
Algorithmica manuscript No.
(will be inserted by the editor)

On the Minimum Consistent Subset Problem

Ahmad Biniaz* · Sergio Cabello · Paz Carmi ·
Jean-Lou De Carufel · Anil Maheshwari ·
Saeed Mehrabi · Michiel Smid

Received: date / Accepted: date

Abstract Let P be a set of n colored points in the d-dimensional Euclidean
space. Introduced by Hart (1968), a consistent subset of P , is a set S ⊆ P
such that for every point p in P \ S, the closest point of p in S has the same
color as p. The consistent subset problem is to find a consistent subset of P
with minimum cardinality. This problem is known to be NP-complete even
for two-colored point sets. Since the initial presentation of this problem, aside
from the hardness results, there has not been significant progress from the
algorithmic point of view. In this paper we present the following algorithmic
results for the consistent subset problem in the plane:

1. The first subexponential-time algorithm for the consistent subset problem.
2. An O(n log n)-time algorithm that finds a consistent subset of size two in

two-colored point sets (if such a subset exists). Along the way we prove the
following result which is of an independent interest: Given n translations of
a cone (defined as the intersection of n halfspaces) and n points in R3, in
O(n log n) time one can decide whether or not there is a point in a cone.

*A. Biniaz; corresponding author
School of Computer Science, University of Windsor
E-mail: ahmad.biniaz@gmail.com

S. Cabello
Department of Mathematics, IMFM and FMF, University of Ljubljana
E-mail: sergio.cabello@fmf.uni-lj.si

P. Carmi
Department of Computer Science, Ben-Gurion University of the Negev
E-mail: carmip@cs.bgu.ac.il

J.-L. De Carufel
School of Electrical Engineering and Computer Science, University of Ottawa
E-mail: jdecaruf@uottawa.ca

A. Maheshwari · S. Mehrabi · M. Smid
School of Computer Science, Carleton University
E-mail: anil@scs.carleton.ca, saeed.mehrabi@carleton.ca, michiel@scs.carleton.ca

2 A. Biniaz et al.

3. An O(n log2 n)-time algorithm that finds a minimum consistent subset in
two-colored point sets where one color class contains exactly one point;
this improves the previous best known O(n2) running time which is due to
Wilfong (SoCG 1991).

4. An O(n)-time algorithm for the consistent subset problem on collinear
points that are given from left to right; this improves the previous best
known O(n2) running time.

5. A non-trivial O(n6)-time dynamic programming algorithm for the consistent
subset problem on points arranged on two parallel lines.

To obtain these results, we combine tools from planar separators, paraboloid
lifting, additively-weighted Voronoi diagrams with respect to convex distance
functions, point location in farthest-point Voronoi diagrams, range trees, mini-
mum covering of a circle with arcs, and several geometric transformations.

1 Introduction

One of the important problems in pattern recognition is to classify new objects
according to the current objects using the nearest neighbor rule. Motivated by
this problem, in 1968, Hart [6] introduced the notion of consistent subset as
follows. For a set P of colored points1 in the d-dimensional Euclidean space,
a set S ⊆ P is a consistent subset if for every point p ∈ P \ S, the closest
point of p in S has the same color as p. The consistent subset problem asks
for a consistent subset with minimum cardinality. Formally, we are given a set
P of n points in the d-dimensional Euclidean space that is partitioned into
P1, . . . , Pk, with k > 2, and the goal is to find a smallest set S ⊆ P such that
for every i ∈ {1, . . . , k} it holds that if p ∈ Pi then the nearest neighbor of p
in S belongs to Pi. It is implied by the definition that S should contain at
least one point from every Pi. To keep the terminology consistent with some
recent works on this problem we will be dealing with colored points instead
of partitions, that is, we assume that the points of Pi are colored i. Following
this terminology, the consistent subset problem asks for a smallest subset S of
P such that the color of every point p ∈ P \ S is the same as the color of its
closest point in S. The notion of consistent subset has a close relation with
Voronoi diagrams, a well-known structure in computational geometry. Consider
the Voronoi diagram of a subset S of P . Then, S is a consistent subset of P if
and only if for every point s ∈ S it holds that the points of P , that lie in the
Voronoi cell of s, have the same color as s; see Figure 1(a).

Since the initial presentation of this problem in 1968, there has not been
significant progress from the algorithmic point of view. Although there were
several attempts for developing algorithms, they either did not guarantee the
optimality [4,6,17] or had exponential running time [15]. In SoCG 1991, Wilfong
[17] proved that the consistent subset problem in the plane is NP-complete
if the input points are colored by at least three colors—the proof is based

1 In some previous works the points have labels, as opposed to colors.

On the Minimum Consistent Subset Problem 3

on the NP completeness of the disc cover problem [11]. He further presented
a technically-involved O(n2)-time algorithm for a special case of two-colored
input points where one point is red and all other points are blue; his elegant
algorithm transforms the consistent subset problem to the problem of covering
points with disks which in turn is transformed to the problem of covering a
circle with arcs. It has been recently proved, by Khodamoradi et al. [8], that the
consistent subset problem with two colors is also NP-complete in any dimension
d > 2—the proof is by a reduction from the planar rectilinear monotone 3-SAT
[2]. Observe that the one color version of the problem is trivial because every
single point is a consistent subset. More recently, Banerjee et al. [1] showed
that the consistent subset problem on collinear points, i.e., points that lie on a
straight line, can be solved optimally in O(n2) time.

Recently, Gottlieb et al. [5] studied a two-colored version of the consistent
subset problem — referred to as the nearest neighbor condensing problem —
where the points come from a metric space. They prove a lower bound for
the hardness of approximating a minimum consistent subset; this lower bound
includes two parameters: the doubling dimension of the space and the ratio of
the minimum distance between points of opposite colors to the diameter of the
point set. Moreover, for this two-colored version of the problem, they give an
approximation algorithm whose ratio almost matches the lower bound.

In a related problem, which is called the selective subset problem, the goal
is to find the smallest subset S of P such that for every p ∈ Pi the nearest
neighbor of p in S ∪ (P \ Pi) belongs to Pi. Wilfong [17] showed that this
problem is also NP-complete even with two colors in the plane. See [1] for some
recent progress on this problem.

In this paper we study the consistent subset problem in the Euclidean plane.
We improve some previous results and present some new results. To obtain
these results, we combine tools from planar separators, additively-weighted
Voronoi diagrams with respect to a convex distance function, point location
in farthest-point Voronoi diagrams, range trees, paraboloid lifting, minimum
covering of a circle with arcs, and several geometric transformations. We present
the first subexponential-time algorithm for this problem in the plane. We also
present an O(n log n)-time algorithm that finds a consistent subset of size
two in two-colored point sets (if such a subset exists); this is obtained by
transforming the consistent subset problem into a point-cone incidence problem
in dimension three. Along the way we prove the following result which is of
independent interest: Given n translations of a cone (defined as the intersection
of n halfspaces) and n points in R3, in O(n log n) time one can decide whether
or not there is a point in a cone. We also revisit the case where one point is red
and all other points are blue; we give an O(n log2 n)-time algorithm for this
case, thereby improving the previous O(n2) running time of [17]. For collinear
points that are given from left to right, we present an O(n)-time algorithm;
this improves the previous running time by a factor of Θ(n). We also present a
non-trivial O(n6)-time dynamic programming algorithm for points arranged
on two parallel lines.

4 A. Biniaz et al.

2 A Subexponential Algorithm

The consistent subset problem can easily be solved in exponential time by
simply checking all possible subsets of P . In this section we present the first
subexponential-time algorithm for this problem. We consider the decision
version of this problem in which we are given a set P of n colored points in
the plane and an integer k, and we want to decide whether or not P has a
consistent subset of size k. Moreover, if the answer is positive, then we want to
find such a subset. This problem can be solved in time nO(k) by checking all
possible subsets of size k. We show how to solve this problem in time nO(

√
k);

we use a recursive separator-based technique that was introduced in 1993 by
Hwang et al. [7] for the Euclidean k-center problem, and then extended by
Marx and Pilipczuk [10] for planar facility location problems. Although this
technique was known before, its application in our setting is not straightforward
and requires technical details which we give in this section.

Consider an optimal solution S of size k. The Voronoi diagram of S, say
V, is a partition of the plane into convex regions. We want to convert V to a
2-connected 3-regular planar graph that has a balanced curve separator. Then
we want to use this separator to split the problem into two subproblems that
can be solved independently. To that end, first we introduce small perturbations

v1

v2 v3

to the coordinates of points of P to ensure
that no four points lie on the boundary of a
circle; this ensures that every vertex of V has
degree 3. The Voronoi diagram V consists of
finite segments and infinite rays. We want
V to have at most three infinite rays. To
achieve this, we introduce three new points
v1, v2, v3 that lie on the vertices of a suffi-
ciently large equilateral triangle2 that con-
tains P , and then we color them by three
new colors; see the right figure. Since these
three points have distinct colors, they appear
in any consistent subset of P ∪ {v1, v2, v3}.
Moreover, since they are far from the original points, by adding them to any
consistent subset of P we obtain a valid consistent subset for P ∪ {v1, v2, v3}.
Conversely, by removing these three points from any consistent subset of
P ∪ {v1, v2, v3} we obtain a valid consistent subset for P . Therefore, in the
rest of our description we assume, without loss of generality, that P contains
v1, v2, v3. Consequently, the optimal solution S also contains those three points;
this implies that V has three infinite rays which are introduced by v1, v2, v3
(see the above figure). We introduce a new vertex at infinity and connect these
three rays to that vertex. Hence we obtain a 2-connected 3-regular planar
graph, namely G. This graph is 2-connected because every vertex is on a cycle,

2 The triangle is large in the sense that for every point p ∈ P , the closest point to p, among
P ∪ {v1, v2, v3}, is in P .

On the Minimum Consistent Subset Problem 5

and it is 3-connected because all vertices of the Voronoi diagram V and the
vertex that is introduced at infinity are of degree 3. Marx and Pilipczuk [10]
showed that such a graph has a polygonal separator δ of size O(

√
k) (going

through O(
√
k) faces and vertices) that is face balanced, in the sense that there

are at most 2k/3 faces of G strictly inside δ and at most 2k/3 faces of G strictly
outside δ. The vertices of δ alternate between points of S and the vertices of
G as depicted in Figure 1(a). See [14] for an alternate way of computing a
balanced curve separator.

δ D

(a) (b)

Fig. 1 (a) A solution S (bold points), together with its Voronoi diagram V, and a balanced
curve separator δ. (b) A subproblem with input domain D (shaded region) and a set S′

(bold points) that is part of the solution.

We are going to use dynamic programming based on balanced curve sepa-
rators of G. The main idea is to use δ to split the problem into two smaller
subproblems, one inside δ and one outside δ, and then solve each subproblem
recursively. But, we do not know G and hence we have no way of computing δ.
However, we can guess δ by trying all possible balanced curve separators of
size k′ = O(

√
k).

Every vertex of δ is either a point of P or a vertex of G (and consequently
a vertex of V) that is introduced by three points of P . Therefore, every curve
separator of size k′ is defined by at most 3k′ points of P , and thus, the number
of such separators is at most

(
n
3k′

)
6 n3k′

= nO(
√
k). To find these curve

separators, we try every subset of at most 3k′ points of P . For every such
subset we compute its Voronoi diagram, which has at most 6k′ vertices. For the
set that is the union of the 3k′ points and the 6k′ vertices, we check all 2(6k′+3k′)

subsets and choose every subset that forms a balanced curve separator (that
alternates between points and vertices). Therefore, in a time proportional to
n3k′ · 29k′

= nO(
√
k) we can compute all balanced curve separators.

Now we describe our dynamic programming algorithm. Throughout our
description, we will assume that P is fixed for all subproblems. By trying all
balanced curve separators, we may assume that we have correctly guessed δ
and the subset S′ of P , with |S′| 6 3k′, that defines δ. The solution of our

6 A. Biniaz et al.

main problem consists of S′ and the solutions of two separate subproblems,
one inside δ and one outside δ. To solve these two subproblems recursively, in
the later steps, we get subproblems of the following form. The input of every
subproblem consists of a positive integer x (6 k), a subset S′ of y (6 k) points
of P that are already chosen to be in the solution, and a polygonal domain
D—possibly with holes—of size Θ(y) which is a polygon with its vertices
alternating between the points of S′ and the vertices of the Voronoi diagram
of S′. The task is to select a subset S ⊆ (P ∩D) \ S′ of size x such that:

(i) D is a polygon whose vertices alternate between the points of S′ and the
vertices of the Voronoi diagram of S ∪ S′, and

(ii) S ∪ S′ is a consistent subset for (P ∩D) ∪ S′.

See Figure 1(b) for an illustration of such a subproblem. The top-level
master problem has x = k, y = 0, and D is the entire plane. We stop the
recursive calls as soon as we reach a subproblem with x = O(

√
k), in which

case, we spend O(nx) time to solve this subproblem; this is done by trying all
subsets of (P ∩D) \ S′ that have size x. For every subproblem, the number
of points in S′ (i.e., y) is at most three times the number of vertices on the
boundary of the domain D. The number of vertices on the boundary of D—that
are accumulated during recursive calls—is at most

√
k +

√
2

3
k +

√(
2

3

)2

k +

√(
2

3

)3

k + ... = O(
√
k).

Therefore, y = |S′| = O(
√
k), and thus the Voronoi diagram of S ∪ S′ has

a balanced curve separator of size O(
√
x+ y) = O(

√
k).3 We try all possible

nO(
√
k) such separators, and for each of these we recursively solve the two

subproblems in its interior and exterior. For these two subproblems to be really
independent we include the O(

√
k) points, defining the separator, in the inputs

of both subproblems. Therefore, the running time of our algorithm can be
interpreted by the following recursion

T (n, k) 6 nO(
√
k) ·max

{
T (n, k1 + y) + T (n, k2 + y) | k1 + k2 + y = k,

k1, k2 6 2k/3, y = O(
√
k)
}
,

which solves to T (n, k) 6 nO(
√
k). Notice that our algorithm solves the decision

version of the consistent subset problem for a fixed k.
To compute the consistent subset of minimum cardinality, whose size, say

k, is unknown at the start of the algorithm, we run the decision algorithm with
values 1 to n and stop as soon as it gives a positive answer. The total running
time is nO(

√
k) · k, which is nO(

√
k). We have proved the following theorem.

Theorem 1 A minimum consistent subset of n colored points in the plane can
be computed in nO(

√
k) time, where k is the size of the minimum consistent

subset.
3 In fact the 2-connected 3-regular planar graph obtained from the Voronoi diagram of

S ∪ S′ has such a separator.

On the Minimum Consistent Subset Problem 7

3 Consistent Subset of Size Two

In this section we investigate the existence of a consistent subset of size two
in a set of bichromatic points where every point is colored by one of the two
colors, say red and blue. Before stating the problem formally we introduce some
terminology. For a set P of points in the plane, we denote the convex hull of P
by CH(P). For two points p and q in the plane, we denote the straight-line
segment between p and q by pq, and the perpendicular bisector of pq by β(p, q).

Let R and B be two disjoint sets of total n points in the plane such that
the points of R are colored red and the points of B are colored blue. We want
to decide whether or not R ∪B has a consistent subset of size two. Moreover,
if the answer is positive, then we want to find such points, i.e., a red point
r ∈ R and a blue point b ∈ B such that all red points are closer to r than to b,
and all blue points are closer to b than to r. Alternatively, we want to find a
pair of points (r, b) ∈ R × B such that β(r, b) separates CH(R) and CH(B).
This problem can be solved in O(n2 log n) time by trying all the O(n2) pairs
(r, b) ∈ R×B; for each pair (r, b) we can verify in O(log n) time whether or not
β(r, b) separates CH(R) and CH(B) (this can be done by performing binary
search on CH(R) and CH(B) with respect to β(r, b)). In this section we show
how to solve this problem in time O(n log n). To that end, we assume that
CH(R) and CH(B) are disjoint, because otherwise there is no such pair (r, b).

r

b

β(r, b)

It might be tempting to believe that a solution
of this problem contains points only from the bound-
aries of CH(R) and CH(B). However, this is not
necessarily the case; in the figure to the right, the
only solution of this problem contains r and b which
are in the interiors of CH(R) and CH(B). Also, due
to the close relation between Voronoi diagrams and
Delaunay triangulations, one may believe that a so-
lution is defined by the two endpoints of an edge
in the Delaunay triangulation of R ∪B. This is not
necessarily the case either; the green edges in the figure to the right, which are
the Delaunay edges between R and B, do not introduce any solution.

Let R′ and B′ be the subsets of R and B on the boundaries of CH(R) and
CH(B), respectively; see Figure 2. For two points p and q in the plane, let
D(p, q) be the closed disk that is centered at p and has q on its boundary.

Lemma 1 For every two points r ∈ R and b ∈ B, the bisector β(r, b) separates
R and B if and only if
(i) ∀r′ ∈ R′ : b /∈ D(r′, r), and
(ii) ∀b′ ∈ B′ : b ∈ D(b′, r).

Proof For the direct implication since β(r, b) separates R and B, every red
point r′ (and in particular every point in R′) is closer to r than to b; this
implies that D(r′, r) does not contain b and thus (i) holds. Also, every blue
point b′ (and in particular every point in B′) is closer to b than to r; this
implies that D(b′, r) contains b and thus (ii) holds. See Figure 2.

8 A. Biniaz et al.

Now we prove the converse implication by contradiction. Assume that both
(i) and (ii) hold for some r ∈ R and some b ∈ B, but the bisector β(r, b) does
not separate R and B. After a suitable rotation we may assume that β(r, b)
is vertical, r is to the left side of β(r, b) and b is to the right side of β(r, b).
Since β(r, b) does not separate R and B, there exists either a point of R to
the right side of β(r, b), or a point of B to the left side of β(r, b). If there is
a point of R to the right side of β(r, b) then there is also a point r′ ∈ R′ to
the right side of β(r, b). In this case r′ is closer to b than to r, and thus the
disk D(r′, r) contains b which contradicts (i). If there is a point of B to the left
side of β(r, b) then there is also a point b′ ∈ B′ to the left side of β(r, b). In
this case b′ is closer to r than to b and thus the disk D(b′, r) does not contain
b which contradicts (ii). ut

r

r′1

r′2

r′3

b′1

b′2

b′3

b′4

D(r′1, r) D(b′1, r)D(b′2, r)

D(b′4, r)D(b′3, r)

D(r′3, r)

Fr

r′4

r′5

r′6

b′4

b′6

b′7

Fig. 2 R′ = {r′1, . . . , r′6} and B′ = {b′1, . . . , b′7} are the points of R and B on boundaries of
CH(R) and CH(B). The feasible region Fr for point r is shaded.

Lemma 1 implies that a pair (r, b) ∈ R×B is a consistent subset of R ∪B
if and only if every point of R′ is closer to r than to b, and every point of B′ is
closer to b than to r. This lemma does not imply that r and b are necessarily in
R′ and B′. By symmetry Lemma 1 holds even if we swap the roles of r, r′, R′

with b, b′, B′ in (i) and (ii), however we do not use this in the rest of our proof.
For every red point r ∈ R we define a feasible region Fr as follows

Fr =

(⋂
b′∈B′

D(b′, r)

)
\

(⋃
r′∈R′

D(r′, r)

)
.

See Figure 2 for illustration of a feasible region. Lemma 1, together with this
definition, imply the following corollary.

Corollary 1 For every two points r ∈ R and b ∈ B, the bisector β(r, b)
separates R and B if and only if b ∈ Fr.

Based on this corollary, our original decision problem reduces to the following
question.

On the Minimum Consistent Subset Problem 9

Question 1 Is there a blue point b ∈ B such that b lies in the feasible region
Fr of some red point r ∈ R?

If the answer to Question 1 is positive then {r, b} is a consistent subset for
R ∪ B, and if the answer is negative then R ∪ B does not have a consistent
subset with two points. In the rest of this section we show how to answer
Question 1. To that end, we lift the plane onto the paraboloid z = x2 + y2 by
projecting every point s = (x, y) in R2 onto the point ŝ = (x, y, x2 + y2) in
R3. This lift projects a circle in R2 onto a plane in R3. Consider a disk D(p, q)
in R2 and let π(p, q) be the plane in R3 that contains the projection of the
boundary circle of D(p, q). Let H−(p, q) be the lower closed halfspace defined
by π(p, q), and let H+(p, q) be the upper open halfspace defined by π(p, q). For
every point s ∈ R2, its projection ŝ lies in H−(p, q) if and only if s ∈ D(p, q),
and lies in H+(p, q) otherwise. Moreover, ŝ lies in π(p, q) if and only if s is on
the boundary circle of D(p, q). For every point r ∈ R we define a polytope Cr
in R3 as follows

Cr =

(⋂
b′∈B′

H−(b′, r)

)
∩

(⋂
r′∈R′

H+(r′, r)

)
.

Based on the above discussion, Corollary 1 can be translated to the following
corollary.

Corollary 2 For every two points r ∈ R and b ∈ B, the bisector β(r, b)

separates R and B if and only if b̂ ∈ Cr.

This corollary, in turn, translates Question 1 to the following question.

Question 2 Is there a blue point b ∈ B such that its projection b̂ lies in the
polytope Cr for some red point r ∈ R?

Now, we are going to answer Question 2. The polytope Cr is the intersection
of some halfspaces, each of which has r̂ on its boundary plane. Therefore, Cr is
a cone in R3 with apex r̂; see Figure 4. Recall that |R∪B| = n, however, for the
purposes of worst-case running-time analysis and to simplify indexing, we will
index the red points, and also the blue points, from 1 to n. Let r1, r2, , . . . , rn
be the points of R. For every point ri ∈ R, let τi be the translation that brings
r̂1 to r̂i. Notice that τ1 is the identity transformation. In the rest of this section
we will write Ci for Cri .

Lemma 2 For every point ri ∈ R, the cone Ci is the translation of C1 with
respect to τi.

Proof For a circle C in R2, let πC denote the plane in R3 that C translates onto.
For every two concentric circles C1 and Ci in R2 it holds that πC1

and πCi
are

parallel; see Figure 3. It follows that, if C1 passes through the point r1, and Ci

passes through the point ri, then πCi is obtained from πC1 by the translation
τi that brings r̂1 to r̂i, that is τi(πC1) = πCi . A similar argument holds also
for the halfspaces defined by πC1

and πCi
. Since for every a ∈ R′ ∪ B′ the

10 A. Biniaz et al.

x

y

z

C1

Ci

r1
ri

r̂1

r̂i
τi

πCi

πC1

Fig. 3 Illustration of the proof of Lemma 2.

disks D(a, r1) and D(a, ri) are concentric and the boundary of D(a, r1) passes
through r1 and the boundary of D(a, ri) passes through ri, it follows that
τi(H

+(a, r1)) = H+(a, ri) and τi(H
−(a, r1)) = H−(a, ri). Since a translation

of a polytope is obtained by translating each of the halfspaces defining it, we
have τi(C1) = Ci as depicted in Figure 4. ut

r̂1

r̂2

r̂3

b̂
τ2

τ3

C1

C2 C3

Where am I?

Fig. 4 The cones C2 and C3 are the translations of C1 with respect to τ2 and τ3.

It follows from Lemma 2 that to answer Question 2 it suffices to solve the
following problem: Given a cone C1 defined by n halfspaces, n translations of C1,
and set of n points, we want to decide whether or not there is a point in some
cone (see Figure 4). This can be verified in O(n log n) time, using Theorem 7
that we will prove later in Section 6. This is the end of our constructive proof.
The following theorem summarizes our result in this section.

Theorem 2 Given a set of n bichromatic points in the plane, in O(n log n)
time, we can compute a consistent subset of size two (if such a set exists).

4 One Red Point

In this section we revisit the consistent subset problem for the case where one
input point is red and all other points are blue. Let P be a set of n points in

On the Minimum Consistent Subset Problem 11

the plane consisting of a red point and n − 1 blue points. Observe that any
consistent subset of P contains the only red point and some blue points. In his
seminal work in SoCG 1991, Wilfong [17] showed that P has a consistent subset
of size at most seven (including the red point); this implies an O(n6)-time brute
force algorithm for this problem. Wilfong showed how to solve this problem in
O(n2)-time; his elegant algorithm transforms the consistent subset problem to
the problem of covering points with disks which in turn is transformed to the
problem of covering a circle with arcs. The running time of his algorithm is
dominated by the transformation to the circle covering problem which involves
computation of n−1 arcs in O(n2) time; all other transformations together with
the solution of the circle covering problem take O(n log n) time ([17, Lemma
19 and Theorem 9]).

We first introduce the circle covering problem, then we give a summary of
Wilfong’s transformation to this problem, and then we show how to perform
this transformation in O(n log2 n) time which implies the same running time for
the entire algorithm. We emphasis that the most involved part of the algorithm,
which is the correctness proof of this transformation, is due to Wilfong.

cc(bi)

A(bi)

D(bi)

C

bi

c(bi)

bi+1

r

ν

ν(R)

bi c(bi)

ν∗

b1 bn−1

(a) (b)

Fig. 5 (a) Transformation to the circle covering problem. (b) The range tree T on blue
points.

Let C be a circle and let A be a set of arcs covering the entire C. The circle
covering problem asks for a subset of A, with minimum cardinality, that covers
the entire C.

Wilfong’s algorithm starts by mapping input points to the projective plane,
and then transforming (in two stages) the consistent subset problem to the
circle covering problem. Let P denote the set of points after the mapping, and
let r denote the only red point of P . The transformation, which is depicted
in Figure 5(a), proceeds as follows. Let C be a circle centered at r that does
not contain any blue point. Let b1, b2, . . . , bn−1 be the blue points in clockwise
circular order around r (b1 is the first clockwise point after bn−1, and bn−1 is
the first counterclockwise point after b1). For each point bi, let D(bi) be the
disk of radius |rbi| centered at bi. Define cc(bi) to be the first counterclockwise

12 A. Biniaz et al.

point (measured from bi) that is not in D(bi), and similarly define c(bi) to be
the first clockwise point that is not in D(bi). Denote by A(bi) the open arc of
C that is contained in the wedge with counterclockwise boundary ray from r to
cc(bi) and the clockwise boundary ray from r to c(bi).4 Let A be the set of all
arcs A(bi); since blue points are assumed to be in circular order, A covers the
entire C. Wilfong proved that our instance of the consistent subset problem
is equivalent to the problem of covering C with A. The running time of his
algorithm is dominated by the computation of A in O(n2) time. We show how
to compute A in O(n log2 n) time.

In order to find each arc A(bi) it suffices to find the points cc(bi) and c(bi).
Having the clockwise ordering of points around r, one can find these points
in O(n) time for each bi, and consequently in O(n2) time for all bi’s. In the
rest of this section we show how to find c(bi) for all bi’s in O(n log2 n) time;
the points cc(bi) can be found in a similar fashion.

By the definition of c(bi) all points of the sequence bi+1, . . . , c(bi), except
c(bi), lie inside D(bi). Therefore among all points bi+1, . . . , c(bi), the point c(bi)
is the farthest from bi. This implies that in the farthest-point Voronoi diagram
of bi+1, . . . , c(bi), the point bi lies in the cell of c(bi). To exploit this property
of c(bi), we construct a 1-dimensional range tree T on all blue points based
on their clockwise order around r; blue points are stored at the leaves of T
as in Figure 5(b). At every internal node ν of T we store the farthest-point
Voronoi diagram of the blue points that are stored at the leaves of the subtree
rooted at ν; we refer to this diagram by FVD(ν). This data structure can be
computed in O(n log2 n) time because T has O(log n) levels and in each level
we compute farthest-point Voronoi diagrams of total n− 1 points in O(n log n)
time [16]. To simplify our following description, at the moment we assume that
b1, . . . , bn−1 is a linear order. At the end of this section, in Remark 1, we show
how to deal with the circular order.

We use the above data structure to find each point c(bi) in O(log2 n) time.
To that end, we walk up the tree from the leaf containing bi (first phase), and
then walk down the tree (second phase) as described below; also see Figure 5(b).
For every internal node ν, let ν(L) and ν(R) denote its left and right children,
respectively. In the first phase, for every internal node ν in the walk, we locate
the point bi in FVD(ν(R)) and find the point bf that is farthest from bi. If
bf lies in D(bi) then also does every point stored at the subtree of ν(R). In
this case we continue walking up the tree and repeat the above point location
process until we find, for the first time, the node ν∗ for which bf does not lie
in D(bi). To this end we know that c(bi) is among the points stored at ν∗(R).
Now we start the second phase and walk down the tree from ν∗(R). For every
internal node ν in this walk, we locate bi in FVD(ν(L)) and find the point bf
that is farthest from bi. If bf lies in D(bi), then also does every point stored at
ν(L), and hence we go to ν(R), otherwise we go to ν(L). At the end of this
phase we land up in a leaf of T , which stores c(bi). The entire walk has O(log n)

4 Wilfong shrinks the endpoint of A(bi) that corresponds to cc(bi) by half the clockwise
angle from cc(bi) to the next point, and shrinks the endpoint of A(bi) that corresponds to
c(bi) by half the counterclockwise angle from c(bi) to the previous point.

On the Minimum Consistent Subset Problem 13

nodes and at every node we spend O(log n) time for locating bi. Thus the time
to find c(bi) is O(log2 n). Therefore, we can find all c(bi)’s in O(n log2 n) total
time.

Theorem 3 A minimum consistent subset of n points in the plane, where one
point is red and all other points are blue, can be computed in O(n log2 n) time.

Remark 1. To deal with the circular order b1, . . . , bn−1, we build the range
tree T with 2(n− 1) leaves b1, . . . , bn−1, b1, . . . , bn−1. For a given bi, the point
c(bi) can be any of the points bi+1, . . . , bn−1, b1, . . . , bi−1. To find c(bi), we first
follow the path from the root of T to the leftmost leaf that stores bi, and then
from that leaf we start looking for c(bi) as described above.

5 Restricted Point Sets

In this section we present polynomial-time algorithms for the consistent subset
problem on collinear points and on points that are placed on two parallel lines.

5.1 Collinear Points

Let P be a set of n colored points on the x-axis, and let p1, . . . , pn be the
sequence of these points from left to right. We present a dynamic programming
algorithm that solves the consistent subset problem on P in O(n)-time; this
improves the previous quadratic-time algorithm of Banerjee et al. [1]. To
simplify the description of our algorithm we add a point pn+1 very far (at
distance at least |p1pn|) to the right of pn. We set the color of pn+1 to be
different from that of pn. Observe that every solution for P ∪ {pn+1} contains
pn+1. Moreover, by removing pn+1 from any optimal solution of P ∪{pn+1} we
obtain an optimal solution for P . Therefore, to compute an optimal solution
for P , we first compute an optimal solution for P ∪ {pn+1} and then remove
pn+1.

Our algorithm maintains a table T with n+ 1 entries T (1), . . . , T (n+ 1).
Each table entry T (k) represents the number of points in a minimum consistent
subset of Pk = {p1, . . . , pk} provided that pk is in this subset. The number of
points in an optimal solution for P will be T (n+ 1)− 1; the optimal solution
itself can be recovered from T . In the rest of this section we show how to solve a
subproblem with input Pk provided that pk should be in the solution (thereby
in the rest of this section the phrase “solution of Pk” refers to a solution
that contains pk). In fact, we show how to compute T (k), by a bottom-up
dynamic programming algorithm that scans the points from left to right. If
Pk is monochromatic, then the optimal solution contains only pk, and thus,
we set T (k) = 1. Hereafter assume that Pk is not monochromatic. Consider
the partition of Pk into maximal blocks of consecutive points such that the
points in each block have the same color. Let B1, B2, . . . , Bm−1, Bm denote
these blocks from left to right, and notice that pk is in Bm. Assume that the

14 A. Biniaz et al.

points in Bm are red and the points in Bm−1 are blue. Let py be the leftmost
point in Bm−1; see Figure 6(a). Any optimal solution for Pk contains at least
one point from {py, . . . , pk−1}; let pi be the rightmost such point (pi can be
either red or blue). Then, T (k) = T (i) + 1. Since we do not know the index i,
we try all possible values in {y, . . . , k− 1} and select one that produces a valid
solution, and that minimizes T (k):

T (k) = min{T (i) + 1 | i ∈ {y, . . . , k − 1} and i produces a valid solution}.

The index i produces a valid solution (or pi is valid) if one of the following
conditions hold:

(i) pi is red, or
(ii) pi is blue, and for every j ∈ {i + 1, . . . , k − 1} it holds that if pj is blue

then pj is closer to pi than to pk, and if pj is red then pj is closer to pk
than to pi.

If (i) holds then pi and pk have the same color. In this case the validity of
our solution for Pk is ensured by the validity of the solution of Pi. If (ii) holds
then pi and pk have distinct colors. In this case the validity of our solution for
Pk depends on the colors of points pi+1, . . . , pk−1. To verify the validity in this
case, it suffices to check the colors of only two points that are to the left and to
the right of the mid-point of the segment pipk. This can be done in O(|Bm−1|)
time for all blue points in Bm−1 while scanning them from left to right. Thus,
T (k) can be computed in O(k) time because |Bm−1| = O(k). Therefore, the
total running time of the above algorithm is O(n2).

pkpy pi

T (i)
T (k)

BmBm−1

pkpa

d1

d2

pb
d1

r

d2

l

pi

(a) (b)

Fig. 6 (a) Illustration of the computation of T (k) from T (i). (b) Any blue point in the
range [l, r] is valid.

We are now going to show how to compute T (k) in constant time, which in
turn improves the total running time to O(n). To that end we first prove the
following lemma.

Lemma 3 Let s ∈ {1, . . . ,m} be an integer, pi, pi+1, . . . , pj be a sequence of
points in Bs, and x ∈ {i, . . . , j} be an index for which T (x) is minimum. Then,
T (j) 6 T (x) + 1.

Proof To verify this inequality, observe that by adding pj to the optimal solution
of Px we obtain a valid solution (of size T (x)+1) for Pj . Therefore, any optimal
solution of Pj has at most T (x) + 1 points, and thus T (j) 6 T (x) + 1. ut

On the Minimum Consistent Subset Problem 15

At every point pj , in every block Bs, we store the index i of the first point
pi to the left of pj where pi ∈ Bs and T (i) is strictly smaller than T (j); if there
is no such point pi then we store j at pj . These indices can be maintained in
linear time while scanning the points from left to right. We use these indices
to compute T (k) in constant time as described below.

Notice that if the minimum, in the above calculation of T (k), is obtained
by a red point in Bm then it always produces a valid solution, but if the
minimum is obtained by a blue point then we need to verify its validity. In the
former case, it follows from Lemma 3 that the smallest T (·) for red points in
Bm \ {pk} is obtained either by pk−1 or by the point whose index is stored at
pk−1. Therefore we can find the smallest T (·) in constant time. Now consider
the latter case where the minimum is obtained by a blue point in Bm−1. Let
pa be the rightmost point of Bm−1, and let pb be the leftmost endpoint of Bm.
Set d1 = |pbpk| and d2 = |papk| as depicted in Figure 6(b). Set l = x(pa)− d2
and r = x(pb)− d1, where x(pa) and x(pb) are the x-coordinates of pa and pb.
Any point pi ∈ Bm−1 that is to the right of r is invalid because otherwise pb
would be closer to pi than to pk. Any point pi ∈ Bm−1 that is to the left of l
is also invalid because otherwise pa would be closer to pk than to pi. However,
every point pi ∈ Bm−1, that is in the range [l, r], is valid because it satisfies
condition (ii) above. Thus, to compute T (k) it suffices to find a point of Bm−1

in range [l, r] with the smallest T (·). By slightly abusing notation, let pr be
the rightmost point of Bm−1 in range [l, r]. It follows from Lemma 3 that the
smallest T (·) is obtained either by pr or by the point whose index is stored at
pr. Thus, in this case also, we can find the smallest T (·) in constant time.

It only remains to identify, in constant time, the index that we should store
at pk (to be used in next iterations). If pk is the leftmost point in Bm, then
we store k at pk. Assume that pk is not the leftmost point in Bm, and let x
be the index stored at pk−1. In this case, if T (x) is smaller than T (k) then we
store x at pk, otherwise we store k. This assignment ensures that pk stores a
correct index.

Based on the above discussion we can compute T (k) and identify the index
at pk in constant time. Therefore, our algorithm computes all values of T (·) in
O(n) total time. The following theorem summarizes our result in this section.

Theorem 4 A minimum consistent subset of n collinear colored points can be
computed in O(n) time, provided that the points are given from left to right.

5.2 Points on Two Parallel Lines

In this section we study the consistent subset problem on points that are placed
on two parallel lines. Let P and Q be two disjoint sets of colored points of total
size n, such that the points of P are on a straight line LP and points of Q are
on a straight line LQ that is parallel to LP . The goal is to find a minimum
consistent subset for P ∪ Q. We present a top-down dynamic programming
algorithm that solves this problem in O(n6) time. By a suitable rotation and

16 A. Biniaz et al.

reflection we may assume that LP and LQ are horizontal and LP lies above
LQ. If any of the sets P and Q is empty, then this problem reduces to the
collinear version that is discussed in Section 5.1. Assume that none of P and
Q is empty. An optimal solution may contain points from only P , only Q, or
from both P and Q. We consider the following three cases and pick one that
gives the minimum number of points. Each case will be solved independently
by a dynamic programming approach.

1. The optimal solution contains points from only Q. Consider any solution
S ⊆ Q. For every point p ∈ P , let p′ be the vertical projection of p on LQ.
Then, a point s ∈ S is the closest point to p if and only if s is the closest
point to p′. This observation suggests the following algorithm for this case:
First project all points of P vertically on LQ; let P ′ be the resulting set
of points. Then, solve the consistent subset problem for points in Q ∪ P ′,
which are collinear on LQ, with this invariant that the points of P ′ should
not be included in the solution but should be included in the validity check.
This can be done in O(n) time by modifying the algorithm of Section 5.1,
provided that P and Q are given in sorted order.

2. The optimal solution contains points from only P . The solution of this case
is analogous to that of previous case.

3. The optimal solution contains points from both P and Q. The description
of this case is more involved. Add two dummy points p− and p+ at −∞
and +∞ on LP , respectively. Analogously, add q− and q+ on LQ. Color
these four points by four new colors that are different from the colors of
points in P ∪Q. See Figure 7. Set D = {p+, p−, q+, q−}. Observe that every
solution for P ∪ Q ∪ D contains all points of D. Moreover, by removing
D from any optimal solution of P ∪Q ∪D we obtain an optimal solution
for P ∪Q. Therefore, to compute an optimal solution for P ∪Q, we first
compute an optimal solution for P ∪Q∪D and then remove D. In the rest
of this section we show how to compute an optimal solution for P ∪Q ∪D.
Without loss of generality, from now on, we assume that p− and p+ belong
to P , and q− and q+ belong to Q. For a point p let `p be the vertical line
through p.

p−

q−

p+

q+

p

q

LP

LQ

P1 P2

Q2Q1 `p `q

Fig. 7 The pair (p, q) is the closest pair in the optimal solution where p ∈ P \ {p+, p−} and
q ∈ Q \ {q+, q−}. This pair splits the problem into two independent subproblems.

In the following description the term “solution” refers to an optimal solution.
Consider a solution for this problem with input pair (P,Q), and let p and

On the Minimum Consistent Subset Problem 17

q be the closest pair in this solution such that p ∈ P \ {p+, p−} and
q ∈ Q \ {q+, q−} (for now assume that such a pair exists; later we deal with
all different cases). These two points split the problem into two subproblems
(P1, Q1) and (P2, Q2) where P1 contains all points of P that are to the left
of p (including p), P2 contains all points of P that are to the right of p
(including p), and Q1, Q2 are defined analogously. Our choice of p and q
ensures that no point in the solution lies between the vertical lines `p and `q
because otherwise that point would be part of the closest pair. See Figure 7.
Thus, (P1, Q1) and (P2, Q2) are independent instances of the problem in
the sense that for any point in P1 ∪Q1 (resp. P2 ∪Q2) its closest point in
the solution belongs to P1 ∪Q1 (resp. P2 ∪Q2). Therefore, if p and q are
given to us, we can solve (P,Q) as follows: First we recursively compute
a solution for (P1, Q1) that contains p−, q−, p, q and does not contain any
point between `p and `q. We compute an analogous solution for (P2, Q2)
recursively. Then, we take the union of these two solutions as our solution
of (P,Q). We do not know p and q, and thus we try all possible choices.
Let p1, p2, . . . , p|P | and q1, q2, . . . , q|Q| be the points of P and Q, respectively,
from left to right, where p1 = p− and q1 = q−. In later steps in our recursive
solution we get subproblems of type S(i, j, k, l) where the input to this
subproblem is {pi, . . . , pj}∪{qk, . . . , ql} and we want to compute a minimum
consistent subset that
– contains pi, pj , qk, and ql, and
– does not contain any point between `pi

and `qk , nor any point between
`pj

and `ql .
To simplify our following description, we may also refer to S(·) as a four
dimensional matrix where each of its entries stores the size of the solution for
the corresponding subproblem; the solution itself can also be retrieved from
S(·). The solution of the original problem will be stored in S(1, |P |, 1, |Q|).
In the rest of this section we show how to solve S(i, j, k, l) by a top-down
dynamic programming approach. Let pi′ and qk′ be the first points of P and
Q, respectively, that are to the right sides of both `pi and `qk , and let pj′ and
ql′ be the first points of P and Q, respectively, that are to the left sides of
both `pj

and `ql ; see Figure 8. Depending on whether or not the solution of
S(i, j, k, l) contains points from {pi′ , . . . , pj′} and {qk′ , . . . , ql′} we consider
the following three cases and pick one that minimizes S(i, j, k, l).
(a) The solution does not contain points from any of {pi′ , . . . , pj′} and

{qk′ , . . . , ql′}. Thus, the solution contains only pi, pj , qk, and ql. To
handle this case, we verify the validity of {pi, pj , qk, ql}. If this set is
a valid solution, then we assign S(i, j, k, l) = 4, otherwise we assign
S(i, j, k, l) = +∞.

(b) The solution contains points from both {pi′ , . . . , pj′} and {qk′ , . . . , ql′}.
Let ps ∈ {pi′ , . . . , pj′} and qt ∈ {qk′ , . . . , ql′} be two such points with
minimum distance. Our choice of ps and qt ensures that no point of the
solution lies between `ps and `qt ; see Figure 8. Therefore, the solution of
S(i, j, k, l) is the union of the solutions of subproblems S(i, s, k, t) and
S(s, j, t, l). Since we do not know s and t, we try all possible pairs and

18 A. Biniaz et al.

pick one that minimizes S(·), that is

S(i, j, k, l) = min{S(i, s, k, t)+S(s, j, t, l)− 2 | i′ 6 s 6 j′, k′ 6 t 6 l′},

where “−2” comes from the fact that ps and qt are counted twice. The
validity of this solution for S(i, j, k, l) is ensured by the validity of the
solutions of S(i, s, k, t) and S(s, j, t, l), and the fact that these solutions
do not contain any point between `ps and `qt .

S(i, s, k, t) S(s, j, t, l)

pi ps pj

qk qt ql

pi′

qk′

pj′

ql′

Fig. 8 (ps, qt) is the closest pair in the solution where s ∈ {i′, . . . , j′} and t ∈ {k′, . . . , l′}.

(c) The solution contains points from {qk′ , . . . , ql′} but not from {pi′ , . . . , pj′},
or vice versa. Because of symmetry, we only describe how to handle the
first case. If the solution contains exactly one point from {qk′ , . . . , ql′},
then we can easily solve this subproblem by trying every point qt in
this set and pick one for which {pi, pj , qk, qt, ql} is valid solution, then
we set S(i, j, k, l) = 5. Hereafter assume that the solution contains at
least two points from {qk′ , . . . , ql′}. Let qs and qt be the leftmost and
rightmost such points, respectively. Consider the Voronoi diagram of
pi, qk, qs and the Voronoi diagram of pj , ql, qt. Depending on whether
or not the Voronoi cells of qk and ql intersect the line segment pipj we
consider the following two cases.
i. The Voronoi cell of qk or the Voronoi cell of ql does not intersect

pipj . Because of symmetry we only describe how to handle the case
where the Voronoi cell of qk does not intersect pipj . See Figure 9.
In this case, qk cannot be the closest point to any of the points
pi+1, . . . , pj−1, and thus, the solution of S(i, j, k, l) consists of qk
together with the solution of S(i, j, s, l). Since we do not know s, we
try all possible choices. An index s ∈ {k′, . . . , l′ − 1} is valid if the
Voronoi cell of qk—in the Voronoi diagram of pi, qk, qs—does not
intersect the line segment pipj , and every point in {qk+1, . . . , qs−1}
has the same color as its closest point among pi, qk, and qs. We try
all possible choices of s and pick one that is valid and minimizes
S(i, j, k, l). Thus,

S(i, j, k, l) = min{S(i, j, s, l) + 1 | i′ 6 s 6 l′ − 1 and s is valid}.

ii. The Voronoi cells of both qk and ql intersect pipj. In this case the
Voronoi cells of both qt and qs also intersect pipj ; see Figure 10.
In the following description we slightly abuse the notation and
denote the input points {pi, . . . , pj} and {qk, . . . , ql} by P and

On the Minimum Consistent Subset Problem 19

qk

pi pj

qs qlqk′

S(i, j, s, l)

qk

pi pj

qs ql

S(i, j, s, l)

qk′

Fig. 9 The Voronoi cell of qk does not intersect the line segment pipj .

Q, respectively. Let ps′ be the first point of P to the right of
`qs , and let pt′ be the be the first point of P to the left of `qt .
Let P ′ = {ps′ , . . . , pt′} and Q′ = {qs, . . . , qt}. Consider any (not
necessarily optimal) solution of S(i, j, k, l) that consists of V =
{pi, pj , qk, qs, qt, ql} and some other points in {qs+1, . . . , qt−1}. The
closest point in this solution, to any point of (P ∪Q) \ (P ′ ∪Q′),
is in V . Thus, the (optimal) solution of S(i, j, k, l) consists of V
and the optimal solution S′ of the consistent subset problem on
P ′ ∪Q′ provided that qs and qt are in S′ and no point of P ′ is in
S′. Let T (s, t) denote this new problem on P ′ ∪Q′. We solve T (s, t)
by a similar method as in case 1: First we project points of P ′ on
LQ and then we solve the problem for collinear points. Let P ′′ be
the set of projected points. To solve T (s, t), we solve the consistent
subset problem for Q′ ∪ P ′′, which are collinear, with this invariant
that the solution contains qs and qt, and does not contain any point
of P ′′; see Figure 10. This can be done simply by modifying the
algorithm of Section 5.1. Therefore, S(i, j, k, l) = T (s, t)+ 4. A pair
(s, t) of indices is valid if for every point x in (P ∪Q) \ (P ′ ∪Q′) it
holds that the color of x is the same as the color of x’s closest point
in V . Since we do not know s and t we try all possible pairs and
pick one that is valid and minimizes S(i, j, k, l). Therefore,

S(i, j, k, l) = min{T (s, t) + 4 | k < s < t < l and (s, t) is valid}.

qk

pi pj

qs qt ql

ps′ pt′

T (s, t)

P ′

Q′ ∪ P ′′

Fig. 10 The Voronoi cells of both qk and ql intersect the line segment pipj .

20 A. Biniaz et al.

Running Time Analysis: Cases 1 and 2 can be handled in O(n log n) time;
this includes the time to sort the points of P and Q from left to right. Case 3
involves four subcases (a), (b), (c)-i, and (c)-ii. We classify the subproblems in
these subcases by types 3(a), 3(b), 3(c)-i, and 3(c)-ii, respectively. The number
of subproblems of each type is O(n4). For every subproblem of type 3(a) we
only need to verify the validity of {pi, pj , qk, ql}; this can be done in O(n) time.
Every subproblem of type 3(b) can be solved in O(n2) time by trying all pairs
(s, t). Every subproblem of type 3(c)-i can be solved in O(n2) time by trying
O(n) possible choices for s and verifying the validity of each of them in O(n)
time.

qk

pi pj

qs qt ql

Now we show that every sub-
problem of type 3(c)-ii can also
be solved in O(n2) time. To solve
every such subproblem we try
O(n2) pairs (s, t) and we need
to verify the validity of every
pair. To verify the validity of
(s, t) we need to make sure that
every point in (P ∪Q)\(P ′∪Q′)
has the same color as its closest point in V = {pi, pj , qk, qs, qt, ql}. The Voronoi
diagrams of pi, qk, qs and pj , ql, qt together with the lines `qs and `qt partition
the points of (P ∪ Q) \ (P ′ ∪ Q′) into 10 intervals, 6 intervals on LP and 4
intervals on LQ; see the figure to the right. For (s, t) to be feasible it is necessary
and sufficient that all points in every interval I have the same color as the point
in V that has I in its Voronoi cell. If we know the color of points in each of these
10 intervals, then we can verify the validity of (s, t) in constant time. The total
number of such intervals is O(n2) and we can compute in O(n2) preprocessing
time the color of all of them. Therefore, after O(n2) preprocessing time we can
solve all O(n4) subproblems of type 3(c)-ii in total O(n6) time. Notice that
the total number of subproblems of type T (s, t) in case 3(c)-ii is O(n2) and we
can solve all of them in O(n3 log n) time before solving subproblems S(i, j, k, l).
The following theorem summarizes our result in this section.

Theorem 5 A minimum consistent subset of n colored points on two parallel
lines can be computed in O(n6) time.

5.3 Bichromatic Points on Two Parallel Lines

Let P be a set of n points on two parallel lines in the plane such that all points
on one line are colored red and all points on the other line are colored blue. We
present a top-down dynamic programming algorithm that solves the consistent
problem on P in O(n4) time. By a suitable rotation and reflection we may
assume that the lines are horizontal, and the red points lie on the top line. Let
R and B denote the set of red and blue points respectively. Let r1, . . . , r|R| and
b1, . . . , b|B| be the sequences of red points and blue points from left to right,

On the Minimum Consistent Subset Problem 21

respectively. For each i ∈ {1, . . . |R|} let Ri denote the set {r1, . . . , ri}, and for
each j ∈ {1, . . . , |B|} let Bj denote the set {b1, . . . , bj}. For a point p let `p be
the vertical line through p.

Any optimal solution for this problem contains at least one blue point and
one red point. Moreover, the two rightmost points in any optimal solution
have distinct colors, because otherwise we could remove the rightmost one and
reduce the size of the optimal solution. We solve this problem by guessing the
two rightmost points in an optimal solution; in fact we try all pairs (ri, bj)
where i ∈ {1, . . . |R|} and j ∈ {1, . . . , |B|}. For every pair (ri, bj) we solve the
consistent subset problem on Ri∪Bj provided that ri and rj are in the solution,
and no point between the vertical lines `ri and `bj is in the solution (because
ri and bj are the two rightmost points in the solution). Then, among all pairs
(ri, bj) we choose one whose corresponding solution is a valid consistent subset
for R ∪B and has minimum number of points. The solution corresponding to
(ri, bj) is a valid consistent subset for R ∪ B if for every x ∈ {i+ 1, . . . , |R|},
the point rx is closer to ri than to bj , and for every y ∈ {j + 1, . . . , |B|}, the
point by is closer to bj than to ri. To analyze the running time, notice that
we guess O(n2) pairs (ri, bj). In the rest of this section we show how to solve
the subproblem associated with each pair (ri, bj) in O(n2) time. The validity
of the solution corresponding to (ri, bj) can be verified in O(|R|+ |B| − i− j)
time. Therefore, the total running time of our algorithm is O(n4).

`bj`rs

ri
rs

bj

T (i, j)
T (s, j) ri′

`ri `bj`rs

rs

bjbt

T (i, j)
T (s, t) ri′

bj′

ri

`ri
(a) (b)

Fig. 11 Illustration of the recursive computation of T (i, j), where (a) bj is the only blue
point in the solution that is to the right of `rs , and (b) bt and bj are the only two blue points
in the solution that are to the right of `rs . The crossed points cannot be in the solution.

To solve subproblems associated with pairs (ri, bj), we maintain a table T
with |R| · |B| entries T (i, j) where i ∈ {1, . . . |R|} and j ∈ {1, . . . , |B|}. Each
entry T (i, j) represents the number of points in a minimum consistent subset
of Ri ∪Bj provided that ri and bj are in this subset and no point of Ri ∪Bj ,
that lies between `ri and `bj , is in this subset. We use dynamic programming
and show how to compute T (i, j) in a recursive fashion. By symmetry we may
assume that ri is to the right of `bj . In the following description the term
“solution” refers to an optimal solution associated with T (i, j). Let ri′ be the
first red point to the left of `bj . Observe that if the solution does not contain
any red point other than ri, then {ri, bj} is the solution, i.e., the solution
does not contain any other blue point (other than bj) either. Assume that the

22 A. Biniaz et al.

solution contains some other red points, and let rs, with s ∈ {1, . . . , i′}, be the
rightmost such point. Let bj′ be the first blue point to the right of `rs . Now we
consider two cases depending on whether or not the solution contains any blue
point (other than bj) to the right of `rs .

– The solution does not contain any other blue point to the right of `rs . In
this case T (i, j) = T (s, j) + 1; see Figure 11(a).

– The solution contains some other blue points to the right of `rs . Let bt, with
t ∈ {j′, . . . , j − 1}, be the rightmost such point. In this case the solution
does not contain any blue point that is to the left of bt and to the right
of `rs because otherwise we could remove bt from the solution. Therefore
T (i, j) = T (s, t) + 2; see Figure 11(b).

Since we do not know s and t, we try all possible values and choose one that is
valid and that minimizes T (i, j). Therefore

T (i, j) = min

{
T (s, j) + 1 : s ∈ {1, . . . , i′} and s is valid
T (s, t) + 2 : s ∈ {1, . . . , i′}, t ∈ {j′, . . . , j − 1} and (s, t) is valid.

In the first case, an index s is valid if for every x ∈ {s+ 1, . . . , i− 1} the point
rx is closer to rs or ri than to bj . In the second case, a pair (s, t) is valid if for
every x ∈ {s+ 1, . . . , i− 1} the point rx is closer to rs or ri than to bt and bj ,
and for every y ∈ {t+ 1, . . . , j − 1} the point by is closer to bt or bj than to rs
and ri.

To compute T (i, j), we perform O(n2) look-ups into table T , and thus, the
time to compute T (i, j) is O(n2). There is a final issue that we need to address,
which is checking the validity of s and t within the same time bound. In the
first case we have O(n) look-ups for finding s. We can verify the validity of
each choice of s, in O(n) time, by simply checking the distances of all points in
R′ = {rs+1, . . . , ri′} from rs, ri and bj . Now we consider the second case and
describe how to verify, for a fixed t, the validity of all pairs (s, t) in O(n) time.
First of all observe that in this case, any point by with y ∈ {t+ 1, . . . , j − 1},
is closer to bt or bj than to rs and ri. Therefore, to check the validity of (s, t)
it suffices to consider the points in R′. Let rt1 be the first point of R′ that is
to the left of `bt , and let rt2 be the first point of R′ that is to the right of `bt .
Define rj1 and rj2 accordingly but with respect to `bj . If there is a point in
R′ that is closer to bt than to rs and ri, then rt1 or rt2 is closer to bt than to
rs and ri. A similar claim holds for rj1 , rj2 , and bj . Therefore, to check the
validity of (s, t) it suffices to check the distances of rt1 , rt2 , rj1 and rj2 from
the points rs, ri, bt and bj . This can be done in O(n) time for all s and a fixed
t. (If any of the points rt1 , rt2 , rj1 and rj2 is undefined then we do not need to
check that point.) The following theorem wraps up this section.

Theorem 6 Let P be a set of n bichromatic points on two parallel lines,
such that all points on the same line have the same color. Then, a minimum
consistent subset of P can be computed in O(n4) time.

On the Minimum Consistent Subset Problem 23

6 Point-Cone Incidence

In this section we will prove the following theorem.

Theorem 7 Let C be a cone in R3 with non-empty interior that is given as
the intersection of n halfspaces. Given n translations of C and a set of n points
in R3, we can decide in O(n log n) time whether or not there is a point-cone
incidence.

We first provide an overview of the approach and its key ingredients. Let
C1, . . . , Cn be the n cones that are translations of C, and let P denote the set of
n input points that we want to check their incidence with these cones. Consider
a direction d such that C contains an infinite ray from its apex in direction d.
After a suitable transformation, we may assume that d is vertically upward.
Consider the lower envelope of the n cones; we want to decide whether there is
a point of P above this lower envelope; see Figure 12(a). To that end, first we
find for every point p ∈ P , the cone Ci such that the vertical line through p
intersects the lower envelope at Ci. Then, we check whether or not p lies above
Ci.

Since all the cones are translations of a common cone, their lower envelope
can be interpreted as a Voronoi diagram with respect to a distance function
defined by a convex polygon obtaining by intersecting C with a horizontal
plane. Furthermore, in this interpretation, the sites have additive weights that
correspond to the vertical shifts in the translations of the cones. Therefore,
the lower envelope of the cones can be interpreted as an additively-weighted
Voronoi diagram with respect to a convex distance function; the sites of such
diagram are the projections of the apices of the cones into the plane. In order
to find the cone (on the lower envelope) that is intersected by the vertical line
through p, it suffices to locate p in such a Voronoi diagram, i.e., to find p’s
closest site.

We adapt the sweep-line approach used by McAllister, Kirkpatrick and
Snoeyink [12] for computing compact Voronoi diagrams for disjoint convex
regions with respect to a convex metric. In a compact Voronoi diagram, one has
a linear-size partition of the plane into cells, where each cell has two possible
candidates to be the closest site. Such a structure is enough to find the closest
site to every point p: first we locate p in this partition to identify the cell
that contains p, and then we compute the distance of p to the two candidate
sites of that cell to find the one that is closer to p. The complexity of such a
compact Voronoi diagram, in the worst case, is smaller than the complexity of
the traditional Voronoi diagram. Now, we describe our adaption, which involves
some modifications of the approach of McAllister et al. [12]. Here are the key
differences encountered in our adaptation:
– The additive weights on the sites can be interpreted as regions defined

by convex polygons, but then they are not necessarily disjoint (which is
required in [12]).

– In our case, the Voronoi vertices can be computed faster because the metric
and the site regions (encoding the weights) are defined by the same polygon.

24 A. Biniaz et al.

– By splitting C into two cones that have direction d on their boundaries, we
can assume that the sweep line and the front line (also referred to as the
beach line) coincide; this makes the computation of the Voronoi diagram
easier.

– Since the query points (the points of P) are already known, we do not need
to make a data structure for point location or to construct the compact
Voronoi diagram explicitly. It suffices to make point location on the front
line (which is the sweep line in our case) when it passes over a point of P .

Notice that some of the cones can be contained in some other, and thus,
do not appear on the lower envelope of the cones. Bhattacharya et al. [3]
claimed a randomized algorithm to find, in O(n log n) expected time, the
apices of the cones that appear in the lower envelope of the cones. They
discussed a randomized incremental construction, which is also an adaptation of
another algorithm also presented by McAllister, Kirkpatrick and Snoeyink [12].
Nevertheless, a number of aspects in the construction of [3] are not clear. Our
approach is deterministic, and also solves their problem in O(n log n) worst-case
time.

Now we provide the details of our adapted approach. Consider the cone C
and let a be its apex. Let r be a ray emanating from a in the interior of C such
that the plane π, that is orthogonal to r at a, intersects C only in a. We make
a rigid motion where the apex of C becomes the origin, r becomes vertical,
and π becomes the horizontal plane defined by z = 0. The ray r, the plane π,
and the geometric transformation can be computed in O(n) time using linear
programming in fixed dimension [13]. From now on, we will assume that the
input is actually given after the transformation. Let C′ be the intersection of C
with the halfspace x > 0, and let C′′ be the intersection of C with the halfspace
x 6 0. See Figure 12(a). Since we took r in the interior of C, both C′ and C′′

have nonempty interiors.
Let C1, . . . , Cn be the cones after the above transformation. For each i, let

(ai, bi, ci) be the apex of Ci. Recall that, by assumption, each cone Ci is the
translation of C that brings (0, 0, 0) to (ai, bi, ci). We split each cone Ci into two
cones, denoted C′

i and C′′
i , using the plane x = ai. Notice that C′

1, . . . , C′
n are

translations of C′, and C′′
1 , . . . , C′′

n are translations of C′′. We split the problem
into two subproblems, in one of them want to find a point-cone incidence
between P and C′

1, . . . , C′
n, and in the other we want to find a point-cone

incidence between P and C′′
1 , . . . , C′′

n. Any point-cone incidence (p, C′
i) or (p, C′′

i)
corresponds to a point-cone incidence (p, Ci), and vice versa. We explain how
to solve the point cone incidence for P and cones C′

i; the incidence for cones
C′′
i is similar.
Recall that the origin is the apex of C′. We define M to be the polygon

obtained by intersecting C′ with the horizontal plane z = 1. Note that M lies
on the halfspace x ≥ 0. Our choice of r in the interior of C implies that M has a
nonempty interior and (0, 0, 1) lies on the (relative) interior of a boundary edge
of M . See Figure 12(a). Since M is a convex polygon that is the intersection
of at most n halfplanes with the plane z = 1, it can be computed in O(n log n)

On the Minimum Consistent Subset Problem 25

C ′

Ci

(0, 0, 0)

p

z = 1

x = 0

M

(0, 0, 1)

C ′′

M

(0, 0, 1)
(ai, bi)

(ai, bi) +M

(ai, bi) + λMHi

(x, y)

(a) (b)

Fig. 12 (a) The cone C that is split into C′ and C′′, and the polygon M which is the
intersection of the plane z = 1 with C′. (b) The domain Hi, and the translation of M that
brings (0, 0) to (ai, bi) followed by a scale with factor λ.

time. In the rest of description, we consider M being in R2, where we just drop
the z-coordinate as in Figure 12(b).

Let Hi denote the projection of C′
i on the xy-plane. Note that Hi is the

halfplane defined by x ≥ ai because we took r in the interior of C. See
Figure 12. Let H be the union of all halfplanes Hi, and note that H is defined
by x > min{a1, . . . , an}.

The boundary of every cone C′
i can be interpreted as a function fi : Hi → R

where fi(x, y) = min{λ ∈ R≥0 | (x, y, λ) ∈ C′
i}. Alternatively, for every (x, y) ∈

Hi \ {(ai, bi)} we have

fi(x, y) = ci +min{λ > 0 | (x, y) ∈ (ai, bi) + λM}
= ci +min{λ > 0 | (x,y)−(ai,bi)

λ ∈ M},

where λ is the smallest amount that M must be scaled, after a translation
to (ai, bi), to include (x, y); see Figure 12(b). Note that if C′

i contains a
point (x, y, z), it also contains (x, y, z′) for all z′ > z. Therefore, the sur-
face {(x, y, fi(x, y) | (x, y) ∈ Hi} precisely defines the boundary of C′

i. Based
on this, to decide whether a point (x, y, z) lies in C′

i, it suffices to check whether
(x, y) ∈ Hi and z > fi(x, y). Notice that every fi is a convex function on
domain Hi. We extend the domain of each fi to H by setting f(x, y) = ∞ for
all (x, y) ∈ H \ Hi. In this way all the functions fi are defined in the same
domain H.

Let us denote by F the family of functions {f1, . . . , fn}, and define the
pointwise minimization function fmin(x, y) = min{f1(x, y), . . . , fn(x, y)} for
every (x, y) ∈ R2. For simplicity, we assume that the surfaces defined by F
are in general position in the sense that, before extending the domains of the
functions fi, the following conditions hold: (i) no apex of a cone lies on the
boundary of another cone, that is, fj(ai, bi) 6= ci for all i 6= j, (ii) any three
surfaces defined by F have a finite number of points in common, and (iii) no
four surfaces defined by F have a common point. Such assumptions can be
enforced using infinitesimal perturbations.

26 A. Biniaz et al.

For each i, let Ri be the subset of H where fi gives the minimum among
all functions in F , that is

Ri = {(x, y) ∈ H | fi(x, y) = fmin(x, y)}.

This introduces a partition of the plane into regions Ri; we will refer to this
partition by minimization diagram. We note that Ri can be empty; this occurs
when the apex (ai, bi, ci) of Ci is contained in the interior of some cone C′

j , with
j 6= i. We show some folklore properties of the regions {R1, . . . ,Rn}. In our
following description, [n] denotes the set {1, 2, . . . , n}.

Lemma 4 For any index i ∈ [n], the region Ri is star-shaped with respect to
the point (ai, bi). For any three distinct indices i, j, k ∈ [n], the intersection
Ri∩Rj ∩Rk contains at most two points. For any two distinct indices i, j ∈ [n]
and every line ` in R2 where (ai, bi) and (aj , bj) lie on the same side of `, the
intersection ` ∩Ri ∩Rj contains at most two points.

Proof To verify Ri being star-shaped with respect to (ai, bi), the proof of [12,
Corollary 2.5] applies. To verify the second claim, notice that if Ri ∩Rj ∩Rk

has three or more points, then by connecting those points to (ai, bi), (aj , bj)
and (ak, bk) with line segments, we would get a planar drawing of the graph
K3,3, which is impossible. To verify the third claim, note that if for some line `
the intersection ` ∩Ri ∩Rj has three or more points, then again we would get
an impossible planar drawing of K3,3 as follows: we connect those points to
(ai, bi), (aj , bj), and to an arbitrary point to the side of ` that does not contain
(ai, bi) and (aj , bj). ut

Lemma 5 After O(n log n) preprocessing time on M we can solve the following
problems in O(log n) time:

– Given a point p and an index i ∈ [n], decide whether or not p ∈ Ci.
– Given three distinct indices i, j, k ∈ [n], compute Ri ∩Rj ∩Rk.
– Given two distinct indices i, j ∈ [n] and a vertical line ` in R2, compute

` ∩Ri ∩Rj.

Proof We compute M explicitly in O(n log n) time and store its vertices and
edges cyclically ordered in an array. Let −M denote {(−x,−y) | (x, y) ∈ M}.
For each vertex v of M we choose an outer normal −→nv vector. We also store for
each vertex v of M the vertex −v (−v is the vertex of −M that is extremal in
the direction −→nv). Having M , this can be done in linear time by walking through
the boundaries of M and −M simultaneously. This finishes the preprocessing.

For the first claim, we are given an index i and a point p = (px, py, pz). By
performing binary search on the edges of M we can find the edge that intersects
the ray with direction (px, py)− (ai, bi) in O(log n) time. This edge determines
the value min{λ ≥ 0 | (px, py) ∈ (ai, bi) + λM}, which in turn gives fi(px, py).
By comparing fi(px, py) with pz we can decide whether or not p ∈ Ci.

Now we prove the second claim. By Lemma 4, Ri ∩ Rj ∩ Rk contains at
most two points. Assume, without loss of generality, that i = 1, j = 2, k = 3

On the Minimum Consistent Subset Problem 27

and c1 = max{c1, c2, c3}. Let P1 be the (degenerate) polygon with a single
vertex (a1, b1). Let P2 and P3 be the convex polygons (a2, b2) + (c1 − c2)M
and (a3, b3) + (c1 − c3)M , respectively. The polygons P2 and P3 might also be
single points if c2 = c1 and c3 = c1. A point (x, y) belongs to R1 ∩R2 ∩R3 if
and only if for some λ the polygon (x, y)+λ(−M) is tangent to P1, P2 and P3.

If there is some containment between the polygons P1, P2 and P3, i.e., one
polygon is totally contained in other polygon, then Ri ∩ Rj ∩ Rk is empty.
Assume that there is no containment between these polygons. Now we are
going to find two convex polygons P ′

2 and P ′
3 such that P1, P ′

2, P ′
3 are pairwise

interior disjoint. If P2 and P3 are interior disjoint, we take P ′
2 = P2 and P ′

3 = P3.
Otherwise, the boundaries of P2 and P3 intersect at most twice because they
are homothets of a same convex polygon. We compute the intersections q1, q2
between the boundary of P2 and P3 in O(log n) time. We use the the segment
q1q2 to cut P2 ∩ P3 so that we obtain two interior disjoint convex polygons
P ′
2 ⊂ P2 and P ′

3 ⊂ P3 with P ′
2 ∪ P ′

3 = P2 ∪ P3. The polygon P ′
2 is described

implicitly by the segment q1q2 and the interval of indices of M that describe
the portion of P2 between q1 and q2. The description of P ′

3 is similar. With
this description, we can perform binary search on the boundaries of P ′

2 and P ′
3.

Now we want to find the (at most two) scaled copies of −M that can be
translated to touch P1, P ′

2 and P ′
3. Since the polygons are disjoint, we can use

the tentative prune-and-search technique of Kirkpatrick and Snoeyink [9] as
used in [12, Lemma 3.15]. The procedure makes O(log n) steps, where in each
step we locate the extreme point of −M in the direction −→nv for some vertex v
of P ′

i . Since such vertices are precomputed, we spend O(1) time in each of the
O(log n) steps used by the tentative prune-and-search.5 (The vertices −q1 and
−q2 can be computed within the same time bound.)

The proof of the third claim is similar to that of previous claim, where we
treat ` as a degenerate polygon. ut

Let A be the set of points {(a1, b1), . . . (an, bn)} defined by the apices of
the cones. We use the sweep-line algorithm of [12] to compute a representation
of the minimization diagram. More precisely, we sweep H with a vertical line
` ≡ {(x, y) | x = t}, where t goes from −∞ to +∞. In our case, the sweep
line and the sweep front (the beach line) are the same because future points
of A do not affect the current minimization diagram. During the sweep, we
maintain (in a binary search tree) the intersection of ` with the regions Ri,
sorted as they occur along the line `, possibly with repetitions.

There are two types of events. A vertex event (or circle event) occurs when
the sweep front goes over a point of Ri ∩Rj ∩Rk. In our case, this is when `
goes over such a point. A site event occurs when the sweep line ` (and thus the
sweep front) goes over a point of A. The total number of these events is linear.

Vertex events will be handled in the same way as in McAllister et al. [12].
We describe how to handle site events. At a site event, we locate the point
(ai, bi) in the current region Rj that contains it, as Ri could be empty. As

5 The running time in [12, Lemma 3.15] has an extra logarithmic factor because they
spend O(logm) time to find the extremal vertex in a polygon M with m vertices.

28 A. Biniaz et al.

shown in [12, Section 3.2], this location can be done in O(log n) time using
auxiliary information that is carried over during the sweep. Once we have
located (ai, bi) in Rj , we compare fj(ai, bi) with ci to decide whether or not
(ai, bi, ci) is contained in C′

j . If (ai, bi, ci) belongs to C′
j , with j 6= i, then the

region Ri is empty, and we can just ignore the existence of Ci. Otherwise, Ri is
not empty, and we have to insert it into the minimization diagram and update
the information associated with `. Overall, we spend O(log n) time per site
event (ai, bi), plus the time needed to find future vertex events triggered by
the current site event.

Whenever the line ` passes through a point (px, py), where (px, py, pz) ∈ P ,
we can apply the same binary search on the sweep line as for site events. This
means that in time O(log n) we locate the region Rj that contains (px, py).
Then we check whether or not (px, py, pz) belongs to C′

j ; this would take an
additional O(log n) time by the first claim in Lemma 5. Therefore, we can
decide in O(log n) time whether or not the point (px, py, pz) ∈ P belongs to
any of the cones C′

1, . . . , C′
n.

At any event (site or vertex event) that changes the sequence of regions Ri

intersected by `, we have to compute possible new vertex events. By Lemma 5,
this computation takes O(log n) time; the third claim in this lemma takes care
of so-called vertices at infinity in [12]. We note that in [12] this step takes
O(log n logm) time because of their general setting.

To summarize, we have a linear number of events each taking O(log n) time.
Therefore, we can decide the existence of a point-cone incidence in O(n log n)
time. This finishes the proof of Theorem 7.

7 Conclusion

Our subexponential algorithm in Section 2 benefits from the existence of
balanced curve separators in Voronoi diagram of points in the plane, due to
Marx and Pilipczuk [10]. It would be interesting to see whether a subexponential
algorithm can be obtained for points in higher dimensions. Alternatively, a nice
approximation algorithm (using properties of approximate Voronoi diagrams
in order to bypass the curse of dimensionality) in higher dimensions seems to
be an interesting open problem.

In Section 4 we used a one dimensional range tree, that stores in its internal
nodes the farthest-point Voronoi diagrams of its leaves, and reduced the time
complexity for computing the set A of arcs in O(n log2 n) time. It would be
interesting if one could use fractional cascading to remove the extra log factor.

Acknowledgement. This work initiated at the Sixth Annual Workshop on Ge-
ometry and Graphs, March 11-16, 2018, at the Bellairs Research Institute of
McGill University, Barbados. We are grateful to the organizers and to the
participants of this workshop. We are also grateful to Otfried Cheong for
helpful comments. We thank anonymous reviewers whose comments improved

On the Minimum Consistent Subset Problem 29

the readability of the paper. In particular the open problems mentioned in
Section 7 are borrowed from these comments.

Ahmad Biniaz was supported by NSERC Postdoctoral Fellowship. Sergio
Cabello was supported by the Slovenian Research Agency, program P1-0297
and projects J1-8130, J1-8155. Paz Carmi was supported by grant 2016116 from
the United States – Israel Binational Science Foundation. Jean-Lou De Carufel,
Anil Maheshwari, and Michiel Smid were supported by NSERC. Saeed Mehrabi
was supported by NSERC and by Carleton-Fields Postdoctoral Fellowship.

References

1. Banerjee, S., Bhore, S., Chitnis, R.: Algorithms and hardness results for nearest neighbor
problems in bicolored point sets. In: Proceedings of the 13th Latin American Theoretical
Informatics Symposium (LATIN), pp. 80–93 (2018)

2. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane.
International Journal of Computational Geometry and Applications 22(3), 187–206
(2012)

3. Bhattacharya, B.K., Bishnu, A., Cheong, O., Das, S., Karmakar, A., Snoeyink, J.:
Computation of non-dominated points using compact Voronoi diagrams. In: Proceedings
of the 4th International Workshop on Algorithms and Computation (WALCOM), pp.
82–93 (2010)

4. Gates, G.: The reduced nearest neighbor rule. IEEE Transactions on Information Theory
18(3), 431–433 (1972)

5. Gottlieb, L., Kontorovich, A., Nisnevitch, P.: Near-optimal sample compression for
nearest neighbors. IEEE Transstions on Information Theory 64(6), 4120–4128 (2018).
Also in NIPS 2014.

6. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information
Theory 14(3), 515–516 (1968)

7. Hwang, R.Z., Lee, R.C.T., Chang, R.C.: The slab dividing approach to solve the Euclidean
p-center problem. Algorithmica 9(1), 1–22 (1993)

8. Khodamoradi, K., Krishnamurti, R., Roy, B.: Consistent subset problem with two labels.
In: Proceedings of the 4th International Conference on Algorithms and Discrete Applied
Mathematics (CALDAM), pp. 131–142 (2018)

9. Kirkpatrick, D.G., Snoeyink, J.: Tentative prune-and-search for computing fixed-points
with applications to geometric computation. Fundamenta Informaticae 22(4), 353–370
(1995). Also in SoCG 1993.

10. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility loca-
tion problems using voronoi diagrams. In: Proceedings of the 23rd Annual European
Symposium on Algorithms (ESA), pp. 865–877 (2015). Full version in arXiv:1504.05476

11. Masuyama, S., Ibaraki, T., Hasegawa, T.: Computational complexity of the m-center
problems in the plane. Transactions of the Institute of Electronics and Communication
Engineers of Japan. Section E E64(2), 57–64 (1981)

12. McAllister, M., Kirkpatrick, D.G., Snoeyink, J.: A compact piecewise-linear Voronoi
diagram for convex sites in the plane. Discrete & Computational Geometry 15(1), 73–105
(1996). Also in FOCS 1993.

13. Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of
the ACM 31(1), 114–127 (1984)

14. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. Journal
of Computer and System Sciences 32(3), 265–279 (1986). Also in STOC 1984.

15. Ritter, G., Woodruff, H., Lowry, S., Isenhour, T.: An algorithm for a selective nearest
neighbor decision rule. IEEE Transactions on Information Theory 21(6), 665–669 (1975)

16. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 151–162 (1975)

17. Wilfong, G.T.: Nearest neighbor problems. International Journal of Computational
Geometry and Applications 2(4), 383–416 (1992). Also in SoCG 1991.

	Introduction
	A Subexponential Algorithm
	Consistent Subset of Size Two
	One Red Point
	Restricted Point Sets
	Point-Cone Incidence
	Conclusion

