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1 Introduction

In layered manufacturing, a physical prototype of a 3D object is built from a
(virtual) CAD model by orienting and slicing the model with parallel planes
and then manufacturing the slices one by one, each on top of the previous
one. Layered manufacturing is the basis of an emerging technology called
Rapid Prototyping and Manufacturing (RP&M). This technology, which is
used extensively in the automotive, aerospace, and medical industries, accel-
erates dramatically the time it takes to bring a product to the market because
it allows the designer to create rapidly a physical version of the CAD model
(literally on the desktop) and to “feel and touch” it, thereby detecting and
correcting flaws in the model early on in the design cycle.

Although there are many types of layered manufacturing processes, the basic
principle underlying them all is as outlined above. For concreteness, we will
briefly describe one such method, called StereoLithography, which dominates
the RP&M market, see [10]. (In fact, the recent report of the Computational
Geometry Task Force explicitly identifies this process as one where geometric
techniques could play a significant role [5, page 31].)

The input to the StereoLithography process is a surface triangulation of the
CAD model in a format called STL. The triangulated model is oriented suit-
ably, sliced by zy-parallel planes, and then built slice by slice in the positive
z direction, as follows. In essence, the StereoLithography Apparatus (SLA)
consists of a vat of photocurable liquid resin, a platform, and a laser. Initially,
the platform is below the surface of the resin at a depth equal to the slice
thickness. The laser traces out the contour of the first slice on the surface
and then hatches the interior, which hardens to a depth equal to the slice
thickness. In this way, the first slice is created and it rests on the platform.
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Next, the platform is lowered by the slice thickness and the just-vacated region
is re-coated with resin. The second slice is then built in the same way. Ideally,
each slice after the first one should rest in its entirety on the previous one.
In general, however, portions of a slice can overhang the previous slice and so
additional structures, called supports, are needed to hold up the overhangs.
Supports are generated automatically during the process itself. Once the solid
has been made, it is postprocessed to remove the supports.

During the process, certain regions that are separate from the main body of
liquid in the vat will hold resin. These regions are called trapped regions and
they are undesirable because they slow down the process [10, page 161]. For
example, if a coffee mug is built in the vertical direction, then the interior of
the mug will hold resin, and the volume of this region is called the trapped
volume.

A key step in this process is choosing an orientation for the model, i.e., the
build direction. Among other things, the build direction affects the volume of
supports, the surface area of the model that is in contact with the supports,
and the trapped volume—factors which impact the cost and quality of the
process.

In current systems, the build direction is often chosen by the human operator,
based on experience, so that e.g. the amount of supports used and the trapped
area is “small”. We seek to design computer algorithms that minimize these
quantities automatically and lessen the need for human intervention.

1.1  Two-dimensional layered manufacturing

In this paper, we will consider the two-dimensional version of this problem.
Throughout the paper, we denote by P the polygonal object that we wish to
build and by n the number of vertices of P. We assume that P is in general
position, in the sense that no three vertices are collinear. All our results remain
valid for arbitrary simple polygons. The algorithms and correctness proofs,
however, need some minor modifications.

We let d denote the build direction and refer to notions such as “above” and
“below” w.r.t. d. The direction d can range a full 360° in the plane of P. The
criteria “volume” and “contact-area” mentioned earlier are now replaced by
“area” and “contact-length”, respectively, as discussed below.

Our motivation for studying the polygon problem was to develop techniques
that would be applicable to non-convex polyhedra, which is the actual problem
of interest. In principle, our 2D techniques carry over to 3D, but it is not clear
at this point how efficient or practical they would be. We are investigating



this problem further.

We will design algorithms that compute a direction d which minimizes one of
the following three parameters:

Contact-length of supports: The part of P’s boundary that is in contact
with the supports affects the postprocessing time, since the supports that
“stick” to P must be removed. If P is convex, then this is the total length
of the downward-facing edges. If P is non-convex, then this is the total edge
length of the downward-facing edges and portions of certain upward-facing
edges.

In Section 2, we show that for any simple polygon, a build direction which min-
imizes the contact-length of the supports can be computed in time O(nlogn+
np(n)), where p(n) is the time it takes to minimize a certain function G(x)
which is the sum of ©(n) terms of the form d/(1+4cz), for some constants ¢ and
d. If the polygon’s edges have only a constant number of different orientations,
then this time bound improves to O(nlogn).

Area of supports: The quantity of supports used affects both the building
time and the cost. If P is convex, then the support area is the area of the
region lying between P and the platform, i.e., the region which is bounded
below by the platform and above by the downward-facing edges of P. If P is
non-convex, then the problem is more complex, since the supports for some
edges may actually be attached to other edges instead of to the platform.
(Figure 1 illustrates this.)

In Section 3, we give an algorithm that computes a build direction minimizing
the area of the supports, in time O(nlogn + nq(n)), where ¢(n) is the time
it takes to minimize a certain function which is similar to G(z) above. Again,
if the edges have only a constant number of different orientations, then the
running time improves to O(nlogn). (In a preliminary version of this paper,
see [11], the running times were O(n? + ng(n)) and O(n?), respectively.)

Trapped area: As mentioned before, trapped regions are areas that hold
resin separate from the main body of liquid and are undesirable. (We defer a
formal definition of trapped regions to Section 4.) In Section 4, we show that a
variant of the algorithm of Section 3 can be used to compute a build direction
for which the trapped area is minimal.
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supports for P

Fig. 1. Supports for a simple polygon.

1.2 Related work

Arkin et al. [2] solve the following related two-dimensional problem. Given a
simple polygon P, compute a monotone or star-shaped polygon that contains
P and that has minimal area. Their algorithm is similar to ours and, in fact,
they also have to minimize a function that is similar to our function G(z).
One of the differences between our problem and that of Arkin et al. is that we
have to take care of support regions that are in contact with the platform.

Surprisingly little work has been done by way of efficient and provably opti-
mal geometric optimization algorithms for layered manufacturing. In Asberg et
al. [3], efficient algorithms are given for deciding if a two- or three-dimensional
object can be made by StereoLithography without using supports. In a com-
panion paper [12], we give algorithms for minimizing the contact-area and
volume of supports for three-dimensional convex polyhedra.

The problem of generating optimal supports for arbitrary three-dimensional
polyhedra is considered in Allen and Dutta [1]. Their algorithm essentially
considers only directions parallel and orthogonal to edges of the convex hull.
However, this is not optimal. Below, we give an example which shows that
with this approach, the approximation factor w.r.t. the optimal solution can
be made arbitrarily large.

Let P be the non-convex polygon in Figure 2. Vertices a and c are slightly
above the horizontal line through b. Vertex ¢ (resp. d) is slightly to the right
(resp. left) of vertex a (resp. c). Vertex ¢ is slightly above vertex d. Both edges
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Fig. 2. An example polygon for which the support area for any build direction that
is parallel or orthogonal to an edge of the polygon’s convex hull is much larger than
the minimum support area.

ef and gh are vertical; edge fg is horizontal. The edges ab and bc are very
small compared to the edges ef and gh. Finally, the angle between ai (resp.
cd) and the vertical is smaller than the angle between ab (resp. bc) and the
horizontal.

For the vertically upwards build direction d,, the support area is very small
(it is the area under edges ab and bc). It can be verified easily that for each
build direction that is parallel or orthogonal to an edge of the convex hull of
P, the support area is much larger than for build direction d,. Hence, for any
build direction that is parallel or orthogonal to a convex hull edge, the support
area is much larger than for the optimal build direction (which need not be
vertical).

In closing this section, we note that if P is a convex polygon with n vertices,
then the optimal build direction d is either parallel or orthogonal to an edge
of P. (The proof follows from results in [7].) Hence, in this case, d can be
found in O(n) time.

2 Minimum-contact-length supports for simple polygons

In this section, we consider the problem of computing a direction that min-
imizes the total length of the boundary of a simple polygon to which the
supports “stick”.



Fig. 3. Edge e has endpoints ae and be. This edge is attached to supports for direction
d. The set Sc(d) consists of two segments aeA.(d) and B(d)b.. These segments
are the parts of edge e that are attached to the supports. Edge f needs support for
direction d.

First, we introduce some notation. Then, we give a precise definition of the
problem. Finally, an algorithm for computing the optimal direction is given.
Throughout this paper, we measure angles counterclockwise from 0 to 2.

Henceforth, we let P be a simple n-vertex polygon. For each edge e of P, let
n, denote its outer normal. Furthermore, let o, denote the angle between the
positive z-axis and the vector n.. For any direction d, we denote by ¢4 the
angle between the positive z-axis and d.

We say that edge e needs support for direction d, if the dot product n, - d is
negative. In this case, the entire edge e needs support.

Even if an edge e does not need support for a direction d, it may still be a part
of some support for this direction, in the following sense. Let d be a direction,
such that n.-d > 0. Let ¢ be a point on e, such that the ray emanating from ¢
in the direction d intersects the interior of the polygon P. Then we say that ¢
is attached to a support for direction d. Let S.(d) be the set of all points on e
that are attached to a support for direction d. (See Figure 3.) Then e — S, (d),
the set of points on e that are not attached to a support, is connected. To be
more precise, the following lemma holds.

Lemma 1 The set Se(d) is (i) empty, (ii) consists of one segment on e, one
of whose endpoints is an endpoint of e, (iii) consists of two segments on e,
and each segment has an endpoint which is an endpoint of e, or (iv) is equal

7



to the entire edge e.

Proof. The set S.(d) consists of line segments on edge e. It suffices to prove
that no such segment has both its endpoints in the interior of e.

Assume there is such a segment, and let s and ¢ be its endpoints. Let a. and b,
be the endpoints of edge e. Assume w.l.0.g. that a., s, ¢, and b, appear in this
order from left to right along e, and that the direction d is vertically upwards.
There is a point x (resp. y) on e, strictly between a, and s (resp. ¢ and b,),
such that the ray r, (resp. r,) emanating from x (resp. y) in the direction d
does not intersect the polygon P. On the other hand, the ray emanating from
s in the direction d does intersect P; let z be the first intersection. By walking
along the boundary of P, from a. to z, we intersect one of the rays r, and r,.
This is a contradiction. |

We define [.(d) as the length of edge e, in case e needs support for direction
d. Otherwise, [.(d) is defined as the length of the at most two segments on
e that are determined by S.(d). Hence, Y, l.(d) is equal to the total length
of the boundary of P to which the supports stick, when P is manufactured
along direction d. Therefore, we want to solve the following problem.

Problem 2 Given a simple polygon P, compute a direction d which mini-
mizes

Lp(d) = Z le(d)

We need some more notation. (Refer to Figure 3.) Let e be an edge of P, and let
d be a direction such that S.(d) consists of two segments. Let a, and b, denote
the two endpoints of e, where a, is to the left of b, (w.r.t. direction d), and
let A.(d) and B,(d) denote the other two endpoints of the segments spanning
Se(d). That is, S¢(d) consists of the two segments a.A.(d) and b.B.(d). Let
A’(d) be the vertex of P that is hit first by shooting a ray from A.(d) in the
direction d. (Note that this ray indeed hits a vertex.) Define B.(d) similarly
w.r.t. B.(d). Note that the ray starting at A.(d) (resp. B.(d)) and containing
Al(d) (resp. B.(d)) does not intersect the interior of P. We have

le(d) = |a6Ae(d)‘ + |b€B€(d)‘7

where |zy| denotes the Euclidean distance between the points z and y.

If S.(d) consists of only one segment, then only one of A.(d) and B.(d) (and
similarly, only one of A’(d) and B.(d)) is defined and, hence, I.(d) contains
only one term. If S.(d) = 0 or S.(d) = e, then the points A.(d), B.(d), AL(d)



and B.(d) are undefined. In the former case, we have [.(d) = 0, whereas in
the latter case, l.(d) is equal to the length of e.

We fix an edge e, and consider the behavior of the function /.(d) as the angle
@a varies from 0 to 27. Consider an angle ¢q4, and assume that B.(d) and
B!(d) exist. We will express the distance |b.B.(d)| in terms of the angle ¢q.

Let c. be the orthogonal projection of vertex B’ (d) on the line through edge
e. (See Figure 3.) First assume that c, lies on e, and B(d) lies between a,
and c,. Also, assume that 0 < g < @, < 7/2. The angle between the vectors
B!(d)B.(d) and B.(d)c. is equal to a, — ¢q. Therefore,

|beBe(d)| = [bece| + |ceBe(d)| = |bece| + |BL(d)ce| tan(ae — pa)-

If the angle pq does not satisfy 0 < pgq < ae < 7/2, or if (i) c. lies on e, and
Be(d) lies between b, and c,, or (ii) ¢, does not lie on e, then we get a similar
expression for |beB.(d)|. Moreover, if A.(d) and A’(d) also exist, then we can
write |a.Ac(d)| in a similar fashion.

It follows that we can write [.(d) in the form

le(d) = X, + Y, tan(ae — @aq),

where X, and Y, are (possibly negative) real numbers that only depend on the
edge e and the points AL(d) and/or B.(d). Clearly, if edge e needs support,
or e is completely attached to supports, for direction d, we get the same
expression; in these cases, X, is equal to the length of e, and Y, = 0.

If we vary the angle ¢q by a small amount, then, in general, the values of X,
and Y, do not change; hence the above expression for /.(d) remains the same.
For some angles ¢4, however, the values of X, and Y, will change. Therefore,
we want to partition the interval [0, 27| of directions into subintervals, such
that within each subinterval I, the function l.(d) can be written as

le(d) = X! + Y] tan(ae — ©aq),

where X! and V! are constant within 1.
How do we find this partition? In order to answer this question, we define for
each vertex v of P, its wvisibility cone, cone(v), as the cone with apex v and

maximum angular range in which v can see to infinity. (See [2].)

The following lemma identifies certain directions dy where the combinatorial



structure of the supports associated with an edge changes.

Lemma 3 Let e be an edge of P, dy a direction, ¢ the angle corresponding
to dg, and € a positive real number.

(1) Assume that for directions d such that ¢ — e < pq < @, the vertex AL(d)
is equal to A', and for directions d such that ¢ < pgq < @ + €, it is equal
to A", where A" # A". Then, the line segment A'A" is on one of the
bounding rays of cone(A’) and is in the direction dy.
(2) Assume that for directions d such that ¢ — € < pq < @, the verter AL(d)
exists, and for directions d such that © < pq < @ + €, it does not exist,
or vice versa. Then
(a) the line segment B.(dg)AL(dy) is on one of the bounding rays of
cone(BL(dy)) and is in the direction doy, or

(b) the line segment AL(dy)B.(dy) is on one of the bounding rays of
cone(AL(dy)) and is in the direction do, or

(c) the line segment b.AL(do) is on one of the bounding rays of cone(b.)
and is in the direction dg, or

(d) the line segment a. A’ (do) is on one of the bounding rays of cone(a.)
and is in the direction dg, or

(e) the direction dy is parallel to e.

A similar claim holds for the verter B.(d).

Proof. To prove 1, first observe that for all directions d such that ¢ — € <
wa < @ + ¢, the set S.(d) is not equal to the entire edge e, since A.(d) exists.
If we increase the direction angle ¢q from ¢ — € to ¢, then the ray starting
at A.(d) and going into the direction d rotates around vertex A’. Moreover,
the part of this ray that is beyond A’ does not intersect the polygon P. At
direction dg, the ray contains both A" and A”. If we increase ¢q further from
© to ¢ + €, then the ray rotates around A”, and the part beyond A” does not
intersect P. It follows that at direction dy, the vertex A” must be beyond A’
on this ray. Hence, the line segment A’A” is on one of the bounding rays of
cone(A").

The proof of 2 is similar. In Case (a), while increasing ¢q4 from ¢ — € to ¢, the
two endpoints A.(d) and Be(d) of the two segments defining the set S,(d) get
closer together, and meet if pq4 = ¢. Note that A (dy) is beyond B.(d,) on
the ray from A.(dy) in direction dy. Case (b) is similar to Case (a). In Case
(¢), for pa € (p — €,¢), the set S.(d) only consists of the segment a,A.(d).
While increasing ¢4 to ¢, the point A.(d) moves to the vertex b.. If pq = ¢,
Ac(d) and b, are equal. Case (d) is the case where vertex A.(d) changes from
undefined to defined. Finally, in Case (e), the edge e starts or stops needing
support at direction do. In this case, the vertex A’(dy) may change its status
from undefined to defined, or vice versa. |
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Let D, be the set of directions d determined by the bounding rays of the
non-empty visibility cones. We also define a set Dj containing the following
directions. For each edge e of P, D, contains the two directions that are parallel
to e. Let D := D, UD,. Then the set D contains at most 4n directions. The
following lemma follows from the discussion above.

Lemma 4 The directions of the set D partition the interval [0, 27| into O(n)
subintervals, such that within each subinterval I, the function Lp(d) is the
sum of n functions le(d), each having the form

le(d) = Xel + Y;I tan(ae — @a), (1)

where X! and Y} are constant within I.

We call critical the directions d at which expression (1) changes for some edge
e (i.e., X! or Y changes). Lemma 4 gives a set of O(n) directions that includes
all critical directions.

2.1 The algorithm

Now we are ready to give an outline of our algorithm for computing the direc-
tion d for which Lp(d) =3, l.(d) is minimal. After this outline, we will give
the details for each step.

Step 1: Compute the set D defined above, and sort its elements in counter-
clockwise order. Preprocess P into a data structure, such that ray shooting
queries can be answered.

At this point, we have a partition of [0,27] into O(n) subintervals. Within
each subinterval I, we know that Lp(d) has the form

Lp(d) = Y1(d) = Y (X! + Y/ tan(a, - pa)), (2)

e

where X! and Y are constant within 1.

Step 2: Obtain expression (2) for the function Lp(d) in the first subinterval
I, and compute the minimum of Lp(d) within 7.

Step 3: Sweep over the elements of D, thereby visiting the subintervals one
by one. At each direction d € D, obtain the new expression for Lp(d), by
subtracting the functions [.(d) whose expressions change at this direction, and
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adding the corresponding new functions /.(d). Then compute the minimum of
Lp(d) within the new subinterval.

Let us consider Step 1 first. Using the algorithm of [8,14], we compute in O(n)
time all vertices v for which cone(v) # (), together with their visibility cones.
Then, we obtain the elements of D in sorted order, in O(nlogn) time. We take
the ray shooting data structure of [9]. There it is shown how to preprocess
P in O(n) time, such that ray shooting queries can be answered in O(logn)
time. Hence, Step 1 can be completed in O(nlogn) time.

Next, consider Step 2. For edges e that need support for directions in I, i.e.,
n.-d <0 for all d € I, expression (1) is trivial.

In order to find expression (1) for edges e such that n,-d > 0 for all d € I,
we have to determine the set S,(d). In particular, if S.(d) # 0 and S.(d) # e,
we have to find the vertices AL(d) and/or B.(d). We do the following.

Choose a direction d in I. For each vertex v of P, perform a ray shooting
query from v in direction d. If this ray does not intersect P, then we also
perform a ray shooting query from v in direction —d, provided this ray does not
immediately go inside P. If e is the edge that is hit first by this second ray and
the ray intersects the interior of e, then n,-d > 0, Sc(d) # 0 and S.(d) # e.
Moreover, v is equal to AL(d) or B.(d), and it is easy to decide whether
v = AL(d) or v = B.(d): Take a point just to the right of the intersection
point of the second ray with e, and shoot a third ray in direction d. If this ray
misses P, then v = AL(d); else v = B.(d).

After these ray shooting queries, we have found all edges e such that n.-d > 0,
Se(d) # 0 and S.(d) # e, together with the corresponding vertices A.(d)
and/or B.(d). For all remaining edges e for which n, - d > 0, we know that
either Se(d) = 0 or S.(d) = e. Therefore, for each such edge e, we take an
arbitrary point = on e, and perform a ray shooting query from x in direction
d. If this ray intersects P, then S.(d) = e; otherwise S.(d) = 0.

It follows that expression (2) for Lp(d) in the first subinterval I can be com-
puted in O(nlogn) time. The problem that remains is that of computing the
minimum of Lp(d) in I. We will consider this in Section 2.2.

We are left with Step 3. Assume, we move from subinterval I to I'. Let d be
the critical direction corresponding to the right endpoint of I (which is the
left endpoint of I).

First assume that d € Dy, i.e., it is parallel to, say, edge e. Note that the sign

of n, - d’ is the same for all d’ in the interior of I’. There are two possible
cases.
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First, if n, - d’ < 0 for all d’ in the interior of I’, then edge e needs support
in the subinterval I'. Therefore, we subtract the (old) term l.(d) from Lp(d)
and add the new value [.(d), which is equal to the length of e.

Otherwise, n, - d’ > 0 for all d’ in the interior of I'. In this case, we know
that e needs support in the subinterval I, and the (old) term l.(d) is equal to
the length of e. The new expression for l.(d) is obtained as follows. Perform a
ray shooting query from some point on e in direction d. (Note that this ray is
“along” e.) If this ray does not intersect the interior of P, then no point on e is
attached to a support in the subinterval I’, and we subtract [.(d) from Lp(d).
Otherwise, the ray hits the interior of some edge of P, and in the subinterval
I', edge e is completely attached to supports. Hence, in I, the term [.(d)
remains equal to the length of e; we do not have to update Lp(d).

It remains to consider the case when d is a “cone direction”, i.e., it coincides
with the direction of a bounding ray r of, say, cone(v). In order to describe
what has to be done now, assume w.l.o.g. that d goes vertically upwards. Let
w # v be the vertex that is on r. Note that both edges e, and e], that are
incident to w are on one side of the line containing r. Assume that they are
to the left of this line, and that e, is above €. (The case when e,, and e, are
to the right of this line can be handled similarly.) Note that by going down
(resp. up) from any interior point on e, (resp. e ), we go into the interior
of P. (Assume that by going up from any interior point on e,, we go into
the interior of P. Then by walking along the boundary of P, starting at w
and following edge e,, first, we must intersect the ray r. This cannot happen,
because r does not intersect the interior of P.)

Let e, and e, be the edges that are incident to v. There are three possible cases.
First assume that e, and e, are both to the right of the line containing r. Also,
assume w.l.o.g. that e, is above e!. (See Figure 4(a).) Then cone(v) is also to
the right of this line, and by going down (resp. up) from any interior point
on e, (resp. €}), we go into the interior of P. Perform a ray shooting query
from v in direction —d, and let f be the edge that is hit first. Then, in the
subinterval I, w is the vertex A’(d), whereas v = Bj(d). In I', the edge f is
completely attached to supports. (Recall that I" follows I in counterclockwise
order.) This is because e, and e, (resp. e, and €)) are to the left (resp. right)
of the line containing r. Therefore, we subtract the term [;(d) from Lp(d)
and add the new term [;(d), which is equal to the length of f. Also, in I, the
set S, (d) consists of at most one segment: the vertex B, (d) may exist, but
A, (d) does not exist. In I', the vertex B, (d) is still the same or still does
not exist, but we have w = A;, (d). Therefore, we update the term [, (d).

Next, assume that e, and e, are both to the left of the line containing r. (See

Figure 4(b).) Again, assume w.l.o.g. that e, is above €. By going down (resp.
up) from any interior point on e, (resp. €)), we go into the interior of P.
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Fig. 4. The three possible cases for a “cone direction” d. We assume that d goes
vertically upwards.

Perform a ray shooting query from v in direction —d, and let f be the edge
that is hit first. (Assume for the moment that f exists.) Then, in I, we have
v = A(d), whereas in I', we have w = A’;(d). Also, the vertex B}(d) is the
same in I and I’, or is undefined in both these intervals. Therefore, we update
the term [¢(d). In I, we have w = A{_(d), whereas B; (d) does not exist. In
I, edge e, is completely attached to supports. Therefore, we replace the term
le,(d) by a new term, which is equal to the length of e,. If edge f does not
exist, then we only have to update the term [, (d), in the way just described.

Finally, assume that e, and e} are on different sides of the line containing r.
(See Figure 4(c).) Assume w.l.o.g. that e, is to the left of this line. By going
down from any interior point on e, or e}, we go into the interior of P. In
subinterval I, the vertex w is equal to A; (d), whereas B, (d) is undefined in
this interval. In I, edge e, is completely attached to supports. So, we replace
the term /., (d) by a new term, which is equal to the length of e,. Also, in I,
the vertex Ay, (d) is undefined, whereas in I, it is equal to w. In I and I',
the vertex B!, (d) may be defined or undefined. At direction d, however, its
“value” does not change. Therefore, we update the term . (d).

This concludes the description of Step 3. For each critical direction, we need
O(logn) time to update the expression for Lp(d). As in Step 2, the problem is
in computing the minimum of Lp(d) in the new subinterval I'. This problem
will be addressed in Section 2.2.

Remark 5 The polygon P may have edges that need support, or are com-
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pletely attached to supports, for any direction d. These edges are invisible, in
the sense that no point on them is visible from the “outside”. Consider such
an invisible edge e. In Step 2, we find out that in the first subinterval, /.(d)
is equal to the length of e. During the sweep in Step 3, the term [.(d) never
changes, i.e., it always stays equal to the length of e.

2.2 Minimizing the function Lp(d)

The problem that remains is to compute the minimum of the function

Lp(d) =Y (X! + Y] tan(ce — wa)),

e

in a subinterval I of [0, 27]. Recall that X! and Y/ are real numbers that are
constant for g € 1.

We write this optimization problem in a simpler form. Note that the term
>, X! is independent of d. Introducing new variables (a; for Y, b; for a., and
¢ for ¢q), leads to the problem of minimizing the function

=Y _a;tan(b; — ¢)
i=1

in a subinterval I of [0, 27]. Here, the a;’s and b;’s are real numbers. Using the
formula tan(y —x) = (tany —tanz)/(1+tanytan ), and defining ¢; := tan b,
we get

n

Z ~tang _ g (ai(ci +1/a) @> |

— 1+cltang0 S\ 1l+ctangp C;

Let d; := a;(¢c; + 1/¢;). Then minimizing F' is equivalent to minimizing the
function

Y e

S l+a tan(p

Let z := tan ¢. Then we get the following problem.

Problem PR(n): Given 2n+2 real numbers ci,¢a, . .., Cn, d1,da, - .., dy, A and
B, compute the global minimum of the function

=2

i=1 1 + Gx

(3)
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in the interval [A, B].

We can solve this problem using standard techniques from calculus. Let us
consider the derivative of G

Z —dicy chd H (1 —|-cJ

z—l 1+ G )2 Hk 1(1 +Ck‘r =1 J#e

Hence, G'(z) = 0 if and only if

> cds [I(1 +cja)? = 0. ()

i=1 j#i

The expression in (4) is a polynomial in x of degree 2(n—1). Hence, the original
function Lp(d) we are interested in can have a linear number of local minima.
Using techniques from numerical analysis, we compute (i.e., approximate to
any desired precision) the roots of (4), and for each of them that is contained
in the interval [A, B], we evaluate G. We also evaluate G for z = A and = = B.
In this way, we find the global minimum of G in [A, B].

This approach is not efficient. Unfortunately, we are not aware of any efficient
algorithm that solves Problem PR(n). We leave the design and analysis of
such an algorithm as an open problem. In the theorem below, we denote the
time it takes to solve PR(n) generically by p(n).

Theorem 6 Given a simple polygon with n vertices, a direction minimizing
the total contact-length of supports can be found in O(nlogn + np(n)) time,
where p(n) is the time for solving problem PR(n).

Proof. Consider our algorithm. Step 1 takes O(nlogn) time. In Step 2, it
takes O(nlogn) time, to write down expression (2) for the function Lp(d) in
the first subinterval I. Given this expression, we transform it into (3) in linear
time. Then in p(n) time, we compute the minimum of this function. Hence,
Step 2 takes total time O(nlogn + p(n)). In Step 3, we visit the O(n) critical
directions one after another. Going from one direction to the next one, we
update the functions Lp(d) and G(z) in O(logn) time. The minimum of the
updated function Lp(d) is then computed in p(n) time. [

As we will show now, the running time can be improved considerably, if the
edges of our polygon have only a small number of orientations. A polygon is
called C-oriented if its edges have at most C different orientations. Suppose
that our simple polygon P is C-oriented. In this case, the function G(z) in
problem PR(n) can be rewritten such that it contains only C' terms: There
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are at most C different normal angles a., hence at most C' different values for
the ¢;’s. If we group these together, we get an expression of the form

C d
G(z) = !
for real numbers d, d, ..., d,. Therefore, solving G'(z) = 0 leads to a poly-

nomial of degree at most 2(C' — 1). Assuming that C' is a constant, and that
roots of polynomials of constant degree can be computed in constant time, we
can compute the minimum of G(z) in constant time. This proves:

Theorem 7 Given a simple C-oriented polygon with n vertices, where C' is
a constant, a direction minimizing the total contact-length of supports can be
found in O(nlogn) time.

3 Minimum-area supports for simple polygons

We now consider the problem of computing a direction that minimizes the
total area of supports for a simple polygon. Let P be a simple polygon having
n vertices. As before, if d is a direction, then ¢4 denotes the angle between
the positive z-axis and d.

Our basic approach is the same as in Section 2. We now split the interval [0, 27]
into four subintervals [0, 7/2], [7/2, 7], [7, 37 /2], and [37/2, 27|, and solve the
problem within each subinterval separately. Since these four subproblems are
similar, we only consider the interval [7/2, 7]. That is, we show how to compute
a direction d such that 7/2 < ¢4 < 7, and the area of the supports is minimal
when P is built in direction d. For this, we partition the interval [ /2, 7| into
O(n) subintervals, such that within each subinterval, there is a closed form
for the total area of the supports. Then we sweep along these subintervals.
In [11], we computed the area expression at the boundary of each subinterval
from scratch. In this section, we give an improved solution, which is obtained
by exploiting the combinatorial structure of the supports more carefully.

Let d be any direction such that 7/2 < ¢4 < 7. Let s,(d) be the vertex of P
that is extreme in direction —d. Hence, the platform is the line through s,(d)
orthogonal to d, and P is “above” (w.r.t. direction d) this line.

The supports for build direction d consist of pairwise disjoint polygons, which
we call support polygons. We divide these polygons into two classes. A support
polygon that does not have an edge on the platform is colored red, otherwise,
it is colored blue. The area expression for the supports can now be determined
by considering the red and blue polygons separately. In Section 3.1, we analyze
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Fig. 5. The blue support polygons for directions d and d,.

the blue polygons; the red polygons are considered in Section 3.2. Then, in
Section 3.3, we give the complete algorithm.

3.1 Blue support polygons

We will show that we can preprocess P in O(n) time, such that for any direc-
tion d with 7/2 < ¢4 < 7, we can in O(logn) time, compute the expression—
as a function of d—for the area of the blue support polygons.

Let d, be the vertical direction, i.e., pgq, = 7/2. Assume that we know the
area A, of the blue support polygons for this direction. Given a direction d,
our strategy will be to consider the “difference” of the blue polygons for d and
d,.

For any direction d, denote the total area of the blue polygons by A(d). How
can we use A, to compute A(d) efficiently? The blue support polygons for d,
and d determine (i) two simple polygons whose areas we denote by A;(d) and
As(d), and (ii) four triangles whose areas we denote by A;(d), 1 < i < 4, as
indicated in Figure 5. From this figure we see that

A(d) = Ay + Ai(d) — Az(d) + As(d) + Ax(d) — Az(d) — Ag(d). (5)
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po = s;(dy)

Fig. 6. The blue area As(d).

Computing the areas A;(d), 1 < i < 4, as a function of d is easy; see Sec-
tion 3.1.2. The problem is computing the areas A;(d) and Ay(d). Note that
the polygons determining A;(d) and Ay(d) can have a linear number of ver-
tices. We will show in Section 3.1.1 that after an appropriate preprocessing
step, we can compute A;(d) and Az(d) as a function of d, in O(logn) time.

3.1.1 Computing the expression Aa(d)

Let s;(d,), s,(d,) and sp(d,) be the left, right and bottom extreme vertex for
direction d,, respectively, and define s;(d), s,(d) and s,(d) analogously for
direction d.

We denote the vertices we encounter, when walking around P from s;(d,) to
sp(dy) in counterclockwise order by pg = s;(dy), p1, P2, - - -, Pk = So(dy). (Refer
to Figure 6.) We will store with each vertex p;, 0 < i < k, a real number v;.
As we will see, these values can be used to determine the expression for the
area As(d).

We will use the following notation. If a, b and ¢ are three points in the plane,
then area(a, b, c) denotes the signed area of the triangle with vertices a, b and
¢, where the sign is + (resp. —) if ¢ is to the left (resp. right) of the vector ab.

The values of the variables v; are defined incrementally, as follows. We define
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vy := 0 and vy := 0. Let 2 <17 < k, and assume that the value of v;_; has been
defined already. Then

v; := v;_1 + area(po, Pi, Pi—1)-

We need the following lemma, whose proof can be found in [13, page 24].

Lemma 8 Let Q be a simple polygon with vertices qo, q1,. .., qn_1, labeled in
clockuise order, let g, := qq, and let p be an arbitrary point in the plane. Then
the area of QQ s equal to

n—1

> area(p, gjt1, q5)-
§j=0

Corollary 9 Let d be a build direction such that w/2 < @q < m. Let L be
the wvertical line through py = s;(dy), and let z;(d), 1 < i < k, be the in-
tersection of L with the ray emanating from p; and having direction d. As-
sume that the line segment p;x;(d) does not intersect the interior of P. Then
(po, P1, D2, - - - Di, i(d) ) is a simple polygon, and its area is equal to

v; + area(po, z;(d), p;)- (6)

Proof. It is clear that the polygon @ = (po, p1,- - -, pi, zi(d)) is simple. More-
over, its vertices are in clockwise order. Applying Lemma 8 with p = py shows
that the area of ) is equal to

i—1

> area(po, pj+1,pj) + area(po, xi(d), p;) + area(po, po, ;(d)).
j=0

It is easy to see that the summation equals v;, and area(pg, po, z;(d)) = 0. R

Let d be a direction such that 7/2 < pgq < 7, and let i, 0 < i < k, be the
index such that p; = s;(d). Then it is clear that the line segment (p;, z;(d))
does not intersect the interior of P. Hence, by Corollary 9, we have

Ay (d) = v; + area(po, z:(d), pi)-

Let a be the intersection between the vertical line through p, and the hori-
zontal line through p;. Then

area(po, z;(d), p;) = area(po, a, p;) — area(a, p;, x;(d))
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Fig. 7. Triangle A4(d) has one fixed point ¢; triangle As(d) has no fixed points.

= area(po, a,p;) — % lap;| - |az;(d)|
= area(po, a,pi) — 3 api|* tan(m — pa)
=q

rea(py, a,p;) + 3 |ap;|* tan pq.

Hence, in a subinterval of [7/2, 7] in which the extreme vertex s;(d) does not
change, we can write

Ay(d) = A+ B - tan pq, (7)

where A and B are real numbers independent of d that change only when
s1(d) changes.

Similarly, in a subinterval of [7/2, 7] in which the extreme vertex s,(d) does
not change, we can write

Ai(d) = A"+ B’ - tan @q, (8)

where A" and B’ are real numbers independent of d that change only when
sy(d) changes.

3.1.2  Computing the expressions A;(d)

Let d be a direction such that 7/2 < ¢ < 7. If we look at the four triangles
A;(d), 1 <i <4, in Figure 5, then we see that these are of two different types.
(Refer to Figure 7.) The triangle A4(d) has one fixed vertex c. If ¢4 increases,
then the line through the other two vertices a and b rotates around the extreme
vertex s;(d). A similar remark holds for Az(d). The triangle Ay(d) does not
have a fixed point. If g4 increases, then the line /; (resp. ly) through a and ¢
(resp. b and c) rotates around s;(d) (resp. sp(d)). A similar remark holds for
Aq(d).
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Consider the triangle A,(d) in Figure 7(a). Write the coordinates of s;(d)
(which is the center of rotation of the line through a and b) as s;(d) = (y1,y2),
and write the coordinates of ¢ as ¢ = (cy, ¢c2). Then, the vertices a and b are
equal to

a = (C1;y2 + (Cl - yl) 'tanSOd)a

and

b= (y1 + (c2 — y2) - cot pq, C2).
Hence, for Ay(d), we get the following expression.

Ay(d) =1 |ac| - |eb)
_1
=3 [Y2 + (€1 — 1) - tan g — ¢o] - [y1 + (c2 — y2) - cot g — ¢1]
= (?Jl - 01)(y2 - 02) - % (yl - 01)2 - tan g — % (yg - 02)2 - cot ©gq.

The formula for Az(d) is similar. Thus we can write

As(d) + Ay(d) = A+ B - tanpg + C - cot ¢q, (9)

where A, B and C' are real numbers independent of d, that change only when
s1(d), s,(d) or sy(d) changes.

The formulas for A;(d) and Ay(d) are more complex, because all three vertices
move if ¢4 increases. Referring to Figure 7(b), we have

Ao(d) = & Jac| - [eb] (10)

The expressions for Ay(d) and A;(d) follow by straightforward calculations.
The result is the following formula, whose verification is left to the reader.

Ai(d) + Ay(d) =B’ - cos pq - sin g + C" - cos? pq + D' - sin® pq

+E’.%+F’.M’ (11)
COS (g sin g
where B’',..., F' are real numbers independent of d, that change only when

si(d), sy(d) or sp(d) changes.

If we substitute (7), (8), (9) and (11) into (5), use the relation cos? pq =
1/(1 + tan? @q), and express everything in terms of tan g, then we get
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1
A(d)=A" + B" -tanpg + C" -

tan pq
1 D"
. E"+ F" - ta , 12
+1+tan2 ©a | tan g TE fl$d (12)
where A", B" ..., F" are real numbers independent of d, that change only

when s;(d), s.(d) or s;(d) changes.

3.1.8 Putting everything together

First, let us see what the critical directions for the blue area A(d) are. It
follows from the discussion above that expression (12) changes, if one of the
vertices s;(d), s.(d) or s,(d) changes. While increasing ¢q from 7/2 to ,
the vertex s;(d) (resp. s.(d)) changes, if the left (resp. right) tangent to P in
direction d touches two vertices. This happens, if d is parallel to an edge of
the convex hull of P. The vertex s;(d) changes if d has the same direction as
the inner normal of a convex hull edge.

Next, we show how for a given direction d, 7/2 < ¢4 < 7, expression (12) can
be computed. In preprocessing, we compute (i) the extreme vertices s;(d,),
sy(dy) and sp(d,) for the vertical direction, (ii) the blue area A, for this
direction, (iii) the values v;, 0 < i < k, that are needed to compute the area
As(d), and (iv) similar values that are needed to compute the area A;(d). All
this can be done in O(n) time. Then, we compute the convex hull of P, and
its hierarchical representation, see [6, page 194]. Since P is a simple polygon,
this can also be done in O(n) time.

Given a direction d with 7/2 < ¢4 < 7, we use the hierarchical representation
to compute the extreme vertices s;(d), s,(d) and s;(d), in O(logn) time. Given
these vertices, we can compute expression (12) for A(d) in O(1) time.

We summarize the result of Section 3.1 in the following lemma.

Lemma 10 We can preprocess P in O(n) time, such that for a given direction
d, 7/2 < @pq < 7, we can in O(logn) time compute expression (12) for the
blue area A(d).

The critical directions for the blue area are (i) the inner normals of the edges
of the convex hull of P, and (ii) for each convex hull edge, the two directions
that are parallel to it.
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P G5 (d)

Fig. 8. A red support polygon R;(d).

3.2 Red support polygons

In this section, we consider the area of the red support polygons. Let d be
a build direction such that 7/2 < ¢q < m. We denote the red polygons by
Ri(d),..., R/(d). For simplicity, we use the same notation for their areas.

Each red polygon R;(d) consists of vertices and edges of P, except for one
edge, which we denote by b;(d). This edge lies on a line having direction d.
The endpoint of b;(d) that is extreme in direction d, is a vertex of P, which
we denote by a;. (Refer to Figure 8.) If ¢q increases, then edge b,;(d) rotates
around this vertex. Therefore we call this vertex a center of rotation. Let e; be
the edge of P that contains the other endpoint, ¢;(d), of b;(d). If ¢q increases,
then ¢;(d) moves along e;.

Suppose I = [o, (] is an interval, such that for each ¢4 € I, (i) b;(d) has
vertex a; as one of its endpoints, and (ii) edge e; does not change. Let d,
be the direction such that ¢4, = «, and let A; := R;(dy), and ¢; := ¢;(do).
(Refer to Figure 9.) Then the area R;(d), for ¢4 € I, is equal to

R;(d) = A; + A;(d),

where A;(d) is the signed area of the triangle with vertices a;, ¢;, and ¢;(d).

In order to find an expression for A;(d), let a’ be the orthogonal projection of
vertex a; on the line through edge e;. Let ; be the angle between the positive
z-axis and the outer normal of e;. Assume that 0 < ¢g < a; < 7/2. (The
other cases can be handled similarly.) Note that the z-coordinate of ¢;(d) is
between those of ¢; and a'. The angle between the vectors a;c;(d) and a;a’ is
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P

Fig. 9. A red support polygon R;(d) consists of a constant part with area A; and
a triangle with area A;(d).

equal to a; — ¢pq. Therefore,

1
Aj(d) =3 lej,ci(d)] - [aj, d|

(Iej; a'l = ld', ¢;(A)]) - laj, o]

N =N =N

(Iej, d'| — laj, a'| tan(e; — pa)) - |aj, a'|,
which can be written as

Xj + Y} tan(aj — QOd),

where X; and Y} are constants independent of ¢4 € I. Hence,

R](d) = Aj + Xj + Y_; tan(aj — ng) (13)

Note that the sign of A;(d) is hidden in the constants.

Suppose we increase the angle ¢q from 7/2 to m. The formula for a red area
R;(d) will change, if (i) the vertex a; of b;(d), or (ii) the edge e; changes.

Suppose the center of rotation a; changes. Let a;- be the new center of rotation.
Then both vertices a; and aj are on the ray from c;(d) in direction d. If this
ray first hits a;, then the segment a;aj is on the boundary of the visibility
cone of a;, and is in direction d. Similarly, if the ray first hits a;-, then the
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segment a’a; is on the boundary of the visibility cone of a7, and is in direction
d.

Suppose the edge e; changes. Then c;(d) must be equal to an endpoint, p, of
e;. In this case pa; is on the boundary of the visibility cone of p, and is in
direction d. This proves the following lemma.

Lemma 11 The critical directions for the red area are the directions of the
bounding rays of the visibility cones of the vertices of P.

In Sections 3.2.1 and 3.2.2, we show how we can compute and update the
expressions for the red areas at these critical directions.

3.2.1 Computing the red area for the vertical direction

Let d, be the vertical direction. We compute the red polygons for this di-
rection, as follows. Let BR be the bounding rectangle of P, i.e., the smallest
axes-parallel rectangle that contains P. Let p; = s;(d,) and p, = s,.(d,) be the
leftmost and rightmost vertices of P, respectively. We assume for simplicity
that these vertices are unique. Note that p; (resp. p,) is on the left (resp. right)
edge of BR.

The region F' := BR — P consists of simple polygons. Let V' be the set of
all polygons of F' that are not connected to the bottom edge of BR, i.e., the
platform. Then V consists of exactly those polygons of F' that are above the
chain p.,pr11,-..,p;, which are the vertices of P encountered when walking
from p, to p; in counterclockwise direction.

To compute the red areas for direction d,, we use the trapezoidal decompo-
sition of V. This decomposition is defined as follows. For each vertex p of
{PryPr+1,---,01}, shoot a ray from p in direction d,, provided that it does not
immediately go inside P. This ray intersects either the boundary of P, or the
top edge of BR, and it stops at the first intersection point. Similarly, shoot a
ray from p in direction —d,, provided that it does not immediately go inside
P. This ray stops at the first intersection, which must lie on the boundary
of P. Using the algorithm of Chazelle [4], we can compute the trapezoidal
decomposition of the polygons of V' in linear time. In fact, it suffices to com-
pute this decomposition using a simple plane sweep algorithm, which takes
O(nlogn) time.

The trapezoidal decomposition consists of trapezoids and triangles. We con-
sider a triangle as a degenerate trapezoid. We remove all trapezoids that are
connected to the upper edge of BR. It is clear that the remaining trapezoids
cover exactly all red polygons. If we know which trapezoid covers which red
polygon, then we can compute all areas R;(d,), and all edges b;(d,).
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Consider the graph that has a vertex for each trapezoid. Two vertices are
connected by an edge, if the corresponding trapezoids have a common ver-
tical boundary edge. We compute the connected components of this graph.
The trapezoids of each connected component cover exactly one red support
polygon. To compute a red polygon R;(d,) and its area, we simply merge the
corresponding trapezoids and add their areas.

We also need for each red polygon R;(d,) its bounding edge b;(d,). Note that
we know all trapezoids covering R;(d,). Since b;(d,) is the only edge of R;(d,)
that is not an edge of P, we can easily find it by considering all edges of
R;(d,). This proves the following lemma.

Lemma 12 The above algorithm computes all red support polygons, and their
total area, for the vertical build direction d,, in O(n) time. This algorithm gives
for each red polygon R;(d,), (i) its center a; of rotation, (ii) its bounding edge
b;(d,), together with information whether it is a left or right bounding edge,
and (iii) the edge e; of P that contains the endpoint c;(d,) of bi(d,).

In Section 3.2.2, we will see that when g4 increases from 7/2 to 7, a red
polygon can be split into two red polygons. Hence, if we store with each red
polygon its area expression R;(d) = A; + A;(d) explicitly, then we have to
compute for each new red polygon its constant term A;. Clearly, this takes too
much time. Since we are only interested in the sum of all red areas, however,
we maintain a global constant part Ag, whose value is ), A;.

3.2.2  Updating the red area at a critical direction

The formula for the area R;(d) of a red polygon is completely determined by
(i) a constant term A;, (ii) a center a; of rotation, and (iii) an edge e; of P.
Given this information, we can compute the intersection ¢;(d) of the ray from
a; in direction —d with edge e;, and the area A;(d) of the triangle in Figure 9.

Let d be a critical direction for the red support polygons, and assume that
we have the expressions for the areas of the red support polygons for this
direction.

Since d is critical, there are two vertices  and y of P, such that the segment
xy is on a bounding ray of the visibility cone of z, and this segment has
direction d. We will show how to update the expression for the red area at
this direction. We distinguish several cases.

Case 1: y is the center of rotation of a red polygon R;(d), the ray from

z in direction —d immediately enters P, and zy is not an edge of P. See
Figure 10(a).
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Al(d’

A%(d)

Fig. 10. Cases 1, 2 and 3.1. d is a critical direction, d’' is a direction such that @q
is slightly larger than ¢q.

In this case, the edge e; of R;(d) changes to, say, e. Assume that the area R;(d)
is increasing. (The case when the area decreases can be handled similarly.)
Since e; is changing, the endpoint ¢;(d) of b;(d) is equal to x. Moreover, x
is the common endpoint of e; and e,. We add the area A;(d) to the global
variable Ag, and set up the formula for the area of the new triangle Al(d)
that is determined by y and e;.

Case 2: z and y are centers of rotation of red polygons R;(d) and R;(d),
respectively. The edges b;(d) and b;(d) are both right bounding edges. See
Figure 10(b).

In this case, we have z = a; = ¢;(d), and y = a;. Also, a; ceases being a center
of rotation, and the polygons R;(d) and R;(d) are combined into a new red
polygon R(d). We add the value A;(d) + A;(d) to the global variable Ag,
and set up the formula for the area of the new triangle A’(d). This triangle
is determined by a; and edge e;.
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(a) (b)

Fig. 11. Cases 3.2 and 4. d is a critical direction, d’ is a direction such that @q: is
slightly larger than ¢q4.

Case 3: y is the center of rotation of a red polygon R;(d), and z is not a center
of rotation. Moreover, the ray from z in direction —d does not immediately
enter P. Finally, b;(d) is a left bounding edge.

In this case, we have y = a;. Also, vertex = becomes a center of rotation.

Case 3.1: The two edges adjacent to = are to the right of b;(d). See Fig-
ure 10(c).

The red polygon R;(d) is split into two independent red polygons R;(d) and
R}(d). We add the (signed) area of the old triangle A;(d) to the global variable
Ag. Furthermore, we set up formulas for the areas of the two new triangles
Aj(d) and A’(d). Triangle Aj(d) is determined by z and the edge e; of the
old triangle A;(d). Triangle A%(d) is determined by y = a;, and that edge €}
of P having x as endpoint, whose other endpoint is higher w.r.t. direction d.
Note that the signs of Aj(d) and A’(d) are both negative.

Case 3.2: The two edges adjacent to z are to the left of b;(d). See Figure 11(a).

The red polygon R;(d) is split into two independent red polygons R}(d) and
R’(d). We add the area of the old triangle A;(d) to the global variable Ag.
Furthermore, we set up formulas for the areas of the two new triangles Al(d)
and A’ (d), having = and y = a; as centers of rotation, respectively. Since zy
has direction d, the edges e; and e} of these two triangles are the same. We
find them by shooting a ray from z in direction —d; the first edge of P that
is hit is e].

Case 4: z and y are centers of rotation of red polygons R;(d) and R;(d),
respectively. The edges b;(d) and b;(d) are left and right bounding edges,
respectively. See Figure 11(b).

In this case, we have z = q;, and y = a;. The two polygons R;(d) and R,;(d)
are combined into one polygon R}(d). We add the areas of the old triangles
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Aj(d”)

(a) (b)

Fig. 12. Cases 5 and 6. d is a critical direction, d' and d" are directions such that
wa and @qn are slightly larger and smaller than 4, respectively.

A;(d) and A;(d) to Ag. Note that the sign of A;(d) is negative, and that of
Aj(d) is positive.

We set up the formula for the area of the new triangle A’,(d). This triangle is
determined by y = a;, and the edge having x = a; as endpoint, whose other
endpoint is higher w.r.t. direction d.

Case 5: y is not a center of rotation. See Figure 12(a).

In this case, the vertices x and y are connected by an edge, say e, of P. Also,
the outer normal of e is to the right of e, w.r.t. direction d. A new red polygon
R’(d) with center of rotation y arises. At this direction, this polygon is a
triangle, A’(d), which is determined by y and the edge €’ of P with endpoint
x that is not incident to y.

Case 6: y is the center of rotation of a red polygon R;(d), the ray from z in
direction —d immediately enters P, and xy is an edge of P. See Figure 12(b).

In this case, R;(d) is a triangle, and the outer normal of e is to the left of e.
Since this red polygon vanishes, we subtract the constant part of its area from
Ag, and delete the non-constant part of the formula.

Since we assume that our polygon P is in general position, in the sense that
no three vertices lie on a line, we have covered all cases. The following lemma
follows from our discussion.

Lemma 13 At a critical direction, we can update the expression for the red
area in O(logn) time.
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3.8 The overall algorithm

We are ready now to give our algorithm.

Step 1: Preprocess P as indicated in Lemmas 10 and 12. This gives the
expressions for the support area for the vertical direction.

Step 2: Compute the visibility cones of all vertices of P. Let D, be the set
of all directions determined by the bounding rays of the non-empty cones.
Compute the convex hull of P. Compute the set D, containing the following
directions. For each edge e of the convex hull, D, contains the the two direc-
tions parallel to e, and the inner normal of e. Sort the directions of the set
D := D, U D,. Finally, preprocess P such that ray shooting queries can be
solved in O(logn) time.

Step 3: Sweep over the elements of D, thereby visiting the corresponding
subintervals one after another. For each subinterval I, update expressions (12)
and (13), and compute its minimum within /. The global minimum of the area
over all these subintervals is the desired result.

Consider the minimization problem within one subinterval I. As in Section 2.2,
we can reduce this to the following problem.

Problem PR'(n): Given 2n+T7 real numbers ci, ¢y, ..., Cn,d1,da, ..., dy, B,C,
D,E F, and xy and x1, compute the global minimum of the function

1 1 D " d;
Hz)=B-z+C-—+ ‘ —+E+F-x]+2 . ,
x 1+22 |z S\l+cz

for x € [xg, x1].

If we solve this problem using standard calculus techniques, then we have to
compute the roots of the derivative of H, which leads to a polynomial whose
degree is linear in n. As in Section 2.2, we are not aware of any efficient
algorithm that solves Problem PR'(n), and we leave its design and analysis as
an open problem. In the theorem below, we denote the time it takes to solve
PR'(n) generically by ¢(n).

Theorem 14 Let P be a simple polygon with n vertices, and let q(n) be the
time needed for solving problem PR'(n). In O(nlogn + nq(n)) time, we can
compute a direction d for which the total area of the supports is minimal.

If the polygon P 1s C-oriented for some constant C, then this optimal direction
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can be computed in O(nlogn) time.

Proof. The first claim follows from the above discussion. If P is C-oriented,
then the summation in the function H(z) contains at most C' terms. There-
fore, if we assume that the roots of a polynomial of constant degree can be
computed in constant time, then we can compute the minimum of H(z) for
one subinterval in constant time. |

4 Minimizing the trapped area for simple polygons

In this section, we want to minimize the trapped area for a simple polygon P.
We show that we can use basically the same algorithm as in Section 3.

Recall that the trapped area is the total area of those regions that are separate
from the main body of liquid in the vat. We define this notion formally. Let d
be a build direction, and let d’ be the direction that makes a clockwise angle
of /2 with d. Hence, if d is directed vertically upwards, then d’ is directed
horizontally to the right.

Let = be a point in the exterior of P. We say that x belongs to a trapped region
for direction d, if the ray from z in direction d does not intersect the interior of
P, but the two rays from z in directions d’ and —d’ both intersect P’s interior.
(Refer to Figure 13.) These trapped regions consist of a collection of simple
polygons, which we call trapped polygons. The trapped area for build direction
d is defined as the total area of all trapped polygons for this direction. Note
that the trapped area does not include the area of the supports.

Let V(d) be a trapped polygon for direction d. The boundary of V(d) is in
contact with edges of P and certain red support polygons R;(d), 1 < i < |,
for direction d. Also, V(d) is bounded from above, w.r.t. d, by a line segment
I(d) that is parallel to direction d’. If the angle g4 is varied slightly, then I(d)
rotates around one of its endpoints, say a(d), which is a vertex of P, whereas
the other endpoint moves along an edge, say e(d), which is an edge of P or a
red polygon. Note that in the latter case, e(d) also rotates around a vertex of

P.

Let V'(d) denote the polygon which is the union of V(d) and the red polygons
R;(d) that are in contact with V' (d). Then, the area of V(d) is equal to the
area of V'(d) minus the total area of these red polygons.

This suggests the following approach for minimizing the trapped area. For a
given interval I = [« ], let dg be the direction such that ¢q, = «. Then as
in Section 3.2, the area of V'(d) is equal to the area of V'(dg) plus the signed
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Fig. 13. Ri(d), R2(d) and R3(d) are red support polygons, V(d) is a trapped
polygon.

areas of at most two triangles that are determined by I(d), /(dy), e(d) and
e(dp). In this way, the total area of all the trapped polygons V(d) can be
written in the form of problem PR'(n).

The area formula changes if (i) one of the formulas for R;(d) changes, (ii) the
“description” of e(d) changes, or (iii) the vertex a(d) changes. It is not difficult
to see that (ii) (resp. (iii)) can only happen if d is parallel (resp. orthogonal)
to a bounding ray of a visibility cone.

Hence, we can basically apply the same algorithm as in Section 3, except that
the number of critical directions increases by at most 2n. This leads to the
following result.

Theorem 15 Let P be a simple polygon with n vertices, and let q(n) be the
time needed for solving problem PR'(n). In O(nlogn + nq(n)) time, we can
compute a direction d for which the trapped area is minimal.

If the polygon P 1s C-oriented for some constant C, then this optimal direction
can be computed in O(nlogn) time.
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5 Concluding remarks

We have given geometric algorithms for some optimization problems arising
in layered manufacturing.

An interesting open problem that we are pursuing is the design of efficient
algorithms for optimizing supports for a non-convex three-dimensional poly-
hedron. We believe that the ideas developed in this paper will be very helpful
in this effort.
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