart-
beats, but AC/LDA is not based on isolated heartbeats. E E R
was calculated to be 7.89% for 1DMRLBP while it was
calculated to be 12.30% for AC/LDA. From this experiment,
we deduce that a biometric system based on 1DMRLBP is
capable to outperform a state-of-the-art work.

E. Comparison to State-of-the-Art CA Systems and
Influence of Sequential Sampling Parameters

A CA system was implemented using sequential sam-
pling as explained in Section III-D. In the first experiment
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TABLE III

SEQUENTIAL SAMPLING PERFORMANCE WITH DIFFERENT PARAMETERS AND COMPARISON BETWEEN SEQUENTIAL SAMPLING WITH 1DMRLBP
FEATURES THAT CONSIDERS TEMPORAL VARIATION WITH 1DMRLBP THAT DOES NOT CONSIDER TEMPORAL VARIATION

Fig. 9. 1DMRLBP versus AC/LDA [14].

of this subsection, this paper’s CA system was examined
for biometric application on UofTDB and was compared
to other two CA systems of Ahmed and Traore [30] and
Labati et al. [25]. In the second experiment, we compared two
1DMRLBP based CA systems, one was based on 1DMRLBP
that extracted temporal variation and used sequential sampling
to one that was based on 1DMRLBP that did not deploy
temporal variation extraction [1] (i.e. n = 1 in Algorithm 1)
but still used sequential sampling. In the third experiment,
we added sequential sampling to AC/LDA state-of-the-art
ECG biometric features. The purpose of the first experiment
is to present performance improvement of this paper’s CA
system over state-of-the-art works. The purpose of the second
experiment is of three folds: first is to show that a system with
1DMRLBP with temporal variation extraction and sequential
sampling outperforms 1DMRLBP with no temporal variation
extraction but with sequential sampling. Also, to report and
conclude that adding sequential sampling improves biomet-
ric results over the system with no sequential sampling in
Section V-C; hence, sequential sampling purpose is not only
for continuous authentication. The last purpose is to show
that sequential sampling is applicable to 1DMRLBP that does
not extract temporal variation. In implementing sequential
sampling with AC/LDA in the third experiment, we desire to
illustrate that sequential sampling application is not restricted
to 1DMRLBP features and to reinforce that it adds biometrics

improvement when compared to the same system but without
sequential sampling.

Different parameters set up change the criterion of the
sequential sampling. The results in Table III present perfor-
mance with different parameters. These results were collected
by training a model for each subject. Afterwards, the model
was examined on all 1,012 database subjects, and F AR and
F RR were collected. It can be noticed from Table III as
how the F AR and F RR decrease as the sequential sampling
criteria become more aggressive. It is more aggressive in
a sense that the criteria are more difficult to meet. The
more aggressive the criteria are the larger sample size that
is required.

The choice of what parameters to use would be an appli-
cation dependent. A heartbeat can be acquired at a rate of
1-1.5 heartbeat/second. If CA7 in Table III is considered,
then around 30 observations are required to meet a criterion,
which translates to around 24 seconds of ECG acquisition in
comparison to 4 seconds in the case of CA1.

A state-of-the-art work of Ahmed and Traore [30] was one
of the systems we adapted for ECG biometrics and was com-
pared to the proposed CA system. In [30], proportion instead
of means were used in the construction of the sequential
sampling criteria. The equations for the criteria that separate
the three regions are [30]:

U pper Line = −h1 + sl × n

Lower Line = h2 + sl × n (16)

where, h1 = 1
g

[
log

(
1−α
β

)]
, h2 = 1

g

[
log

(
1−β
α

)]
,

g = log
[

p2(1−p1)
p1(1−p2)

]
, and sl = 1

g

[
log

(
1−p1
1−p2

)]
. p1 corre-

sponds to the maximum probability to flag an imposter, and
p2 denotes the minimum probability before authenticating
a genuine user. No hypothesis generation was needed, and
the criteria were generated using different p1 values while
setting p2 = 1 − p1 [30]. Table IV presents the results.
As it can be noticed from Table IV, changing p1, α, and β
influence the results. Ahmed and Traore [30] investigated these
parameters choice in depth. However, the same concept of
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TABLE IV

PERFORMANCE OF AHMED AND TRAORE [30] CA SYSTEM

criteria aggressiveness explained in Section III-D regarding the
width between the criteria lines applies to the work in [30].

By comparing Table III to Table IV, it can be noticed that
on a fixed value of α and β, the proposed CA consistently
achieved lower FRR and FAR, and it could reach a decision
with less number of observations. Furthermore on a closely
similar GO and I O values as in CA1 in Table III and
#1 in Table IV, the proposed CA outperformed Ahmed and
Traore [30]. Also, the minimum FAR and FRR reported
in our proposed method was not achievable in Ahmed and
Traore [30]. Hence, the proposed CA system performance
surpasses a state-of-the-art from all examined aspects.

Another comparison to a state-of-the-art approach by Labati
et al. [25] was conducted. The work in Labati et al. [25]
applied different fusion techniques such as mean, median,
75th percentile, 90th percentile, 95th percentile, and max on a
predefined number of observations. A system with 1DMRLBP
with n=1 as a feature extraction and bagging as a classier was
used in the experiment. The main purpose of this experiment
is to compare sequential sampling to fusion in implementing a
CA system. Table V presents the results for different segment
sizes.

In the work of Labati et al., we do not have a dynamic
number of GO and I O since a pre-determined number of
observations is used. If we take 5 observations for example,
then our approach achieved FRR of 1.13% and FAR of
8.11% (Table III) in comparison to an FRR of 3.93% and
FAR of 9.69% (Table V) using Labati et al. mean fusion
method. Similarly, other comparisons can be performed, and
we can conclude that using sequential sampling outperforms
the examined fusion methods.

Table III reveals that 1DMRLBP with temporal varia-
tion extraction consistently outperforms 1DMRLBP without
temporal variation extraction. Therefore, the improvement
achieved in considering 1DMRLBP in Section V-C propagates
even after adding a sequential sampling. We can conclude
that considering temporal variation enhances performance.
Furthermore, if we compare 1DMRLBP with sequential sam-
pling to same but without sequential sampling in both cases:
considering temporal variation extraction and not considering
temporal variation extraction, in other words compare Table III
with Figure 8, the improvement of biometric performance
after adding sequential sampling is apparent on both types
of features.

Lastly, sequential sampling is not applicable to 1DMRLBP
features only. Table VI presents the results when sequential
sampling was applied to AC/LDA features. Adding sequential
sampling also improved the performance of AC/LDA when
compared to the AC/LDA without sequential sampling in

Figure 9. On the other hand, comparing Table III versus
Table VI, we can conclude that 1DMRLBP with sequential
sampling outperforms AC/LDA with sequential sampling. For
a fair comparison, one needs to compare the experiments
where approximately same number of observations were used
to make a decision. It can be noticed that 1DMRLBP with
sequential sampling, whether we use n=1 or consider tem-
poral variation extraction, outperforms that of AC/LDA. One
important point to note while comparing the results is that
CA2 and CA3 in Table III are to be compared to CA3 and
CA4 in Table VI, respectively. The reason behind this is that
AC/LDA is based on distance measure while 1DMRLBP is
based on confidence measure. The smaller the distance the
higher the similarity while the higher the confidence the higher
the similarity to a class. As result, when we add a positive
number to μ1 (imposter mean) and subtract a positive number
from μ2 (genuine mean), we are making the means further
apart in the AC/LDA experiment. Hence, the criteria become
less aggressive. For this reason, CA4 in Table VI requires
less number of I O and GO than CA1. This is identical
to the scenario of adding a positive number to μ2 (genuine
mean) in 1DMRLBP and subtracting a positive number from
μ1 (imposter mean). Not all parameters in Table III could
be applied to AC/LDA because doing so required a number
of observations that exceeded the number of the database’s
subjects observations.

From these sequential sampling experiments, we conclude:
• Sequential sampling can be incorporated with 1DMRLBP

and other features to achieve a CA system.
• Sequential sampling parameters control the aggressive-

ness of the CA system.
• Sequential sampling, apart from its advantage in achiev-

ing a CA system, enhances biometric performance.
• The more aggressive the system is, the higher the accu-

racy yet the higher I O and GO.
• The mechanism of feature extraction in Algorithm 1

is essential to sequential sampling algorithm since it
results in only one feature vector from multiple obser-
vations; hence, no fusion or decision-making algorithms
are needed.

• The proposed CA system outperforms state-of-the-art CA
systems.

F. Continuous Authentication in Action

This experiment mimics CA operation in a real-life scenario.
In real-life, CA continuously examines segments. Every seg-
ment ends by making a decision. To simulate a scenario, we
constructed a lengthy stream of observations from different
subjects, and we trained a subject. The subject’s training
and testing data did not overlap. The subject we trained
was considered genuine while the others were considered
imposters. Figure 10 simulates a CA system in action.

For this experiment, CA1 in Table III was used. When
genuine observations were provided, authenticate criterion was
reached while when imposters observations were encountered
the reject criterion was met. Furthermore, in some segments,
noise interfered and that required a bigger sample size to make
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TABLE V

PERFORMANCE USING 1DMRLBP WITH N=1 USING CA METHODS IN LABATI et al. [25]

TABLE VI

SEQUENTIAL SAMPLING PERFORMANCE AC/LDA [14]

Fig. 10. A simulated CA performance. Each triangle corresponds to an
observation, and its value is Cn . The line that connects a set of triangles
represents the segment that was used to reach a decision. The upper and the
lower lines illustrate the decision threshold variations for that segment.

a decision. This is obvious from segment 4 and segment 8
in Figure 10. Also, these two segments lie at the boundaries
where imposter and genuine observations were mixed within
one segment, which is a possible real-life scenario.

We can conclude from this experiment that this CA system
can tolerate noise and can change sample size and decision
thresholds during run-time based on previous observations
confidences.

VI. CONCLUSION

A continuous authentication system that is capable of
monitoring subjects continuously and flag intruders was
presented. This system dynamically decides on the num-
ber of observations needed and adaptively sets the accep-
tance/rejection threshold to make a decision. Such capability
was achieved by proposing One Dimensional Multi-Resolution
Local Binary Patterns (1DMRLBP) features and utilizing

sequential sampling. 1DMRLBP extracts ECG heartbeats tem-
poral variation from several observations and constructs one
feature vector from them. Without this property, continuous
authentication system needs a fusion stage. Sequential sam-
pling is a statistical method that has two criteria on which
the result would be either to verify identity, reject identity, or
request more observations. Because of sequential sampling,
decision thresholds are not pre-set and are updated based on
the number of observations examined.

1DMRLBP was examined on two databases: PTB, for
medical applications; and UofTDB, for biometrics application.
The biometric system achieved E E R of 7.89% on UofTDB
1,012 single session subjects in comparison to 12.30% from a
state-of-the-art approach. It also resulted an E E R of 10.10%
in UofTDB 82 multiple sessions subjects. The continuous
authentication system successfully reported an FRR of 0.39%
and FAR of 1.57% with an average segment size of around
32 observations. If small number of observations is desired,
then it achieved 1.93% FRR and 9.68% FAR with an average
segment size of around 4 observations. The proposed continu-
ous authentication system showed superiority in performance
over the examined state-of-the-art works. With their properties,
1DMRLBP and sequential sampling each by itself or together
as a CA system can be deployed for other applications.

APPENDIX

REVIEW OF TEMPORAL AND SPATIAL LOCAL

BINARY PATTERNS

Several 2D LBP variants attempted extracting temporal
and spatial variation from observations. While they achieved
promising results in their designated applications, they are not
suitable for the application proposed in this paper. In [43],
the authors proposed Volume Local Binary Patterns (VLBP).
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VLBP feature type extracts LBP features for pixels from
three frames, and it gives different weight to each of the
three frames. From these frames, VLBP extracts features from
co-occurred pixels on three orthogonal planes. The resultant
histogram would be of a length of 3.2p bins, where p is
the number of points to consider around a desired pixel.
VLBP was proposed for offline applications (i.e. the entire
experimented database should be available beforehand). In
comparison to 1DMRLBP, 1DMRLBP extracts features with
any number of observations. It also constructs a constant
number of bins regardless of the number of observations it
is extracted from. Lastly, 1DMRLBP can be used for online
applications.

In [52], the authors acknowledged the long feature vector
of [43] and proposed a fix to that issue. They introduced
two techniques to reduce the number of bins, yet the issues
of being an offline approach and an approach that considers
only three frames persisted. First technique proposed to use
6 unique points from the three orthogonal planes. The second
method dealt with reducing the number of features by taking
the average value of orthogonal planes points.

The work in [44] proposed Spatio-Temporal Local Binary
Patterns (STLBP). This type of features is online and applica-
ble for real-time applications. For each pixel, it extracts the
binary patterns for that observation using its current neighbors,
then it extracts binary patterns from the same pixel location but
from different observations. The feature vector is compiled of
two histograms: one from the current observation and the other
is from the previous observation. Unlike [44], 1DMRLBP has
a smaller feature vector, models temporal progression over
any number of observations, and lastly, it holistically considers
progression of distribution of whole observation rather than for
single pixels. The work in [53] extracts spatial and temporal
LBP by prediction. It uses previous frames to predict the value
of a pixel in the current frame. It compares the predicted value
against the actual value and incorporates that value in the LBP
feature extraction method.
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