
Maximum Plane Trees in Multipartite Geometric Graphs

Ahmad Biniaz1 Prosenjit Bose1 Kimberly Crosbie1 Jean-Lou De Carufel2

David Eppstein3 Anil Maheshwari1 Michiel Smid1

July 7, 2017

Abstract

A geometric graph is a graph whose vertices are points in the plane and whose edges
are straight-line segments between the points. A plane spanning tree in a geometric graph
is a spanning tree that is non-crossing. Let R and B be two disjoint sets of points in the
plane where the points of R are colored red and the points of B are colored blue, and let
n = |R ∪ B|. A bichromatic plane spanning tree is a plane spanning tree in the complete
bipartite geometric graph with bipartition (R,B). In this paper we consider the maximum
bichromatic plane spanning tree problem, which is the problem of computing a bichromatic
plane spanning tree of maximum total edge length.

1. For the maximum bichromatic plane spanning tree problem, we present an approxi-
mation algorithm with ratio 1/4 that runs in O(n log n) time.

2. We also consider the multicolored version of this problem where the input points are
colored with k > 2 colors. We present an approximation algorithm that computes a
plane spanning tree in a complete k-partite geometric graph, and whose ratio is 1/6 if
k = 3, and 1/8 if k > 4.

3. We also revisit the special case of the problem where k = n, i.e., the problem of
computing a maximum plane spanning tree in a complete geometric graph. For this
problem, we present an approximation algorithm with ratio 0.503; this is an extension
of the algorithm presented by Dumitrescu and Tóth (2010) whose ratio is 0.502.

4. For points that are in convex position, the maximum bichromatic plane spanning tree
problem can be solved in O(n3) time. We present an O(n5)-time algorithm that solves
this problem for the case where the red points lie on a line and the blue points lie on
one side of the line.

1 Introduction

Let P be a set of n points in the plane in general position, i.e., no three points are collinear. Let
K(P) be the complete geometric graph with vertex set P . It is well known that the standard
minimum spanning tree (MinST) problem in K(P) can be solved in Θ(n log n) time. Also,
any minimum spanning tree in K(P) is plane, i.e., its edges do not cross each other. The
maximum spanning tree (MaxST) problem is the problem of computing a spanning tree in
K(P) whose total edge length is maximum. Monma et al. [5] showed that this problem can be

1School of Computer Science, Carleton University. Supported by NSERC.
ahmad.biniaz@gmail.com, kimberlycrosbie@cmail.carleton.ca, {jit, anil, michiel}@scs.carleton.ca

2School of Electrical Engineering and Computer Science, University of Ottawa. Supported by NSERC.
jdecaruf@uottawa.ca

3Computer Science Department, University of California, Irvine. Supported by NSF grant CCF-1228639.
eppstein@ics.uci.edu

1

solved in Θ(n log n) time. However, a MaxST is not necessarily plane. Alon et al. [1] started
the maximum plane spanning tree (MaxPST) problem, which is the problem of computing a
plane spanning tree in K(P) whose total edge length is maximum. It is not known whether or
not this problem is NP-hard. They presented an approximation algorithm with ratio 0.5 for
this problem. This approximation ratio was improved to 0.502 by Dumitrescu and Tóth [4].

Let R and B be two disjoint sets of points in the plane such that R∪B is in general position,
and let n = |R ∪ B|. Suppose that the points of R are colored red and the points of B are
colored blue. Let K(R,B) be the complete bipartite geometric graph with bipartition (R,B).
The minimum bichromatic spanning tree (MinBST) problem is to compute a minimum spanning
tree in K(R,B). The maximum bichromatic spanning tree (MaxBST) problem is to compute
a spanning tree in K(R,B) whose total edge length is maximum. Recently, Biniaz et al. [2]
showed that both the MinBST and the MaxBST problems can be solved in Θ(n log n) time. We
note that none of MinBST and MaxBST is necessarily plane; they might have crossing edges.
Borgelt et al. [3] studied the problem of computing a minimum bichromatic plane spanning tree,
which we refer to as the MinBPST problem. They showed that this problem is NP-hard, and
also presented a polynomial-time approximation algorithm with approximation ratio of O(

√
n).

In this paper we study the problem of computing a maximum bichromatic plane spanning tree,
which we refer to as the MaxBPST problem. See Figure 1.

MaxBST MaxBPST Max-4-ST Max-4-PST

Figure 1: Maximum spanning trees.

A natural extension of the MinBST and the MaxBST problems is to have more than two
colors. In this multicolored version, the input points are colored by k > 2 colors, and we are
looking for a minimum (resp. maximum) spanning tree in which the two endpoints of every
edge have distinct colors. In other words, we look for a minimum (resp. maximum) spanning
tree in a complete k-partite geometric graph. We refer to these problems as the Min-k-ST and
the Max-k-ST problems, respectively. Biniaz et al. [2] showed that both these problems can be
solved in O(n log n log k) time. Notice that the MinST and the MaxST problems are special
cases of the Min-k-ST and the Max-k-ST problems in which every input point has a unique
color, i.e., k = n. In this paper we also study the problem of computing a plane Max-k-ST,
which we refer to as the Max-k-PST problem. See Figure 1.

1.1 Our contributions

In this paper we study the maximum plane spanning tree problems. In Section 3 we present an
approximation algorithm with ratio 1/4 for the MaxBPST problem. We study the Max-k-PST
problem in Section 4. For this problem, we present an approximation algorithm whose ratio
is 1/6 if k = 3, and 1/8 if k > 4. In Section 5 we consider the MaxPST problem, where we
modify the algorithm presented by Dumitrescu and Tóth [4] for this problem; this modification
improves the approximation ratio to 0.503. All the presented approximation algorithms run in
O(n log n) time, where n is the number of input points.

We also study the MaxBPST problem in the special configurations of the input point set.

2

One special configuration is convex position. The O(n3)-time algorithm of Borgelt et al. [3]
for the MinBPST problem for points in convex position, also solves the MaxBPST problem
for points in convex position within the same time bound. The semi-collinear configuration is
another special case in which the red points are on a line and the blue points are on one side of
the line. In Section 6 we present an O(n5)-time algorithm that solves the MaxBPST problem
for semi-collinear point sets. The presented algorithm, can also solve the MinBPST problem
for this configuration within the same time bound. Concluding remarks are given in Section 7.

2 Preliminaries

For any two points p and q in the plane, we refer to the line segment between p and q as pq, and
to the Euclidean distance between p and q as |pq|. The lune between p and q, which we denote
by lune(p, q), is the intersection of the two disks of radius |pq| that are centered at p and q.

For a point set P , the diameter of P is the maximum Euclidean distance between any two
points of P . A pair of points that realizes the diameter of P is referred to as a diametral pair.

Let G be a geometric graph with colored vertices. We denote by L(G) the total Euclidean
length of the edges of G. A star is a tree with one internal node, which we refer to as the center
of the star. For a color c, a c-star in G is a star whose center is colored c and the colors of its
leaves are different from c.

3 The maximum bichromatic plane spanning tree problem

In this section we consider the MaxBPST problem. Recall that in this problem we are given
two sets R and B of red and blue points in the plane, respectively, and we are looking for a
maximum plane spanning tree in K(R,B). Let n = |R ∪ B|. We present an approximation
algorithm with ratio 1/4 for this problem that runs in O(n log n) time.

We will show that the length of the longest star in K(R,B) is at least 1/4 times the length
of an optimal MaxBPST. In fact, we present an algorithm that returns such a star. Moreover,
we show that this estimate is the best possible for the length of a longest star. The longest star
can easily be augmented to form a plane spanning tree as follows. The longest star has exactly
one point of one color as its center, and all points of other color as its leaves. The edges of
this star can be extended to partition the plane into convex cones, possibly except one cone; we
split this cone into two convex cones by adding its bisector. Then, we connect all the remaining
points in each cone to one of the leaves that is on the boundary of that cone.

If |R| = 1 or |B| = 1, then the problem is trivial. Assume |R| > 2 and |B| > 2. Our
algorithm first computes a diametral pair (a, b) in R and a diametral pair (p, q) in B. Then,
returns the longest star Sx in K(R,B) that is centered at a point x ∈ {a, b, p, q}. Since diametral
pairs of R and B can be computed in O(n log n) time, the running time of the algorithm follows.
In the rest of this section we will show that the longest of these stars satisfies the approximation
ratio.

Let T ∗ be an optimal MaxBPST and let L∗ denote the length of T ∗. We make an arbitrary
point the root of T ∗ and partition the edges of T ∗ into two sets as follows. Let E∗R be the set
of edges (u, v) in T ∗ where u is a red point and u is the parent of v. Let E∗B be the set of
edges (u, v) where u is a blue point and u is the parent of v. The edges of E∗R (resp. E∗B) form
a forest in which each component is a red-star (resp. blue-star). Let L∗R and L∗B denote the
total lengths of the edges of E∗R and E∗B, respectively. Without loss of generality assume that
L∗R 6 L∗B. Then,

L∗ = L∗B + L∗R 6 2L∗B. (1)

3

We will show that, in this case, the longest of Sp and Sq is a desired tree. To that end, let
FB be the set of edges that is obtained by connecting every red point to its farthest blue point.
Notice that the edges of FB form a forest in which every component is a blue-star. Moreover,
observe that

L∗B 6 L(FB). (2)

Lemma 1. L(FB) 6 2√
3
· (L(Sp) + L(Sq)).

Proof. Let Cp and Cq be the two disks of radius |pq| that are centered at p and q, respectively.
Since (p, q) is a diameter of B, all blue points lie in lune(p, q); see Figure 2(a).

p q

f (r)

r

Cp Cq

p q

r

s

f ′(r)

f (r)

p q

r

s

α

q′

p′

π
3

x

1

1

(a) (b) (c)

Figure 2: Illustration of Lemmas 1 and 2.

For any red point r ∈ R, let f(r) denote its neighbor in FB. Recall that f(r) is the farthest
blue point to r, and note that f(r) is in lune(p, q). See Figure 2(a). We are going to show that
|rf(r)| 6 2√

3
(|rp|+ |rq|). Depending on whether or not r ∈ lune(p, q) we consider the following

two cases.

• r /∈ lune(p, q). Thus, we have that r /∈ Cp or r /∈ Cq. Without loss of generality assume
r /∈ Cp; see Figure 2(a). By the triangle inequality we have |rf(r)| 6 |rq|+ |qf(r)|. Since
pq is a diameter of B, we have |qf(r)| 6 |pq|. In addition, since r /∈ Cp, we have |pq| 6 |rp|.
By combining these inequalities, we get

|rf(r)| 6 |rq|+ |qf(r)| 6 |rq|+ |pq| 6 |rq|+ |rp|.

• r ∈ lune(p, q). Without loss of generality assume that pq has unit length, pq is horizontal,
r is above pq, and r is closer to q than to p. If f(r) is on or above pq, then |rf(r)| is
smaller than |pq|, and hence smaller than |rp| + |rq|. Assume f(r) is below pq. Let s be
the intersection point of the boundaries of Cp and Cq that is below pq as in Figure 2(b).

Claim 1. |rf(r)| 6 |rs|.
Let f ′(r) be the intersection point of the ray that is emanating from r and passing through
f(r) with the boundary of lune(p, q). Note that |rf(r)| 6 |rf ′(r)|. If f ′(r) is on the
boundary of Cq, then the perpendicular bisector of the segment sf ′(r) passes through q.
In this case r is in the same side of this perpendicular as f ′(r), and thus, |rf ′(r)| 6 |rs|;

4

see Figure 2(b). Similarly, if f ′(r) is on the boundary of Cp, then both r and f ′(r) are on
a same side of the perpendicular bisector of sf ′(r) which passes through p. This proves
the claim.

Extend the line segment sp from the endpoint p. Let p′ be the point on the extended line
that is closest to r. Define q′ similarly. Note that |rp′| 6 |rp| and |rq′| 6 |rq|. Based
on this and Claim 1, in order to show that |rf(r)| 6 2√

3
(|rp| + |rq|), it suffices to show

that |rs| 6 2√
3
(|rp′| + |rq′|). Let α = ∠rsq, and note that 0 6 α 6 π

6 ; see Figure 2(c).

Since the triangles 4rsp′ and 4rsq′ are right-angled and 4spq is equilateral, we have
|rq′| = |rs| · sinα and |rp′| = |rs| · sin(π/3− α). Thus,

|rq′|+ |rp′| = |rs| · (sinα+ sin(π/3− α)) >
√
3
2
|rs|,

where the inequality is valid because sinα+sin(π/3−α) is at least
√

3/2 for all 0 6 α 6 π
6 .

This implies that |rs| 6 2√
3
(|rp′|+ |rq′|).

Since in both previous cases |rf(r)| 6 2√
3
(|rp|+ |rq|), we have

L(FB) =
∑
r∈R
|rf(r)| 6

∑
r∈R

2√
3
(|rp|+ |rq|) =

2√
3
(L(Sp) + L(Sq)).

Combining Inequalities (1), (2), and Lemma 1, we get

L∗ 6 2L∗B 6 2L(FB) 6 4√
3
· (L(Sp) + L(Sq)).

Therefore, the length of the longest of Sp and Sq is at least
√
3
8 ≈ 0.215 times L∗. In the

following lemma we improve the bound of Lemma 1 by proving that L(FB) 6 L(Sp) + L(Sq);
this improves the approximation ratio to 1/4. However, the proof of this lemma is algebraic.

Lemma 2. L(FB) 6 L(Sp) + L(Sq).

Proof. For any red point r ∈ R, let f(r) denote its neighbor in FB. In order to prove this
lemma, as we have seen in the proof of Lemma 1, it suffices to show that |rf(r)| 6 |rp|+ |rq|.
Define lune(p, q) as in the proof of Lemma 1. As we have seen there, if r /∈ lune(p, q), then
|rf(r)| 6 |rp|+ |rq|. Assume r ∈ lune(p, q). Without loss of generality assume that pq has unit
length, pq is horizontal, r is above pq, and r is closer to q than to p; see Figure 2(c). Define
the point s as in the proof of Lemma 1. By Claim 1 in the proof of Lemma 1, in order to show
that |rf(r)| 6 |rp|+ |rq|, it suffices to show that |rs| 6 |rp|+ |rq|. Let x = |rs| and α = ∠rsq;
see Figure 2(c). Note that

√
3/2 6 x 6

√
3 and 0 6 α 6 π

6 . By the cosine rule we have

|rp| =
»

1 + x2 − 2x cos(π/3− α) and |rq| =
√

1 + x2 − 2x cosα.

Define
f(x, α) =

»
1 + x2 − 2x cos(π/3− α) +

√
1 + x2 − 2x cosα− x. (3)

Then, |rp|+|rq|−|rs| = f(x, α). In Appendix A we show that f(x, α) > 0 for all
√

3/2 6 x 6
√

3
and 0 6 α 6 π

6 . This implies that |rs| 6 |rp|+ |rq|.

To this end, we have proved the following theorem:

Theorem 1. Let R and B be two disjoint sets of points in the plane such that R ∪ B is in
general position, and let n = |R ∪ B|. One can compute, in O(n log n) time, a plane spanning
tree in K(R,B) whose length is at least 1/4 times the length of a maximum plane spanning tree.

5

3.1 A matching upper bound

1

ε

In this section we show that the above estimate is best
possible for the length of the longest star in K(R,B).
Consider a set R of n/2 red points and a set B of n/2
blue points that are equally distributed in two circles
of arbitrary very small radius with their centers at
distance 1; see the figure to the right. The bichromatic
plane spanning tree/path that is shown in this figure,
has n− 2 edges of unit length and one small edge. Any star in K(R,B) has n/4 edges of unit
length, plus n/4 edges of very small length. Thus, the length of the longest star, in this example,
is about 1/4 times the length of an optimal MaxBPST (at the limit).

4 The maximum k-colored plane spanning tree problem

In the multicolored version of the maximum plane spanning tree problem, the input points are
colored by more than two colors, and we want the two endpoints of every edge in the tree to
have distinct colors. Formally, we are given a set P of n points in the plane in general position
that is partitioned into subsets P1, . . . , Pk, with k > 3. For each c ∈ {1, . . . , k}, assume the
points of Pc are colored c. Let K(P1, . . . , Pk) be the complete multipartite geometric graph on
P , which has edges between every point of each set in the partition to all points of the other
sets. The Max-k-PST problem is the problem of computing a maximum plane spanning tree
in K(P1, . . . , Pk). The standard MaxPST problem can be interpreted as an instance of this
multicolored version in which k = n, i.e., each point has a unique color. In this section, we
present an approximation algorithm, for the Max-k-PST problem, whose ratio is 1/6 if k = 3,
and 1/8 if k > 4.

We will show that the length of the longest star in K(P1, . . . , Pk) is at least 1/8 (resp. 1/6)
times the length of an optimal Max-k-PST if k > 4 (resp. k = 3). In fact, we present an
O(n log n)-time algorithm that returns such a star. The algorithm is as follows. Compute a
bichromatic diameter (p, q) of P , i.e., two points of different colors that have the maximum
distance. It can easily be verified, by contradiction, that the MaxST in K(P), which can be
computed in O(n log n) time [5], contains a bichromatic diameter of P . Notice that the length
of any edge in K(P1, . . . , Pk) is at most |pq|. Without loss of generality assume that p ∈ Pi
and q ∈ Pj . Notice that all points of P \ (Pi ∪ Pj) lie in lune(p, q), because, otherwise (p, q)
cannot be a bichromatic diameter of P . To simplify the notation, we write R, B, and G, for
Pi, Pj , and P \ (Pi ∪Pj), respectively. Moreover, we assume that the points of R, B, and G are
colored red, blue, and green, respectively. Compute a diametral pair (r, r′) in R, a diametral
pair (b, b′) in B, and a diametral pair (g, g′) in G. Return the longest star Sx in K(P1, . . . , Pk)
that is centered at a point x ∈ {p, q, r, r′, b, b′, g, g′}. We show that the length of Sx is at least
1/8 times the length of an optimal tree.

Let T ∗ be an optimal Max-k-PST, and let L∗ denote the length of T ∗. We make an arbitrary
point the root of T ∗ and partition the edges of T ∗ into four sets as follows. Let E∗R be the set
of edges (u, v) in T ∗ where u is a red point and u is the parent of v. Let E∗B be the set of edges
(u, v) where u is a blue point and u is the parent of v. Let E∗G be the set of edges (u, v) where
u is a green point, v is not a green point, and u is the parent of v. Let E∗ be the set of edges
(u, v) where both u and v are green points. The edges of each of E∗R, E∗B, and E∗G form a forest
in which each component is a red-star, a blue-star, and a green-star, respectively. Let L∗R, L∗B,
and L∗G denote the total lengths of the edges of E∗R, E∗B, and E∗G, respectively. Let L∗E denote

6

the total length of the edges in E∗. Then,

L∗ = L∗R + L∗B + L∗G + L∗E .

We consider two cases depending on where or not L∗E is larger than max{L∗R, L∗B, L∗G}.

• L∗E > max{L∗R, L∗B, L∗G}. In this case L∗E > 1
4L
∗. The number of edges in E∗ is at most

n(G)− 1, where n(G) is the number of points in G. Recall that the length of every edge
in E∗ is at most |pq|. Thus L∗E 6 (n(G) − 1) · |pq|. Each of the stars Sp and Sq has an
edge to every point of G. Thus L(Sp) + L(Sq) > n(G) · |pq|. Therefore,

1

4
L∗ 6 L∗E 6 (n(G)− 1) · |pq| < n(G) · |pq| 6 L(Sp) + L(Sq),

which implies that the longest of Sp and Sq has length at least 1
8L
∗.

• L∗E < max{L∗R, L∗B, L∗G}. Without loss of generality assume that L∗B = max{L∗R, L∗B, L∗G}.
Thus, L∗B > 1

4L
∗. Let FB be the set of edges that is obtained by connecting every point

of R ∪ G to its farthest blue point. Notice that the edges of FB form a forest in which
every component is a blue-star. Observe that L∗B 6 L(FB). Moreover, by Lemma 2 we
have L(FB) 6 L(Sb) + L(Sb′). Therefore,

1

4
L∗ 6 L∗B 6 L(FB) 6 L(Sb) + L(Sb′),

which implies that the longest of Sb and Sb′ has length at least 1
8L
∗.

The point set {p, q, r, r′, b, b′, g, g′} can be computed in O(n log n) time, and thus, the running
time of the algorithm follows.

Note 1. If k = 3, then E∗ is empty, and thus, the longest star Sx with x ∈ {r, r′, b, b′, g, g′}
has length at least 1

6L
∗.

Note 2. If the diameter pair of P is monochromatic, then we get the ratio of 1/6. Assume
both points of a diametral pair (p, q) of P belong to Pi. Let R = Pi and G = R \ Pi. Then, B
is empty and L∗ = L∗R + L∗G + L∗E . Moreover, we have r = p and r′ = q. If L∗G > 1

3L
∗, then

the longest of Sg and Sg′ has length at least 1
6L
∗. If L∗G <

1
3L
∗, then L∗R 6 L(Sr) + L(Sr′) and

L∗E 6 L(Sr) + L(Sr′). Thus, the longest of Sr and Sr′ has length at least 1
6L
∗.

Theorem 2. Let P be a set of n points in the plane in general position that is partitioned into
subsets P1, . . . , Pk, with k > 3. One can compute, in O(n log n) time, a plane spanning tree in
K(P1, . . . , Pk) whose length is at least 1/8 (resp. 1/6) times the length of a maximum plane
spanning tree if k > 4 (resp. k = 3).

5 The maximum plane spanning tree problem

In this section we study the MaxPST problem, a special case of the Max-k-PST problem where
every input point has a unique color. Formally, given a set P of points in the plane in general
position and we want to compute a maximum plane spanning tree in K(P). We revisit this
problem which was first studied by Alon, Rajagopalan and Suri (1993), and then by Dumitrescu
and Tóth (2010). Alon et al. [1] presented an approximation algorithm with ratio 1/2 for this
problem. In fact they proved that the length of the longest star in K(P) is at least 0.5 times

7

the length of an optimal tree; this bound is tight for a longest star. Dumitrescu and Tóth [4]
improved the approximation ratio to 0.502. They proved that the length of the longest double-
star in K(P) (a double-star is a tree with two internal nodes) is at least 0.502 times the length of
an optimal solution. They left as an open problem a more precise analysis of the approximation
ratio of their algorithm. In this section we modify the algorithm of Dumitrescu and Tóth [4],
and slightly improve the approximation ratio to 0.503. We will describe their algorithm briefly,
and provide detail on the parts that we will modify. The algorithm outputs the longest of five
plane trees Sa, Sb, Sh, Ea, Eb, that are describe below.

Va Vb

a b

Vm

x=0.2 x=0.8

v

u

y=0.558

y=0.15

y=− 0.15

x=0.2 x=0.8

Va Vb

Vm

a b

c

p

(a) (b)

Figure 3: (a) The plane tree Ea. The red, blue, and green edges belong to E1
a, E2

a, and E3
a

respectively. (b) The distance between p and c is less than 0.948.

Let n = |P |, and let L∗ denote the length of an optimal MaxPST in K(P). Compute a
diametral pair (a, b) of P . Without loss of generality assume that ab is a horizontal, |ab| = 1,
a = (0, 0), and b = (1, 0). Since (a, b) is a diametral pair, the length of any edge in K(P) is
at most 1. Thus, L∗ 6 n − 1. Moreover, all points of P are in lune(a, b). See Figure 3. Let
h = (xh, yh) be a point in P with the largest value of |y| (absolute value of the y-coordinate).
Without loss of generality assume that yh > 0. Define Sa, Sb, and Sh as three spanning stars
that are centered at a, b, and h respectively. We compute plane trees Ea and Eb as follows; this
computation is different from the one that is presented in [4].

Set w = 0.6. Let Va be the vertical strip between the lines x = 0 and x = 1−w
2 = 0.2, Vm

be the vertical strip between the lines x = 0.2 and x = 1+w
2 = 0.8, and Vb be the vertical strip

between the lines x = 0.8 and x = 1. Note that a ∈ Va and b ∈ Vb. See Figure 3(a). We describe
how to construct Ea; the construction of Eb is analogous. Connect a to each point in Vb and let
E1
a denotes the set of edges of the resulting star (the red edges in Figure 3(a)). The edge ab has

length 1 and every other edge has length at least 1+w
2 . The edges of E1

a partition Va into convex
regions. Each of these regions is bounded by at least one edge of E1

a from above or below. Take
any region A of the partition of Va. Let av be an edge of E1

a that bounds A either from above
or blow. Note that v ∈ Vb. Connect all points that are in A (excluding a) to v. Let E2

a be the
set of all such edges after considering all regions (the blue edges in Figure 3(a)). Since any edge
in E2

a connects a point in Va to a point in Vb, each edge in E2
a has length at least w. The edges

of E1
a ∪ E2

a partition Vm into convex regions. Each of these regions is bounded by at least one

8

edge of E1
a ∪ E2

a. Take any region M of the partition of Vm. Consider the following two cases:
(a) If M is bounded by an edge uv of E2

a, then connect all points that are in M to one of u
and v that maximizes the total length of the new edges, and (b) if M is not bounded by any
edge of E2

a, then it is bounded by an edge av of E1
a, connect all points that are in M to one of

a and v that maximizes the total length of the new edges. Let E3
a be the set of all such edges

after considering all regions of Vm (the green edges in Figure 3(a)). Let Ea be the graph with
vertex set P and edge set E1

a ∪ E2
b ∪ E3

a.
The following is a restatement of Lemma 3 in [4].

Lemma 3 (Dumitrescu and Tóth [4]). Let a and b be two points in the plane that are at distance
at least α from each other, for some real α > 0. Let S be a set of m points in the plane. Let Sa
and Sb be two star that are centered at a and b, respectively, and connected to all points of S.
Then, the length of the longest of Sa and Sb is at least α·m

2 .

Recall that the length of each edge in E1
a is at least 1+w

2 and the length of each edge in E2
b

is at least w. By Lemma 3 the total length of the edges in E3
a is at least w

2 times the number
of points in Vm.

Lemma 4. Let na and nb denote the number of points in Va and Vb respectively. Then L(Ea) >
nb
2 + w

2 (n + na) + 1−3w
2 , L(Eb) > na

2 + w
2 (n + nb) + 1−3w

2 , and consequently L(Ea) + L(Eb) >
na+nb

2 + w
2 (2n+ na + nb) + 1− 3w.

Proof. Since E1
a, E2

a, and E3
a are pairwise disjoint, we have L(Ea) = L(E1

a) + L(E2
a) + L(E3

a).
E1
a contains nb edges (including ab) of length at least 1+w

2 with the length of ab is 1. Thus,
L(E1

a) > 1+w
2 (nb − 1) + 1. E2

a has na − 1 edges of length at least w. Thus, L(E2
a) > w(na − 1).

Vm contains n−na−nb points, and thus, the length of E3
a is at least w

2 (n−na−nb). Therefore,

L(Ea) >
1+w

2
(nb − 1) + 1 + w(na − 1) +

w

2
(n− na − nb) =

nb

2
+

w

2
(n+ na) +

1−3w
2

.

The estimation of L(Eb) is analogous.

The following lemma summarizes Lemmas 3, 4, 5, and 7 in [4]. Let P = {p1, . . . , pn}, where
pi = (xi, yi). Let dmax(pi) denote the maximum distance from pi to other points in P .

Lemma 5 (Dumitrescu and Tóth [4]). Let δ and t be two constants where 0 6 δ 6 t 6 1. Then

1. L(Sa) + L(Sb) > n.

2. L∗ 6
∑n
i=1 dmax(pi).

3. if
∑n
i=1 |yi| > δn, then L(Sa) + L(Sb) > 2n

»
1
4 + δ2.

4. if
∑n
i=1 |yi| 6 δn and yh > t, then L(Sh) > (t− δ)n.

Set δ = 0.055, t = 0.558, and z = 0.49; these constants are different from the ones that are
chosen in [4].

Lemma 6. Assume that |yh| 6 t. Let pi = (xi, yi) be a point of P in Vm with |yi| 6 0.15. Then
dmax(pi) 6 0.948.

Proof. The maximum distance is attained when pi = (0.2,−0.15) or pi = (0.8,−0.15). Because
of symmetry we assume that pi = (0.2,−0.15). Let c = (xc, yc) be the rightmost intersection
point of the line y = t and lune(a, b). See Figure 3(b). The furthest point from pi in the allowed
region is c. Note that yc = t and xc =

√
1− t2 < 0.83. Thus, xc − xi < 0.63. Therefore

dmax(pi) 6 |pic| <
»

0.632 + (0.15 + t)2 < 0.948.

9

To prove the approximation ratio, we show that the length of the longest of Sa, Sb, Sh, Ea,
Eb is at least 0.503 times L∗. In order to do that, we recall the following four cases that are
considered in [4].

1. If
∑n
i=1 |yi| > δn, then the output of the algorithm is not shorter than the longest of Sa

and Sb. By Lemma 5, the approximation ratio is at least

L(Sa) + L(Sb)

2L∗
>
…

1

4
+ δ2 > 0.503.

2. If
∑n
i=1 |yi| < δn and yh > t, then the output of the algorithm is not shorter than Sh. By

Lemma 5, the approximation ratio is at least

L(Sh)

L∗
> t− δ = 0.503.

3. If
∑n
i=1 |yi| < δn, yh < t, and na + nb > (1− z)n, then the output of the algorithm is not

shorter than the longest of Ea and Eb. As a consequence of Lemma 4, the approximation
ratio is at least

L(Ea) + L(Eb)

2L∗
>
na + nb
2 · 2n +

w(2n+ na + nb)

2 · 2n +
1− 3w

2n

>
(1− z)(1 + w)

4
+
w

2
+

1− 3w

2n
> 0.503,

where the last inequality is valid for all n > 400. Based on the above calculations and the
details that are provided in the proof of Lemma 4, it turns out that ratio of 0.502 that is
claimed in [4] is valid when n > 100.

4. If
∑n
i=1 |yi| < δn, yh < t, and na + nb < (1− z)n, then the output of the algorithm is not

shorter than the longest of Sa and Sb. There are at least zn = .49n points in Vm. At most
11
30 points have |yi| > 0.15 because otherwise we have

∑n
i=1 |yi| > 0.15 · 11n30 = 0.055n = δn,

which is a contradiction. Thus, at least 49n
100 − 11n

30 = 37n
300 points in Vm have |yi| 6 0.15. By

Lemma 5 and Lemma 6 we have

L∗ 6
263n

300
+ 0.948 · 37n

300
< 0.994n.

The approximation ratio is at least

L(Sa) + L(Sb)

2L∗
>

n

2 · 0.994n
> 0.503.

Theorem 3. Let P be a set of n points in the plane in general position. One can compute, in
O(n log n) time, a plane spanning tree in K(P) whose length is at least 0.503 times the length
of a maximum plane spanning tree.

6 The MaxBPST problem on special point sets

In this section we consider the MaxBPST problem on some restricted point sets, such as

(i) point sets that are in convex position,

(ii) point sets that are semi-collinear, and

(iii) point sets with only two red points.

10

6.1 Points in convex position

Assume R ∪ B is in convex position and let |R| 6 |B|. Borgelt et al. [3] presented a dynamic
programming algorithm that solves the MinBPST problem, in K(R,B), in O(|R|2|B|) time.
Their algorithm can be adjusted to solve the MaxBPST within the same time bound.

6.2 Semi-collinear point sets

In this section we consider the special case where the input points are semi-collinear, i.e., the
red points lie on a line ` and the blue points lie on one side of `. Without loss of generality,
we assume that ` is horizontal and the blue points lie above `. Let R and B denote the non-
empty sets of red and blue points, respectively, and let n = |R ∪ B|. We present a top-down
dynamic programming algorithm that solves the MaxBPST problem for semi-collinear points
in O(n5) time. In a dynamic programming algorithm we maintain a table that stores the
solutions of subproblems. In a top-down dynamic programming algorithm, when we encounter
a subproblem, first we check the corresponding table-entry; if the subproblem is already solved,
then we use that solution, otherwise, we solve the subproblem recursively.

6.2.1 Subproblems

Let m = |R|, then |B| = n−m. Let r1, . . . , rm be the sequence of red points from left to right,
and let {b1, . . . , bn−m} be the set of blue points. We introduce A(i, j, u, v, u′, v′, w) to be the
problem of computing the weight of a MaxBPST that spans a red point set RA and a blue point
set BA where

• i and j, with i 6 j, are the indices of two red points such that RA = {ri, . . . , rj}.

• u and v are the indices of two blue points such that BA contains the blue points that are
to the right side of `(ri, bu), to the left side of `(rj , bv), and lower than both bu and bv.

• u′ (resp. v′) takes a value in the set {in, ex} which indicates whether the blue point bu
(resp. bv) is included in BA or excluded.

• w takes a value in the set {con,nco} where con stands for “connected” and nco stands for
“not connected”.

The solution for A(·) satisfies the following two rules:

• Rule 1: If u′ = in (resp. v′ = in), then we have a constrained version of A(·) where buri
(resp. bvrj) should be part of the solution, but A(·) returns the total weight of new edges,
i.e., the weight of a MaxBPST minus |buri| (resp. |bvrj |).

• Rule 2: If u′ = v′ = in, then u = v, and consequently bu = bv. Thus, every time we call
A(·) with u′ = v′ = in, we ensure that u = v.

While maintaining the above two rules, the output of A(·) is determined as follows:

• if w = con, then the output is the weight of a MaxBPST tree on RA ∪BA.

• if w = nco and u′ = v′ = in, then the output is the weight of a MaxBPST for RA ∪BA.

• if w = nco, then we find two vertex-disjoint bichromatic trees Ti and Tj that span RA∪BA,
where Ti ∪ Tj is plane, ri is a vertex of Ti, rj is a vertex of Tj , and the total weight of
Ti ∪ Tj is maximized. Following Rule 1, if u′ = in, then Ti should contain ribu, and if
v′ = in, then Tj should contain rjbv. In addition, the output is the total weight of Ti ∪ Tj
except the weight of the edges ribu and rjbv.

11

Depending on the values of u′, v′, and w, we have eight different configurations for A(·).
Starting from our top-level call as A(·, ·, ·, ·, ex, ex, con) (that is described in Subsection 6.2.2) we
will never call three casesA(i, j, u, v, in, in,nco), A(i, j, u, v, ex, in, con) andA(i, j, u, v, ex, in,nco)
during the recursive calls. So, we will describe how to handle each of the remaining five config-
urations (we will describe the first two configurations in detail and the remaining cases briefly).
During recursive calls to A(·) we make sure that the size of input gets smaller, or we transfer
from one configuration to another configuration which decreases the size of input. Therefore,
the algorithm will terminate. In each of the configurations, if |RA| 6 1 or |BA| 6 1, then
the solution is trivial. Thus, in the description of the following configurations we assume that
|RA| > 2 and |BA| > 2.

1. Subproblem A(i, j, u, v, ex, ex, con)

Since u′ = ex and v′ = ex, the set BA does not contain any of bu and bv. Since w = con,
A(·) returns the wight of a maximum bichromatic plane tree that spans RA ∪ BA. Let bt be a
topmost point in BA. In any solution of A(·), bt is connected to at least one red point; let rk,
with k ∈ {i, . . . , j}, be the leftmost such point. Since bt is a topmost blue point, the solution
does not contain an edge e that connects a blue point to the left (resp. right) of `(bt, rk) to a
red point to the right (resp. left) of `(bt, rk), because, otherwise, e crosses btrk. Thus, the edge
btrk splits the problem into two subproblems, one to the left and one to to the right. See Figure
4(left). Since rk is the leftmost red point that bt is connected to, bt is not an input point to
the left subproblem (bt is excluded). However, bt might be connected to some red points to the
right of rk, and thus, bt is an input point to the right subproblem (bt is included). Therefore,
we have

A(i, j, u, v, ex, ex, con) = |btrk|+A(i, k, u, t, ex, ex, con) +A(k, j, t, v, in, ex, con).

By Rule 1, the value that is returned by A(k, j, t, v, in, ex, con) does not include |btrk|. This
makes sure that, in A(i, j, u, v, ex, ex, con), we do not count |btrk| twice. Since we do not know
the value of k, we try all j − i + 1 possible values for k, then pick the one that maximizes
A(i, j, u, v, ex, ex, con).

i k j

u
v

bt

(i, k, u, t, ex, ex, con)

(k, j, t, v, in, ex, con)

A(i, j, u, v, ex, ex, con)

i k j

u
v

(i, k, u, u, in, in, con)

(k, j, u, v, ex, ex, con)

A(i, j, u, v, in, ex, con)

Figure 4: Illustration for solving subproblems A(i, j, u, v, ex, ex, con) and A(i, j, u, v, in, ex, con).

2. Subproblem A(i, j, u, v, in, ex, con)

In this subproblem the set BA contains bu but does not contain bv. Moreover, the solution
associated with this problem should contain the edge buri while the value that is returned by
A(·) does not contain |buri|. See Figure 4(right). We consider two cases depending on whether
or not bu is connected to any red point other than ri. Then, we take the case that gives the

12

maximum value. If bu is not connected to any other red point, then

A(i, j, u, v, in, ex, con) = A(i, j, u, v, ex, ex, con).

If bu is connected to some red points other than ri, then let rk, with k ∈ {i + 1, . . . , j}, be
the rightmost one. Since bu is the topmost blue point in BA, the edge burk splits the problem
into two subproblems, one to the left and one to the right. Since rk is the rightmost red point
that bu is connected to, bu is not an input point to the right subproblem. The solution of the
left subproblem is a tree that contains both edges buri and burk. See Figure 4(right). Therefore,
we have

A(i, j, u, v, in, ex, con) = |burk|+A(i, k, u, u, in, in, con) +A(k, j, u, v, ex, ex, con).

Notice that Rule 2 is maintained here. Also, by Rule 1, the value that is returned by
A(i, k, u, u, in, in, con) does not include |buri| nor |burk|. Since we do not know the value of k,
we try all j − i possible values of k, then pick the one that maximizes A(·).

3. Subproblem A(i, j, u, u, in, in, con)

In this case u = v, and BA contains bu. Since w = in, the weight of a maximum bichromatic
plane spanning tree on RA ∪ BA. Since u′ = v′ = in, both edges buri and burj are in this tree,
but, by Rule 1, A(·) returns the wight of this tree except these two edges. See Figure 5(left).
We consider two cases depending on whether or not bu is connected to any red point other than
ri and rj . Then, we take the case that gives the maximum value. If bu is not connected to any
other red point, then

A(i, j, u, u, in, in, con) = A(i, j, u, u, ex, ex,nco).

If bu is connected to some red points other than ri and rj , then let rk, k ∈ {i+ 1, . . . , j− 1},
be the leftmost one; see Figure 5(left). This splits the problem into two subproblems such that

A(i, j, u, u, in, in, con) = |burk|+A(i, k, u, u, ex, ex,nco) +A(k, j, u, u, in, in, con).

We try all j − i− 1 possible values of k, then pick the one that maximizes A(·).

i k j

u

(i, k, u, u, ex, ex,nco)

(k, j, u, u, in, in, con)

A(i, j, u, u, in, in, con)

i k j

u
v

bt

(i, k, u, t, ex, ex,nco)

(k, j, t, v, in, ex, con)

A(i, j, u, v, ex, ex, nco)

Figure 5: Illustration for solving subproblems A(i, j, u, u, in, in, con) and A(i, j, u, v, ex, ex,nco).

4. Subproblem A(i, j, u, v, ex, ex, nco)

In this subproblem, BA does not contain any of bu and bv. The solution to this subproblem
consists of two vertex disjoint spanning trees that span RA∪BA, their union is plane, and ri and

13

rj are not in a same tree. Let bt be a topmost point in BA. In any solution of A(·), bt is connected
to at least one red point; let rk, k ∈ {i, . . . , j}, be the leftmost one. See Figure 5(right). We
consider two cases: (1) k ∈ {i, j}, and (2) k ∈ {i + 1, j − 1}. Then, we take the one that
maximizes A(·). In case (1) if k = i then

A(i, j, u, v, ex, ex,nco) = |btri|+A(i, i, u, t, ex, ex, con) +A(i, j, t, v, in, ex, nco),

and if k = j then

A(i, j, u, v, ex, ex,nco) = |btrj |+A(i, j, u, t, ex, ex,nco) +A(j, j, t, v, in, ex, con).

In case (2) we have two subproblems, only in one of them rk should not be connected to the
other extreme red point. This raises two cases, thus, we take the one that gives a larger value.

A(i, j, u, v, ex, ex,nco) = |btrk|+ max{A(i, k, u, t, ex, ex, con) +A(k, j, t, v, in, ex,nco),

A(i, k, u, t, ex, ex,nco) +A(k, j, t, v, in, ex, con)}.

We try all possible values of k, then pick the one that maximizes A(·).

5. Subproblem A(i, j, u, v, in, ex, nco)

The optimal solution associated with this subproblem consists of two trees, one of them
contains the edge buri. We consider two cases depending on whether or not bu is connected any
red point other than ri, then take the one that maximizes A(·). If bu is not connected to any
other red point, then

A(i, j, u, v, in, ex,nco) = A(i, j, u, v, ex, ex,nco).

If bu is connected to some red points other than ri, then let rk, k ∈ {i + 1, . . . , j − 1}, be
the rightmost one (note that k cannot be j, because, otherwise, the disconnectivity of ri and rj
will not be maintained). This splits the problem into two subproblems. In the left subproblem,
rk is connected to ri via bu, thus, the disconnectivity of ri and rj should be maintained by the
right subproblem. Therefore, we have

A(i, j, u, v, in, ex,nco) = |burk|+A(i, k, u, u, in, in, con) +A(k, j, u, v, ex, ex,nco).

Notice that both Rule 1 and Rule 2 are satisfied here. We try all j − i − 1 possible values
of k, then pick the one that maximizes A(·).

6.2.2 The top-level problem

In this section we describe how to use problem A(·), that is defined in the previous section, to
solve the original top level problem which is to compute a MaxBPST for semi-collinear points.
Let B = {b1, . . . , bn−m} be the set of blue points and r1, . . . , rm be the sequence of red points
from left to right. Add two (fake) blue points b0 and bn−m+1 such that all points of B are to the
right side of `(r1, b0), to the left side of `(rm, bn−m+1), and lower than both b0 and bn−m+1. We
maintain a table A such that each entry A[i, j, u, v, u′, v′, w] stores the weight of a MaxBPST
associated with subproblem A(i, j, u, v, u′, v′, w). We initialize all table entries by a negative
value. After filling table A by our dynamic programming algorithm, the weight of an optimal
MaxBPST is stored in A[1,m, 0, n−m+ 1, ex, ex, con]; the tree itself can also be retrieved from
table A.

14

6.2.3 Running time analysis

The indices i and j go over the red points, while the indices u and v go over the blue points.
Each of the indices u′, v′, and w takes only two values. Thus, we have O(|R|2|B|2) subproblems
in total, and hence the table A has O(|R|2|B|2) entries. The blue points associated with each
subproblem, and a topmost one, can be computed in O(|B|) preprocessing time. Thus the total
preprocessing time is O(|R|2|B|3). After that, during the algorithm, to solve each subproblem,
the index k goes over O(|R|) red points. Thus, after preprocessing, we spend O(|R|3|B|2) to solve
all the subproblems. Therefore, the total running time of our algorithm is O(|R|3|B|2+|R|2|B|3).

Notice that to solve each subproblem we do not need all the blue points that are associated
with that subproblem, but we do need a topmost one. Moreover, notice that we need to find
a topmost blue point only for subproblems of type A(·, ·, ·, ·, ex, ex, ·). We describe how to
compute topmost blue points for all such subproblems in O(|R|2|B|2) preprocessing time. This
will improve the running time of our algorithm to O(|R|3|B|2).

For simplicity of description, we assume that no two blue points have a same y-coordinate,
however, for the purpose of our algorithm we do not need this assumption. The topmost blue
point for a subproblem A(i, j, u, v, ex, ex, w) is uniquely defined by i, j, u, and v; it is independent
of w. Let B = {b1, . . . , b|B|} denote the set of all blue points, including the two fake blue points
that we add in the top level of the algorithm. Assume that points of R are on x-axis, and
points of B lie above x-axis. Let r1, . . . , r|R| be the red points from left to right. For each
i ∈ {1, . . . , |R|}, let Lc

i be the sorted list of points of B in clockwise order around ri by starting
from x-axis. Similarly, let Lcc

i be the sorted list of points of B in counterclockwise order around
ri.

We maintain a table T whose entry T [i, j, u, v] (with i, j ∈ {1, . . . , |R|} and u, v ∈ {1, . . . , |B|})
stores the topmost blue point for the subproblem A(i, j, u, v, ex, ex, w). Recall that the blue in-
put set to each subproblem A(i, j, u, v, ex, ex, w) is to the right side of `(bu, ri), to the left side
of `(bv, rj), and lower than both bu and bv.

i j

u
v

bt
T [i, j, u, v]

i j

u

v

bt

bu is above bv bu is below bv

For each pair (i, j), with i, j ∈
{1, . . . , |R|}, we fill the entries T [i, j, ·, ·], in
two phases, as follows. In the first phase
we fill the entries related to the cases where
bu is above bv, and in the second phase we
fill the entries related to the cases where bu
is below bv. We describe the first phase;
the second phase is analogous. We iterate
over v ∈ {1, . . . , |B|}. In the vth iteration
we compute the topmost blue point for all
A(i, j, u, v, ex, ex, w) where u ∈ {1, . . . , |B|} and bu is above bv. Let bt be the current topmost
blue point that is to the left side of `(bv, rj) and below bv. Traverse the points of Lcc

i from the
beginning, and let bu be the current point. We have two cases:

• bu is above bv. Set T [i, j, u, v] = bt, then proceed to the next point in Lcc
i .

• bu is below bv. If bu is to the left of `(bv, rj) and above bt, then let bu be the current bt.
Then proceed to the next point in Lcc

i .

This is the end of the first phase. In the second phase we iterate over u ∈ {1, . . . , |B|}, and
in the uth iteration we traverse Lc

j and find T [i, j, u, v] for bv’s that are above bu. As for the
running time, the lists Lc

i and Lcc
i , for all i ∈ {1, . . . , |R|}, can be computed in O(|R||B| log |B|)

time. After that, we spend O(|R|2|B|2) time to fill T . Therefore, our dynamic programming
algorithm runs in O(|R|3|B|2) time.

15

Theorem 4. Let R and B be two disjoint sets of points in the plane such that the points of
R lie on a straight line, the points of B are on one side of this line, and no two points of B
are collinear with any point of R. Then, a maximum plane spanning tree in K(R,B) can be
computed in O(|R|3|B|2) time.

Note The dynamic programming algorithm presented in this section can easily be adjusted to
solve the MinBPST problem, and also the bottleneck versions of the bichromatic plane spanning
tree problem (minimizing the length of the longest edge, or maximizing the length of the shortest
edge) for semi-collinear points in O(|R|3|B|2) time.

6.3 Two red points

Borgelt et al. [3] showed that a minimum bichromatic plane spanning tree of two red points and
n blue points can be computed in O(n log n) time. In this section we show how to compute a
maximum bichromatic plane spanning tree for such a point set in O(n2) time. Let ` be the line
passing through the two red points, and assume ` is horizontal. This introduces two instances
of the semi-collinear case: one instance below ` and one instance above `. In an optimal tree,
either the two red points are connected by a blue point above ` and disconnected below `, or
the two red points are connected by a blue point below ` and disconnected above `. Thus, we
can compute an optimal tree by taking the longest of the two trees obtained from these two
cases. Since |R| = 2, the running time of our algorithm for this case is O(|R|3|B|2) = O(n2).

7 Concluding Remarks

In this paper we presented constant factor approximation algorithms for the problem of com-
puting a maximum plane tree in a multipartite geometric graph. It is not known whether or
not this problem is NP-hard. A natural open problem is to improve any of the presented ap-
proximation ratios. Specifically, when the number of sets in the partition is more than two, we
conjecture that the length of the longest star is at least 1/3 times the length of a maximum
spanning tree.

We also presented exact algorithms for some special bichromatic input point sets. Providing
an o(n2) algorithm for the two red point case is open.

References

[1] N. Alon, S. Rajagopalan, and S. Suri. Long non-crossing configurations in the plane. Funda-
menta Informaticae, 22(4):385–394, 1995. Also in Proceedings of the 9th ACM Symposium
on Computational Geometry (SoCG), 257–263, 1993.

[2] A. Biniaz, P. Bose, D. Eppstein, A. Maheshwari, P. Morin, and M. Smid. Spanning trees in
multipartite geometric graphs. CoRR, abs/1611.01661, 2016. Also submitted to Algorith-
mica.

[3] M. G. Borgelt, M. J. van Kreveld, M. Löffler, J. Luo, D. Merrick, R. I. Silveira, and M. Va-
hedi. Planar bichromatic minimum spanning trees. Journal of Discrete Algorithms, 7(4):469–
478, 2009.

[4] A. Dumitrescu and C. D. Tóth. Long non-crossing configurations in the plane. Discrete &
Computational Geometry, 44(4):727–752, 2010. Also in Proceedings of the 27th International
Symposium on Theoretical Aspects of Computer Science (STACS), 311–322, 2010.

16

[5] C. L. Monma, M. Paterson, S. Suri, and F. F. Yao. Computing Euclidean maximum spanning
trees. Algorithmica, 5(3):407–419, 1990.

17

A Proof of f(x, α) > 0

We want to show that

f(x, α) =
»

1 + x2 − 2x cos (π/3− α) +
√

1 + x2 − 2x cosα− x > 0

for all
√

3/2 6 x 6
√

3 and 0 6 α 6 π
6 . From elementary trigonometry, we have

cos

Å
π

3
− α
ã

=
1

2
cosα+

√
3

2
sinα,

from which f(x, α) can be re-written as

f(x, α) =
»

1 + x2 − x cosα−
√

3x sinα+
√

1 + x2 − 2x cosα− x.

Let us solve the equation f(x, α) = 0, which corresponds to»
1 + x2 − x cosα−

√
3x sinα+

√
1 + x2 − 2x cosα = x.

By squaring on both sides, we find

2 + 2x2 − 3x cosα−
√

3x sinα+ 2
»

1 + x2 − x cosα−
√

3x sinα
√

1 + x2 − 2x cosα = x2,

which we write as

2
»

1 + x2 − x cosα−
√

3x sinα
√

1 + x2 − 2x cosα = −2− x2 + 3x cosα+
√

3x sinα.

Squaring once more, we find

4
Ä
1 + x2 − x cosα−

√
3x sinα

ä Ä
1 + x2 − 2x cosα

ä
=
Ä
−2− x2 + 3x cosα+

√
3x sinα

ä2
,

which is equivalent to

4
Ä
1 + x2 − x cosα−

√
3x sinα

ä Ä
1 + x2 − 2x cosα

ä
−
Ä
−2− x2 + 3x cosα+

√
3x sinα

ä2
= 0,

which can be factored into

3x2
Ç
x−
Ç

cosα+
1√
3

sinα

åå2

= 0.

x = cosα+ 1√
3
sinα

+

+

π
6

α

x
√
3

√
3
2

Since x > 0 and

f

Ç
cosα+

1√
3

sinα, α

å
= 0,

we have that f(x, α) = 0 if and only if x = cosα + 1√
3

sinα.

Therefore, on its domain, f is equal to 0 precisely on the
curve x = cosα+ 1√

3
sinα and nowhere else. Thus, below this

curve, f is everywhere positive or everywhere negative. Since

f
(√

3
2 ,

π
6

)
= 1 −

√
3
2 > 0, f is everywhere positive below the

curve. Similarly, since f(
√

3, 0) =
»

4−
√

3 − 1 > 0, f is ev-
erywhere positive above the curve. Therefore, f(x, α) > 0 for
all
√

3/2 6 x 6
√

3 and 0 6 α 6 π
6 .

18

