
Two-Dimensional Range Diameter Queries

Pooya Davoodi1, Michiel Smid2, and Freek van Walderveen1

1 MADALGO?, Department of Computer Science, Aarhus University, Denmark.
2 School of Computer Science, Carleton University, Ottawa, Canada.

Abstract. Given a set of n points in the plane, range diameter queries
ask for the furthest pair of points in a given axis-parallel rectangular
range. We provide evidence for the hardness of designing space-efficient
data structures that support range diameter queries by giving a reduction
from the set intersection problem. The difficulty of the latter problem
is widely acknowledged and is conjectured to require nearly quadratic
space in order to obtain constant query time, which is matched by known
data structures for both problems, up to polylogarithmic factors. We
strengthen the evidence by giving a lower bound for an important sub-
problem arising in solutions to the range diameter problem: computing
the diameter of two convex polygons, that are separated by a vertical line
and are preprocessed independently, requires almost linear time in the
number of vertices of the smaller polygon, no matter how much space is
used. We also show that range diameter queries can be answered much
more efficiently for the case of points in convex position by describing a
data structure of size O(n logn) that supports queries in O(logn) time.

1 Introduction

Measuring the extent of a set of points in the plane finds a variety of applications
in clustering, collision detection, shape-fitting, data mining, etc. [2, 6, 12, 16, 17].
For example in clustering algorithms, the diameter of a point set, the largest
distance between any pair of points, is used as a measure of the spread of points
in a cluster [4, 7]. On the other hand, computing aggregate functions on a subset
of points contained in a query range, that is range aggregate queries, is interesting
from the perspective of computational geometry and database applications, and
has attracted the attention of researchers from both research communities [1,
14, 15, 18, 23]. Examples of such range aggregate queries include reporting the
closest pair, furthest pair (diameter), width, and the radius of the minimum
enclosing disk of points contained in a rectangular range query [14, 15, 20]. In
this paper, we primarily study range diameter queries asking for the furthest
pair of points within a given rectangular range (see Figure 1). More formally, we
study the problem of preprocessing a set of points from R2 into a data structure
such that given an orthogonal range query, we can find the furthest pair of points
within the query range.

? Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.



range diameter

query range

Fig. 1. The answer to a range diameter query is a pair of points that are furthest away
in a given orthogonal range.

Unlike many other range queries (such as range counting, range reporting,
and range maximum), the diameter of a set of points is “holistic” in the sense
that it cannot be computed by dividing the point set into subsets, computing the
diameter for each subset, and then aggregating the diameters [14]. In fact, the
main difficulty in such a divide and conquer strategy is to combine the partial
results, that is, to find the diameter of two point sets. Storing the answers to
all such subproblems would yield constant query time per subproblem, but uses
at least quadratic space in total. We can reduce the amount of space as follows.
Let S1 and S2 be two disjoint subsets of the input point set, where |S1| ≤ |S2|.
We can find the largest distance between each point in S1 and all points in S2

in O(|S1| log |S2|) query time by using a furthest point Voronoi diagram of S2 to
find the furthest point in S2 for each of the points in S1 [15]. This data structure
requires only linear space per subset, but in case both sets are big a query will
take Ω(n log n) time per subproblem. The currently best known solution to the
range diameter problem stores the diameter for pairs of large subsets, while using
Voronoi diagrams for finding the diameter between other pairs of subsets [15].
This results in a trade-off with O((n+(n/k)2) log2 n) space and O(k log5 n) query
time, for a parameter k where 1 ≤ k ≤ n. Therefore, the holistic property of
the diameter raises the subject of space-efficiency of data structures supporting
range diameter queries, which is the subject of this paper.

Our Results. In Section 2, we investigate the hardness of range diameter queries
by observing that the disjointness of two sets among a collection of sets, namely
a set intersection query, can be verified using a range diameter query over a
suitable set of points (reducing set intersection queries to other problems has
been previously considered to study the hardness of approximate distance ora-
cles [10, 22]). Obtaining space-efficient data structures that support set intersec-
tion queries is known to be hard. A folklore conjecture states that, for m sets
of cardinality polylogarithmic in m, answering a set intersection query in O(1)
time requires an Ω̃(m2)-space data structure, and answering a set intersection
query in polylogarithmic time (but asymptotically smaller than the maximum
cardinality of the sets) requires Ω̃(m2−ε) space [22]. Our reduction in Section 2.1
implies that range diameter queries are as hard as set intersection queries in the



real RAM without the floor function. We conjecture that Ω̃((n/k)2) space is
required to answer range diameter queries in Õ(k) time. We use tilde notation
to hide polylogarithmic factors.

As previously mentioned, in answering range diameter queries using a divide
and conquer strategy, computing the diameter of two disjoint point sets arises
as a subproblem. In 1985, Edelsbrunner [11, Section 4] considered the related
problem of computing the diameter of two convex polygons that are separated
by a vertical line and are preprocessed independently. He showed that if each
polygon is represented as a list of vertices, then linear query time in the number
of vertices of the larger polygon is required. In Section 2.2, we show a cell probe
lower bound that is almost linear in the number of vertices of the smaller polygon,
no matter how much space and preprocessing time is spent. This lower bound
not only addresses an open problem mentioned by Edelsbrunner [11], but also
may be a step forward in proving our lower bound conjecture in Section 2.1 for
range diameter queries.

Our reduction from set intersection queries to range diameter queries is on
a hard instance of the problem consisting of a set of points placed on a linear
number of concentric circles, thus the set is not in convex position (see Fig. 2).
In Section 3, we show that range diameter queries can be answered much more
efficiently in case points are in convex position. In particular, we describe a data
structure that stores a set of n points in convex position using O(n log n) space
such that range diameter queries can be answered in O(log n) time.

The width of a set P of points in the plane is the minimum distance between
any two parallel lines `1 and `2 enclosing P , that is, P and `1 are on the same
side of `2, and P and `2 are on the same side of `1. In Section 3, we also sketch
how to adapt and extend the range diameter data structure to create a data
structure with the same space and query bounds for finding the width within
any given query range of a set of points in convex position.

2 Reduction from Set Intersection Queries

In this section, we provide support for the hardness of range diameter queries by
presenting a reduction from the set intersection problem. This reduction implies
a lower bound for range diameter queries based on a generalization of a folklore
conjecture for the set intersection problem. We finish this section by proving
a lower bound for determining the diameter of two convex polygons that are
separated by a vertical line. This problem usually arises as a subproblem in
answering range diameter queries. We conclude that this lower bound may be a
step forward in proving our conjecture for range diameter queries.

The set intersection problem is to preprocess m sets S1, S2, . . . , Sm of positive
real numbers into a data structure that supports set intersection queries asking
whether the sets Si and Sj are disjoint, for given query indices i and j. Let N
be the total number of elements in the sets, that is N =

∑m
i=1 |Si|.

Theorem 1. Given a data structure of size s(n) that supports range diameter
queries in t(n) time on any point set of size n in the plane, we can build a data



S3
S4

S2

S1

Fig. 2. Example of the reduction in Theorem 1. Each element e is shown as a line
y = ex, with points at the intersections with circle ci if and only if e ∈ Si. The
dashed query rectangle is used to report whether S3 and S4 intersect. As the diameter
(indicated by the dashed line) is less than r3 + r4, S3 ∩ S4 = ∅. Note that S2 ∩ S3 6= ∅.

structure of size s(2N) supporting set intersection queries in t(2N) time, for
input sets containing N elements in total.

Proof. Let S1, S2, . . . , Sm be a collection of sets, and recall that N =
∑m

i=1 |Si|.
We transform the sets into a point set of size 2N in the plane, and we show that
each set intersection query can be answered using a range diameter query.

Let ri = 2i−1 for i = 1, . . . ,m. We map each e ∈ Si to two points positioned
on the first and third quadrant of the circle ci with radius ri centered on (0, 0).
The positions are determined by the two intersection points of the line y = ex
with ci (see Fig. 2). Notice that for e ∈ Si and e ∈ Sj , the distance between
the corresponding points on the first quadrant of ci and the third quadrant of
cj is ri + rj . By the triangle inequality, for e ∈ Si and e′ ∈ Sj , where e 6= e′, the
distance between the point corresponding to e on the first quadrant of ci and
the point corresponding to e′ on the third quadrant of cj is less than ri + rj .
Therefore, to verify the disjointness of Si and Sj , we ask a range diameter query
over the rectangle with bottom-left point (−ri,−ri) and top-right point (rj , rj).
If the diameter of the points within this rectangle is ri+rj , then Si∩Sj 6= ∅, and
if the diameter is smaller than ri + rj , then Si ∩ Sj = ∅ (they are disjoint). ut

2.1 Conditional Lower Bound

We can naively solve the set intersection problem with O(1) query time using
O(m2) space by tabulating the answer of all queries. Cohen and Porat [10] pre-
sented a data structure of size O((N/k)2) that supports set intersection queries



in O(k logN) time, for a parameter k where 1 ≤ k ≤ N . They tabulate the
answers of queries where each query set has at least k elements. To verify the
disjointness of Si and Sj , if w.l.o.g. Si has less than k elements then they search
for each element of Si in Sj in logarithmic time (the query time can be im-
proved to O(k) using linear perfect hashing in the word RAM [9, 10]). Note that
this same approach was used in [15] to obtain the currently best known data
structure for range diameter queries that was mentioned in Section 1. Pǎtraşcu
and Roditty [22] mentioned a folklore conjecture stating that Ω̃(m2) space is
required to support set intersection queries in O(1) time, for a universe of size
polylogarithmic in m. They also strengthened the conjecture to polylogarithmic
query time (but asymptotically smaller than the maximum cardinality of the
sets) and a space lower bound of Ω(m2−ε) in the cell probe model. The follow-
ing is a generalized version of their conjecture, which would imply that the best
known upper bound of Cohen and Porat [10] is optimal up to polylogarithmic
factors.

Conjecture 1. Given a collection of m sets of N real numbers in total, where the
maximum cardinality of the sets is polylogarithmic in m, any real-RAM data
structure that supports set intersection queries in Õ(k) time without using the
floor function, requires Ω̃((N/k)2) space, for 1 ≤ k ≤ N .

From Theorem 1 and Conjecture 1, we conclude the following.

Theorem 2. Assuming Conjecture 1, any real-RAM data structure that sup-
ports range diameter queries on a set of n points from R2 in Õ(k) time without
using the floor function, requires Ω̃((n/k)2) space, for 1 ≤ k ≤ n.

Remark. In our reduction in Section 2, we transform a collection of sets into
a set of points which have exponentially large coordinates. As a result, lower
bounds for the set intersection problem imply lower bounds for range diameter
queries, only in a computational model where working with unbounded numbers
is allowed (like real RAM). An interesting open problem is giving a transforma-
tion algorithm in the word RAM, implying that cell probe lower bounds for the
set intersection problem also apply to range diameter queries.

2.2 Diameter of Two Convex Polygons

We prove a lower bound for the problem of representing two convex polygons P
and Q in the plane, that are separated by a vertical line (the preprocessing of
each polygon into its representation is oblivious to the other polygon), such that
we can determine the furthest pair of points in P ∪Q using the two representa-
tions. This problem often arises as a subproblem when answering range diameter
queries, in case we divide a query into disjoint subqueries and then combine the
answers of the subqueries. Our lower bound essentially shows that it is hard to
combine the answers of two subqueries if we do not store any information about
both subqueries together. This may be a step forward in proving Theorem 2
unconditionally.



In 1985 Edelsbrunner [11, Theorem 4.1] showed that if we represent a polygon
as a list of vertices, then Ω(|P | + |Q|) is a lower bound on the worst-case time
complexity of determining the diameter of P ∪Q. He raised the question of
determining the complexity of the problem for other representations of polygons.
We address this open problem by proving a lower bound of Ω̃(min{|P |, |Q|}) for
any representation of the polygons, derived by a reduction from the asymmetric
(lopsided) version of the set disjointness problem in communication complexity.
Our reduction is similar to the reduction from set disjointness to computing the
diameter of a planar point set [21]. The latter reduction implies a lower bound
of Ω(n log n) time to compute the diameter of a planar point set in the algebraic
computation tree model [21].

The asymmetric set disjointness problem in communication complexity is for
Alice and Bob to verify the disjointness of sets A and B, after Alice receives
A and Bob receives B, where A,B ⊆ [n], and |A| < |B| < n/2. It is known
that Alice and Bob need to communicate Ω(|A|) bits to determine whether the
sets are disjoint [19]. This lower bound implies that for any representation of
two given sets A and B, Ω̃(|A|) time is required to verify the disjointness of A
and B in the cell probe model. Now we use the latter lower bound to prove the
following.

Theorem 3. For any independent representation of two convex polygons P and
Q that are vertically separated, finding the furthest pair of points in P ∪ Q re-
quires Ω̃(min{|P |, |Q|}) time, in the cell probe model.

Proof. As previously mentioned, Ω̃(|A|) time is required to verify the disjointness
of A and B, for any representation of given sets A and B, where A,B ⊆ [n],
and |A| < |B| < n/2. We construct two vertically-separated point sets P and Q
corresponding to A and B respectively, and then we show that the disjointness
of A and B can be verified by finding the diameter of P ∪Q.

We map each element e ∈ A to a point positioned on the intersection point
of the line y = ex with the first quadrant of the unit circle. Similarly, we map
each element e ∈ B to a point positioned on the intersection point of the line
y = ex with the third quadrant of the unit circle. Hence, P has |A| points and
Q has |B| points. It is clear that there exists an element e belonging to both
A and B if and only if there exist a point p ∈ P and a point q ∈ Q such that
the distance between p and q is 2. We compute the diameter of P ∪ Q. If the
diameter is 2 then there is a common element in A and B, and otherwise (the
diameter is less than 2) A and B are disjoint. ut

3 Points in Convex Position

As it appears unlikely that we can get polylogarithmic query time when using
O(n2−ε) space for range diameter queries on sets of n points, we consider in this
section the case of sets of points in convex position. For this case we describe
data structures with polylogarithmic query time using near-linear space. The
precise bounds on space and query time depend on the choice of underlying



P

x1 x2

y2

y1

q

Fig. 3. Range diameter query on the vertices of a convex polygon. In this example,
the query range covers three disjoint sections. Predecessor (and successor) queries are
indicated by arrows. The white vertices are within the query range and determine the
sections of q ∩ P .

data structures. We also describe a data structure for the range width problem
with the same bounds.

Let a section of a convex polygon be a sequence of consecutive vertices of
that polygon. We first describe how to find the (at most four) disjoint sections
containing all the vertices covered by a query range (see Fig. 3). Second, we
show how to solve the problem of finding the furthest pair of points between two
given sections. For the description and analysis of our approach to answering
such section–section queries we review a characteristic of convex polygons called
modality and a derivative thereof that we use in our analysis. We show that
section–section queries can be answered efficiently using two data structures:
one storing the distances between a set of O(n) selected point pairs explicitly,
and one for answering point–section queries, a special case of section–section
queries in which one section contains only one point.

3.1 Reduction to Section–Section Queries

The following lemma is easy to prove using predecessor data structures (Fig. 3).

Lemma 1. A convex polygon P = (p1, p2, . . . , pn) can be preprocessed to obtain
a linear-space data structure for finding the at most four sections of P intersect-
ing a given query range q = [x1 : x2]× [y1 : y2] in O(log n) time.

Let Sa be the sequence of points in the ath section of q ∩ P . The diameter
of the points in q ∩ P can be found by taking the maximum of all point pair
distances in all pairs of sections: maxa,b{maxp∈Sa,q∈Sb

{d(p, q)}}, where d(p, q) is
the Euclidean distance between points p and q. We can therefore focus on deter-
mining the maximum point pair distance between two (possibly equal) sections
Sa and Sb.

3.2 Section–Section Queries

The main complicating factor in designing algorithms for convex polygons ap-
pears to be the fact that for a given vertex of a convex polygon the sequence of



distances to the other vertices in order around the polygon may contain more
than one local maximum. The maximum number of local maxima in the distance
sequence of any vertex of a polygon P = (p1, p2, . . . , pn) is called the modality
of P . More formally, take p0 := pn, pn+1 := p1, and let Mi := {1 ≤ j ≤ n :
d(pi, pj−1) < d(pi, pj) and d(pi, pj+1) < d(pi, pj)} be the set of local maxima for
vertex pi, then the modality of P is maxn

i=1 |Mi|. Avis et al. [5] show there exist
polygons for which the total modality

∑n
i=1 |Mi| = Θ(n2), so we cannot hope for

a space-efficient data structure that stores the local maxima for all vertices.

Reciprocal modality. The main observation on which our solution to the section–
section problem is based is that, given two sections Sa and Sb, in case we know
that a point p ∈ Sa is not a local maximum in the distance sequence of point
q ∈ Sb, the distance d(p, q) cannot be the maximum distance between Sa and
Sb unless p is either the first or the last point in Sa, because otherwise both
neighbours of p in P are in the query range and the distance from q to one of
those neighbours is larger than d(p, q). This observation implies that for any
pair of sections Sa and Sb, the furthest point pair is either a pair of reciprocal
local maxima for which both points are local maxima in each other’s distance
sequence, or one of the points is the first or the last in its section. The largest
distance between Sa and Sb is therefore equal to the maximum of

1. the distance of the furthest pair of reciprocal local maxima of which one
point is in Sa and the other point is in Sb, and

2. the distance from the first/last point in Sb (Sa) to the furthest point in Sa

(Sb).

The furthest pair of reciprocal local maxima can be found in the following
way. Let Q be a set containing a point (i, j) for each pair of reciprocal local
maxima (pi, pj), that is, Q := {(i, j) | j ∈ Mi and i ∈ Mj}. To each point (i, j)
we assign a weight of d(pi, pj). We create a two-dimensional range-maximum
data structure over Q to be able to efficiently find the point with maximum
weight within a given orthogonal query range, if it exists. Let fa be the index of
the first point in Sa and la the index of the last point in Sa. Note that the points
in Q inside a range [fa : la]× [fb : lb] (for fa ≤ la and fb ≤ lb) represent the pairs
of reciprocal local maxima between Sa and Sb, so the point in this range with
the highest weight corresponds to the furthest pair of reciprocal local maxima
between Sa and Sb. In case fa > la or fb > lb, we take the maximum of two or
four queries covering the whole query range.

To bound the amount of space necessary for the 2D range-maximum data
structure, we show that the reciprocal modality |Q| = O(n).

Lemma 2. The reciprocal modality of the vertex set of any convex polygon P =
(p1, p2, . . . , pn) is O(n).

Proof. We show that any pair p, q of reciprocal local maxima is also an antipodal
pair, that is, there exist parallel lines through p and q such that all other points
of P lie between these lines. As the number of antipodal pairs is linear [21,



p

q

`p

`q

Fig. 4. If p and q are reciprocal local maxima, they also form an antipodal pair.

Section 4.2.3], the number of reciprocal local maxima, and hence the reciprocal
modality, is O(n).

Consider a pair p, q of reciprocal local maxima and draw parallel lines `p and
`q through p and q, orthogonal to a line through both vertices (see Figure 4).
As the vertices neighbouring p and q in the polygon must be closer to q and p,
respectively, they must also be between `p and `q. By convexity, all points of P
must be between `p and `q, so p and q form an antipodal pair. ut

Point–section queries. Finally, we need a data structure for answering point–
section queries. For this problem we can use a data structure of Aronov et al. [3]
that uses O(n log3 n) space to answer queries of the following type in O(log n)
time: For a point q in the plane and a section of the polygon, find the point in
this section furthest away from q. In our case q is always a vertex of the polygon,
allowing us to design a data structure that uses less space.

Lemma 3. The vertices of a convex polygon P = (p1, p2, . . . , pn) can be prepro-
cessed into a data structure of size O(n log n) such that queries of the following
type can be answered in O(log n) time: given three indices i, j and k such that
j ≤ k, find the furthest point from pi in the range (pj , pj+1, . . . , pk).

Proof. Our structure is a two-level structure, where the first level consists of a
balanced binary search tree on the indices of the vertices of P with every vertex
represented by a leaf. For every node v of the tree, let P (v) denote the canonical
set of v, that is, the set of vertices in the subtree rooted at v. Let S(v, x) be the
set of vertices z ∈ P for which x ∈ P (v) is the furthest vertex among all vertices
in P (v), that is, S(v, x) := {z ∈ P | x = arg maxy∈P (v) d(z, y)} (see also Fig. 5).
Because each S(v, x) forms a consecutive subsequence of P we can store a list
L(v) of the indices of the first vertex in S(v, x) for each x as a second-level data
structure for each node v. This requires O(n log n) space in total.

Queries for indices i, j and k can be answered as follows. Find the O(log n)
nodes whose canonical sets together cover (pj , pj+1, . . . , pk), but whose parents
contain vertices outside the range. For each node v found in this way, do a binary
search in L(v) for i to obtain the furthest point from pi among P (v). By taking



S(v, x2)

P (v)
x2

x1

x3

S(v, x3)

S(v, x1)

Fig. 5. Example subdivision of P into sets of points that have the same vertex in P (v)
as their furthest point, where the dashed diagram shows the regions of the plane with
the same furthest point among the vertices of P (v). The indices of the white vertices
are saved in L(v).

the maximum distance obtained from all these nodes we get the answer to the
query in O(log2 n) time. Since we search for the same value i in all O(log n) lists,
we can apply fractional cascading to obtain O(log n) query time. ut

Alternatively, we can use a linear-space data structure with higher query
time.

Lemma 4. The vertices of a convex polygon P = (p1, p2, . . . , pn) can be prepro-
cessed into a data structure of size O(n) such that queries of the following type
can be answered in O(log2 n) time: given three indices i, j and k such that j ≤ k,
find the furthest point from pi in the range (pj , pj+1, . . . , pk).

Proof. Build a range tree as for Lemma 3, but without the second level. Instead,
we add a secondary key to each node v to support searching for the furthest
point from query point pi inside P (v). The secondary key represents the range
of vertices of P whose furthest point is in the left subtree of v.

For answering a query, we again find the O(log n) nodes whose canonical sets
together cover (pj , pj+1, . . . , pk). For each such node v, find the furthest point
from pi among P (v) using the secondary keys. By taking the maximum distance
obtained from all these nodes we can answer the query in O(log2 n) time. ut

Now that we have described all necessary components, we can put them
together to obtain the main result of this section.

Theorem 4. Given a convex point set, we can construct (1) in O(n log n) time
an O(n log n)-space data structure that answers range diameter queries in O(log n)
time, or (2) an O(n logε n)-space data structure with O(log2 n) query time in the
word RAM model.

Proof. The predecessor structures of Lemma 1 use O(n) space and take O(log n)
time per query, and can be constructed in O(n log n) time. We construct set Q,
containing pairs of indices of reciprocal local maxima, in O(n) time by inspecting
all antipodal pairs, which can be enumerated in linear time [21]. For result (1)
we store Q in the 2D range maximum data structure of Gabow et al. [13], which



answers queries in O(log n) time using O(n log n) space, and can be constructed
in O(n log n) time. For result (2) we use a data structure of Chan et al. [8] that
has O(log log n) query time using O(n logε n) space in the word RAM model.

Point–section queries are answered by constructing in O(n log n) time, (1)
the data structure of Lemma 3, using O(n log n) space and O(log n) query time,
or (2) the data structure of Lemma 4, using O(n) space and O(log2 n) query
time.

As described, range maximum queries can be answered using a constant
number of queries on these data structures. ut

3.3 Range Width

Recall that the width of a set of points in the plane is the smallest distance
between any two parallel lines enclosing all points. For sets of points in convex
position, it is easy to show that these lines are always incident to antipodal
pairs, suggesting that we can follow a similar approach to answering range width
queries in convex polygons as we did for answering range diameter queries. We
now sketch how to build on the techniques described above to develop such a
data structure.

We follow the same structure and first split the query into sections. For each
pair of sections, we find the closest antipodal pair using a 2D range minimum
data structure on the indices of the vertices forming antipodal pairs. We then
only need to show how to answer point–section queries. The main difference
between the two problems is that for range width, we cannot answer point–
section queries in isolation: a valid pair of points and incident parallel lines
may exist for a given point and section, while no parallel lines through these
points exist that enclose all other points. Therefore, we shrink the section to
only include points that allow valid parallel lines. As a preprocessing step, we
use the rotating calipers algorithm to find for each edge of the polygon the one
or two vertices that are furthest away from the line through that edge [21]. For
a point–section query on indices i, j, and k, we first find the vertices pj′ and pk′

opposite edges (pi, pi+1) and (pi−1, pi) (where p0 := pn and pn+1 := p1), taking
the vertices that are furthest apart in case of parallel edges. Then, we search for
the closest point to pi within the range [j : k] ∩ [j′ : k′].

Acknowledgements. We would like to thank Elad Verbin for introducing the
set intersection problem, and Gerth Stølting Brodal, Jakob Truelsen, Konstanti-
nos Tsakalidis, and Qin Zhang for informative discussions.

References

1. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In
Advances in Discrete and Computational Geometry, volume 223 of Contemporary
Mathematics, pages 1–56. AMS, 1999.

2. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-
sures of points. Journal of the ACM, 51(4):606–635, 2004.



3. B. Aronov, P. Bose, E. Demaine, J. I. Joachim Gudmundsson, S. Langerman, and
M. Smid. Data structures for halfplane proximity queries and incremental voronoi
diagrams. In Proc. 7th LATIN, pages 80–92, 2006.

4. D. Avis. Diameter partitioning. Discrete & Computational Geometry, 1(1):265–
276, 1986.

5. D. Avis, G. T. Toussaint, and B. K. Bhattacharya. On the multimodality of dis-
tances in convex polygons. Computers & Mathematics with Applications, 8(2):153–
156, 1982.

6. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms, 38(1):91–
109, 2001.

7. V. Capoyleas, G. Rote, and G. J. Woeginger. Geometric clusterings. Journal of
Algorithms, 12(2):341–356, 1991.

8. T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthogonal range searching on the
RAM, revisited. In Proc. 27th Symp. on Comp. Geometry, pages 1–10, 2011.

9. H. Cohen and E. Porat. Fast set intersection and two-patterns matching. Theo-
retical Computer Science, 411(40-42):3795–3800, 2010.

10. H. Cohen and E. Porat. On the hardness of distance oracle for sparse graph. The
Computing Research Repository (arXiv), abs/1006.1117, 2010.

11. H. Edelsbrunner. Computing the extreme distances between two convex polygons.
Journal of Algorithms, 6(2):213–224, 1985.

12. C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 163–174, 1995.

13. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proc. 16th STOC, pages 135–143, 1984.

14. P. Gupta. Algorithms for range-aggregate query problems involving geometric
aggregation operations. In Proc. 16th ISAAC, pages 892–901, 2005.

15. P. Gupta, R. Janardan, Y. Kumar, and M. H. M. Smid. Data structures for range-
aggregate extent queries. In Proc. 20th CCCG, pages 7–10, 2008.

16. S. Har-Peled. A practical approach for computing the diameter of a point set. In
Proc. 17th Symp. on Comp. Geometry, pages 177–186. ACM, 2001.

17. S. Har-Peled and Y. Wang. Shape fitting with outliers. SIAM Journal on Com-
puting, 33(2):269–285, 2004.

18. S. Hong, B. Song, and S. Lee. Efficient execution of range-aggregate queries in data
warehouse environments. In Proc. 20th International Conference on Conceptual
Modeling, pages 299–310, 2001.

19. P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and
asymmetric communication complexity. Journal of Computer and System Sciences,
57(1):37–49, 1998.

20. Y. Nekrich and M. H. M. Smid. Approximating range-aggregate queries using
coresets. In Proc. 22nd CCCG, pages 253–256, 2010.

21. F. Preparata and M. Shamos. Computational geometry: an introduction. Texts
and monographs in computer science. Springer, 1991. Section 4.2.3.

22. M. Pǎtraşcu and L. Roditty. Distance oracles beyond the Thorup-Zwick bound.
In Proc. 51st FOCS, pages 815–823, 2010.

23. S. Rahul, A. S. Das, K. S. Rajan, and K. Srinathan. Range-aggregate queries
involving geometric aggregation operations. In Proc. 5th WALCOM, pages 122–
133, 2011.


