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Abstract

We consider a well studied generalization of the maximum clique problem which is
defined as follows. Given a graph G on n vertices and a fixed parameter d ≥ 1, in the
maximum diameter-bounded subgraph problem (MaxDBS for short), the goal is to find
a (vertex) maximum subgraph of G of diameter at most d. For d = 1, this problem
is equivalent to the maximum clique problem and thus it is NP-hard to approximate it
within a factor n1−ε, for any ε > 0. Moreover, it is known that, for any d ≥ 2, it is
NP-hard to approximate MaxDBS within a factor n1/2−ε, for any ε > 0.

In this paper we focus on MaxDBS for the class of unit disk graphs. We provide a
polynomial-time constant-factor approximation algorithm for the problem. The approx-
imation ratio of our algorithm does not depend on the diameter d. Even though the
algorithm itself is simple, its analysis is rather involved. We combine tools from the the-
ory of hypergraphs with bounded VC-dimension, k-quasi planar graphs, fractional Helly
theorems and several geometric properties of unit disk graphs.

1 Introduction

Let G = (V,E) be a connected graph. The distance between two vertices u and v in G,
denoted by d(u, v), is the minimum number of edges on any path between u and v in G.
The diameter of G is defined as the maximum distance between any two vertices in G, i.e.,
maxu,v∈V d(u, v). For a subset V ′ ⊆ V , let G[V ′] be the subgraph of G induced by V ′. In the
maximum diameter-bounded subgraph problem (MaxDBS for short), we are given a connected
graph G and an integer d ≥ 1, and the goal is to compute a maximum subset V ′ ⊆ V , such
that G[V ′] is a graph of diameter at most d. A subgraph of diameter at most d is referred to
in the literature as a d-club.
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For d = 1, MaxDBS is equivalent to the maximum clique problem, which is one of the
fundamental problems in theoretical computer science [8]. It is not only NP-hard but even
hard to approximate the maximum clique problem within a factor of n1−ε, for any ε > 0,
unless P = NP [22]. MaxDBS is also known to have hardness of approximation of n1/2−ε,
unless P = NP [6].

In this paper, we study MaxDBS in the class of unit disk graphs. A unit disk graph is
defined as the intersection graph of disks of equal (e.g., unit) diameter in the plane. Unit
disk graphs provide a graph-theoretic model for ad hoc wireless networks, where two wireless
nodes can communicate if they are within the unit Euclidean distance away from each other.

Many classical NP-Complete problems including chromatic number, independent set and
dominating set are still NP-complete even for unit disk graphs [13, 15]. However, the class
of unit disk graphs is one of the non-trivial classes of graphs for which the maximum clique
problem is in P . Indeed, in a celebrated work, Clark, Colbourn and Johnson [13] provide a
beautiful polynomial time algorithm to compute the maximum clique in unit disk graphs.

1.1 Related work

MaxDBS has been studied extensively in general graphs in the last two decades. Bourjolly et
al. [9] showed that MaxDBS is NP-hard. Balasundaram et al. [7] proved that for any diameter
parameter d, MaxDBS is NP-hard in graphs of diameter d+1. Asahiro et al. [5] showed that,
for any ε > 0 and a fixed d ≥ 2, it is NP-hard to approximate MaxDBS within a factor of
n1/2−ε, and they gave an n1/2-approximation algorithm for the problem. Chang et al. [11]
provide an algorithm that finds a maximum subgraph of diameter d in O(1.62n ·poly(n)) time.
There are more results on solving MaxDBS by using various integer and linear programming
formulations [4, 7, 9, 10,21].

Asahiro et al. [6] studied the MaxDBS in other subclasses of graphs, including chordal
graphs, interval graphs, and s-partite graphs. For chordal graphs, they showed that the
problem can be solved in polynomial-time for odd d’s, and cannot be approximated within
factor n1/3−ε, for any ε > 0 for even d’s. For interval graphs, they showed that the problem
can be solved in polynomial-time. For s-partite graphs, they showed that the problem cannot
be approximated (unless P = NP ) within a factor of n1/3−ε, for any ε > 0, when s = 2 and
d ≥ 3, and when s ≥ 3 and d ≥ 2.

Chepoi et al. [12] studied MaxDBS in planar graphs. They showed that there exists a
constant ρ, such that any planar graph G of diameter at most d can be covered with at most
ρ balls of radius d/2 (a ball of center u and radius r consists of all vertices of G of distance
at most r from u).

To the best of our knowledge, the hardness of MaxDBS in unit disk graphs is still open,
for d ≥ 2. As mentioned already, for d = 1, the problem is equivalent to the maximum clique
problem and it can be solved in polynomial-time [13].

1.2 Motivation

In MaxDBS, given a graph G and an integer d ≥ 2, the goal is to compute a maximum d-club
in G, i.e., a d-club with the maximum number of vertices. MaxDBS is a relaxation of the
maximum clique problem and is motivated by cluster-detection that arise in a wide variety of
applications. For instance, finding clusters in networks helps in understanding and analyzing
the structure of the network. Another well studied notion is that of a d-clique [7, 20, 21]. A
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d-clique of a graph G is a subset S of vertices of G, such that, for every two vertices in S,
the distance between them in G is at most d. Clearly, every d-club is a d-clique, but not vice
versa, as shown in the example given by Alba [3] in Figure 1.

v1

v2

v3

v4

v5

v6

Figure 1: S = {v1, v2, v3, v4, v5} is a 2-clique but not a 2-club since the graph induced by S
has a diameter 3.

1.3 Our contribution

In this paper, we adapt and extend the result in [12] for planar graphs to unit disk graphs.
More precisely, we show that for any unit disk graph G and for any integer d, with d = 2r
or d = 2r + 1, there exists a constant c < 1 (which does not depend on d), such that if a
maximal d-club of G contains n vertices, then a maximal ball of radius r in G contains at
least cn vertices. An easy consequence of this result is a constant-factor approximation for
MaxDBS in unit disk graphs.

2 Preliminaries

Let V be a finite set of points in the plane. For two points u, v ∈ V , let |uv| denote the
Euclidean distance between u and v. The unit disk graph on V is the undirected graph
G = (V,E), such that (u, v) ∈ E if and only if |uv| ≤ 1. The following lemma is a well-known
result, however, we give a simple proof to make the paper self contained.

Lemma 2.1. For every two crossing edges (a, b) and (c, d) in G, at least one of the edges
(a, c) and (b, d) is in G, and at least one of the edges (a, d) and (b, c) is in G; see Figure 2
for an illustration.

Proof. To prove the lemma, it suffices to show that min{|ac|, |bd|} ≤ 1 and min{|ad|, |bc|} ≤ 1;
see Figure 2. Let x be the intersection point of (a, b) and (c, d). By the triangle inequality,
|ac| ≤ |ax| + |xc| and |bd| ≤ |bx| + |xd|. Thus, |ac| + |bd| ≤ |ab| + |cd| ≤ 2. Therefore,
min{|ac|, |bd|} ≤ 1. By a similar argument, we prove that min{|ad|, |bc|} ≤ 1.

a

bc

d

x

Figure 2: An illustration for the proof of Lemma 2.1.
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A range space (or a set system) (X,R) is a pair consisting of a set X of objects (called
the space) and a family R of subsets of X (called ranges). We say that a subset A of X is
shattered by R, if for every subset A′ of A, there exists a range R ∈ R, such that A∩R = A′.
The Vapnik-Chervonenkis dimension (or VC-dimension for short) of a range space (X,R) is
the size of the largest shattered subset of X (if it exists); see [16] for examples of range spaces
of bounded VC-dimension.

The dual range space of (X,R) is a range space (Y,R∗), where Y = {yR : R ∈ R} and,
for each x ∈ X, the set {yR : x ∈ R} is a range in R∗. It is well known [17] that, if the
VC-dimension of (X,R) is k, then the VC-dimension of the dual range space (Y,R∗) is at
most 2k.

A range space (X,R) satisfies the (p, q)-property if among every p ranges of R some q
have a non-empty intersection. Matoušek [18] established the following (p, q)-theorem for
range spaces of bounded VC-dimension.

Theorem 2.2 ([18]). Let (X,R) be a range space such that the VC-dimension of the dual
range space of (X,R) is at most k−1 and let p ≥ k. Then, there exists a constant t (depending
only on p and k), such that if (X,R) satisfies the (p, k)-property, then there exists a subset
X ′ of X of size at most t intersecting all the ranges of R, i.e., X ′ ∩R 6= ∅, for every R ∈ R.

A (simple) topological graph is a graph drawn in the plane, such that its vertices are
represented by a set of distinct points and its edges are Jordan arcs connecting corresponding
points, so that (i) no edge contains any other vertex as an interior point, (ii) every pair of
edges intersect at most once, and (iii) no three edges have a common intersection point.
Agarwal et al. [2] showed that any topological graph with n vertices and without k pairwise
crossing edges has O(n log2k−6 n) edges. This bound was further improved to O(n log2k−8 n)
by Ackerman [1]. Hence, if G is a complete topological graph on n vertices and without k
pairwise crossing edges, then

(
n
2

)
= n(n − 1)/2 ≤ c′n log2k−8 n, where c′ is the constant in

the big ‘O’, depending only on k. This implies that k ≥ log(n−1)−c
2 log logn + 4, where c is a constant

depending on c′. Therefore, we have the following corollary.

Corollary 2.3. Any complete topological graph on n vertices contains at least log(n−1)−c
2 log logn + 3

pairwise crossing edges, where c is a constant.

3 Approximation Algorithm

Let G = (V,E) be the unit disk graph of a set of points V in the plane. The distance between
two vertices u and v in G, denoted by d(u, v), is the minimum number of edges on any path
between u and v in G.1 Assuming that G is connected, the diameter of G is defined as the
maximum distance between any two vertices in G, i.e., maxu,v∈V d(u, v). A d-club of G is
an induced subgraph of G of diameter at most d. For a subset V ′ ⊆ V , let G[V ′] be the
subgraph of G induced by V ′. Notice that G[V ′] is the unit disk graph of the set V ′. Given
an integer d ≥ 2, let Vopt be a maximum subset of V of size n, such that Gopt = G[Vopt] is a
d-club of G. In this section, we first present a polynomial-time approximation algorithm that
computes a d-club of size at least cn, where c is a constant and d is even. Later, we show
how to generalize this algorithm to the case of odd d’s.

1Note that for any ε > 0, it could hold that the Euclidean distance between u and v is 1 + ε but they are
in different connected components of G and hence d(u, v) is not necessarily bounded.
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Set r = d
2 . For a vertex u ∈ V , let BG(r, u) denote the ball of radius r centered at u

in G. That is, BG(r, u) contains all the vertices of distance at most r from u in G (i.e.,
d(u, v) ≤ r).2 Given a vertex u ∈ V , BG(r, u) can be computed using the breadth first search
(BFS) algorithm in O(|V | + |E|) time. Our algorithm computes BG(r, u), for each u ∈ V ,
and returns a ball B of maximum cardinality among these balls. It is clear that the subgraph
of G induced by B is a d-club of G. We now prove that |B| ≥ cn, where c is a constant.

Let Br = {BGopt(r, u) : u ∈ Vopt} and let B∗ be a ball of maximum cardinality in Br.
Notice that, since Gopt is the subgraph of G induced by Vopt, Gopt is also a unit disk graph.
Moreover, the distance between any two vertices u and v in Gopt is at least as the distance
between them in G, which implies that BGopt(r, u) ⊆ BG(r, u), for every u ∈ Vopt. Therefore,
|B∗| ≤ |B|, and it is sufficient to prove that |B∗| ≥ cn. From now on, we may consider the
graph Gopt as the underlying graph G and thus, we refer to Vopt as V , and BGopt(r, u) as
B(r, u). In the following, we show that Gopt can be covered by at most t balls of Br, which
immediately proves that |B∗| ≥ cn = n/t.

Let (V,R) be the range space, where R = Br = {B(r, u) : u ∈ V }. Thus, in the dual
range space (Y,R∗) of (V,R), we have Y = {yR : R ∈ R} = {yB(r,u) : u ∈ V }, and, for each
point v ∈ V , the set {yB(r,u) : v ∈ B(r, u)} is a range in R∗. The following lemma has been
proven in [12], however, we give the proof for completeness.

Lemma 3.1. (V,R) and (Y,R∗) are isomorphic.

Proof. Since v ∈ B(r, u) if and only if u ∈ B(r, v), for fixed v and u, we have

{yB(r,u) : v ∈ B(r, u)} = {yB(r,u) : u ∈ B(r, v)}.

Now, by mapping yB(r,u) to u, we obtain that

Y = {yB(r,u) : u ∈ V } = {u : u ∈ V } = V,

and, for each v ∈ V ,

{yB(r,u) : v ∈ B(r, u)} = {u ∈ V : v ∈ B(r, u)} = {u ∈ V : u ∈ B(r, v)} = B(r, v).

Hence, for each v ∈ V , the set B(r, v) is a range inR∗, which implies thatR∗ = R. Therefore,
(V,R) and (Y,R∗) are isomorphic.

Theorem 3.2. Gopt can be covered by at most t balls of Br, where t is a constant.

Proof. The proof plan is as follows. We show (later in Section 4) that the VC-dimension of
the range space (V,R) is 4. Thus, by Lemma 3.1, the VC-dimension of the dual range space
(Y,R∗) of (V,R) is also 4. Then, we use Corollary 2.3 to show that there exists a constant
m ≥ 5, such that (V,R) satisfies the (m, 5)-property. Thus, by Theorem 2.2, there exists a
set of at most t balls of Br that cover all vertices of Gopt.

Let m be an integer such that log(m−1)−c′
2 log logm + 3 ≥ 6, where c′ is the constant from Corol-

lary 2.3. Let A be a set of m balls of Br and let C = {u1, u2, . . . , um} be the set of centers
of the balls in A. For two points ui, uj ∈ C, let δ(ui, uj) be a shortest path between ui
and uj in Gopt, and let d(ui, uj) be the length of δ(ui, uj). For every four distinct points
ui, uj , ui′ , uj′ ∈ C, we assume that the intersection of the paths δ(ui, uj) and δ(ui′ , uj′) is

2We assume that the diameter of G is greater than d, otherwise, G is a d-club.
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either empty or a path. Otherwise, δ(ui, uj) and δ(ui′ , uj′) intersect more than once and
the subpaths between the intersection points are disjoint and have the same length; see Fig-
ure 3(a). In this case, we replace the subpaths of δ(ui′ , uj′) by the subpaths of δ(ui, uj)
between the intersection points; see Figure 3(b). We can do this safely, since the ‘new’ path
between ui′ and uj′ is also a shortest path between them.

uj′

(a) (b)

uj

uj′

uj

a

b c b c

ui

ui′

ui

ui′

a

Figure 3: (a) δ(ui, uj) (red path) and δ(ui′ , uj′) (blue path) intersect at a, b, and c. (b)
Replacing subpaths of δ(ui′ , uj′) by subpaths of δ(ui, uj) between the intersection points.

We now construct a drawing of a complete graph H on the points of C in which the
edges are drawn as the Jordan arcs δ(ui, uj). Notice that, H is not necessarily a topo-
logical graph. However, we can transform it into a topological graph H ′, such that, for
every four distinct points ui, uj , ui′ , uj′ ∈ C, δ(ui, uj) and δ(ui′ , uj′) are crossing in H ′ if
and only if they are crossing in H. This transformation is obtained using standard oper-
ations as in [12] and we omit the technical details here. Since H ′ is a complete topologi-
cal graph on m vertices, by Corollary 2.3, H ′ has at least 6 pairwise crossing edges. Let
P = {δ(u1, u1′), δ(u2, u2′), . . . , δ(u6, u6′)} be the set of the corresponding 6 pairwise crossing
paths in H ′. For each 1 ≤ i ≤ 6, let ui,i′ be a point on δ(ui, ui′) that belongs to both B(r, ui)
and B(r, ui′) (such a point exists since d(ui, ui′) ≤ 2r).

Lemma 3.3. Let δ(ui, ui′) and δ(uj , uj′) be two crossing paths from P and let x be their
intersection point. Assume, w.l.o.g., that x is between ui,i′ and ui in δ(ui, ui′), and between
uj,j′ and uj in δ(uj , uj′); see Figure 4. Then, either uj,j′ ∈ B(r, ui) or ui,i′ ∈ B(r, uj).

ui

uj

ui′

uj′

x

ui,i′

uj,j′ ui

uj

ui′

uj′

x

ui,i′

uj,j′

a

b c

d

(a) (b)

Figure 4: δ(ui, ui′) and δ(uj , uj′) intersect at x. (a) x is a point of V , and (b) x is an
intersection point of the edges (a, b) and (c, d).
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Proof. We distinguish between two cases.
Case 1: x is a point of V ; see Figure 4(a). Assume, w.l.o.g., that d(ui, x) ≤ d(uj , x). Thus,

d(ui, uj,j′) ≤ d(ui, x) + d(x, uj,j′) ≤ d(uj , x) + d(x, uj,j′) = d(uj , uj,j′) ≤ r.

Therefore, uj,j′ is of distance at most r from ui and, hence, is contained in B(r, ui).
Case 2: x is not a point of V . Thus, x is an intersection point of two edges (a, b) and (c, d)
of G. Assume, w.l.o.g., that a is between x and ui and c is between x and uj ; see Figure 4(b).

• If d(ui, a) = d(uj , c), then, since Gopt is a unit disk graph, by Lemma 2.1, at least one
of the edges (a, d) and (b, c) is in Gopt.

– If (a, d) is in Gopt, then d(a, uj,j′) = d(c, uj,j′), and hence,

d(ui, uj,j′) ≤ d(ui, a) + d(a, uj,j′) = d(uj , c) + d(c, uj,j′) = d(uj , uj,j′) ≤ r.

Therefore, uj,j′ is of distance at most r from ui and, hence, is contained in B(r, ui).

– If (b, c) is in Gopt, then d(a, ui,i′) = d(c, ui,i′), and hence,

d(uj , ui,i′) ≤ d(uj , c) + d(c, uj,j′) = d(ui, a) + d(a, ui,i′) = d(ui, ui,i′) ≤ r.

Therefore, ui,i′ is of distance at most r from uj and, hence, is contained in B(r, uj).

• Otherwise, assume, w.l.o.g., that d(ui, a) < d(uj , c). Since Gopt is a unit disk graph, by
Lemma 2.1, at least one of the edges (a, c) and (b, d) is in Gopt.

– If (a, c) is in Gopt, then d(ui, c) ≤ d(uj , c). Hence,

d(ui, uj,j′) ≤ d(ui, c) + d(c, uj,j′) ≤ d(uj , c) + d(c, uj,j′) = d(uj , uj,j′) ≤ r.

– If (b, d) is in Gopt, then d(ui, d) ≤ d(uj , d). Hence,

d(ui, uj,j′) ≤ d(ui, d) + d(d, uj,j′) ≤ d(uj , d) + d(d, uj,j′) = d(uj , uj,j′) ≤ r.

In both cases, uj,j′ is of distance at most r from ui and, hence, is contained in B(r, ui).

Lemma 3.4. (V,R) satisfies the (m, 5)-property.

Proof. By Lemma 3.3, for every two paths δ(ui, ui′) and δ(uj , uj′) in P , either uj,j′ ∈
B(r, ui) ∪ B(r, ui′) or ui,i′ ∈ B(r, uj) ∪ B(r, uj′). We construct a directed graph on the
vertices {u1, u2, . . . , u6}, such that there is a directed edge from ui to uj if and only if
uj,j′ ∈ B(r, ui)∪B(r, ui′). Since we have 6 pairwise crossing paths, there are at least 15 edges
in this graph, which means that there is a vertex ul in this graph, 1 ≤ l ≤ 6, of in-degree at
least 3. Hence, there is a point ul,l′ that is contained in at least 3 other balls, in addition to
the balls B(r, ul) and B(r, ul′). Thus, ul,l′ is contained in at least 5 balls of A. Therefore,
(V,R) satisfies the (m, 5)-property.

Now, by Theorem 4.1, the VC-dimension of the dual range space of (V,R) is 4, and, by
Lemma 3.4, (V,R) satisfies the (m, 5)-property. Therefore, by Theorem 2.2, there exists a
set of at most t balls of Br that cover all vertices of V .
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Upper bound on c

We show, in Figure 5, a unit disk graph G of diameter 2r on n vertices for which every ball
of radius r does not contain more than n

3 . G contains n = 16r points and its diameter is
d = 2r. Each ball of radius r in G covers at most 6r points. This proves that c ≤ 3

8 . To
show that c ≤ 1

3 , we locate six cliques of size n−16r
6 on the points a, b, c, a′, b′, and c′. Now,

each ball of radius r can cover at most 2 cliques. Therefore, for sufficiently large n, we have
c ≤ 1

3 .

r
3

r
3

r
3

r
3

r
3

r
3

2r
3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3
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3

r
3

r
3

r
3

r
3

r
3

2r
3

2r
3

2r
3

2r
3

2r
3

2r
3

a

bc

a′ b′

c′

Figure 5: G contains 16r points and its diameter is d = 2r. Each ball of radius r covers at
most 6r points.

Generalization for odd d

In this section, we extend our result for odd d’s. Given a unit disk graph G of a set V of
points in the plane and an odd integer d ≥ 3, let Gd be a maximum d-club and let Gd+1 be a
maximum (d+ 1)-club of G. Let nd and nd+1 be the sizes of Gd and Gd+1, respectively, and
observe that nd+1 ≥ nd. We set r = d+1

2 and we use our algorithm to compute a ball B(r, u)
of size at least cnd+1 ≥ cnd. Let Gr(u) be the subgraph induced by B(r, u), and notice that
Gr(u) is a (d+ 1)-club but may not be a d-club. In the following lemma, we show that there
is a subgraph of Gr(u) of diameter d− 1 that contains at least 1/12 of the vertices of B(r, u).

Lemma 3.5. The vertices of Gr(u) can be covered by at most 12 balls of radius r − 1.

Proof. Let D2(u) = {v ∈ B(r, u) : d(u, v) = 2}, i.e., the set of all vertices of B(r, u) of distance
two from u. Let I be a maximal independent set of D2(u). By the packing argument in unit
disk graphs [14], we have |I| ≤ 12. Let v be a vertex in B(r, u), and let δ(u, v) be a shortest
path between u and v in Gr(u). Since d(u, v) ≤ r, there is at least one vertex u′ ∈ D2(u),
such that every vertex in δ(u, v) is of distance at most r− 2 from u′. Hence, there is at least
one vertex x ∈ I, such that every vertex in δ(u, v) is of distance at most r− 1 from x. Thus,
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every vertex in B(r, u) is contained in B(r − 1, x), for some x ∈ I, and therefore, B(r, u) is
covered by

⋃
x∈I B(r − 1, x).

By Lemma 3.5, we can find a ball B∗(r − 1, x) that contains at least 1/12 of the vertices
of B(r, u). Since r = d+1

2 , the graph induced by B∗(r − 1, x) is a d-club of G and has a
diameter at most 2(r − 1) = d− 1.

The following theorem summarizes the result of this section.

Theorem 3.6. Given a unit disk graph G in the plane and an integer d ≥ 2, one can find in
polynomial time a d-club of G of size at least c

12 the size of a maximum d-club of G, where
c ∈ (0, 13 ].

4 The VC-Dimension of (V,R)

Recall that Gopt is a maximum d-club of G, V is the set of vertices of Gopt, and Br = {B(r, u) :
u ∈ V } is the set of all balls of radius r centered at vertices of V . Recall also that (V,R) is
the range space, in which R = Br. In this section, we prove the following theorem.

Theorem 4.1. The range space (V,R) has VC-dimension 4.

Proof. The proof is similar to the proof of Proposition 1 in [12]. We first prove that the
VC-dimension of (V,R) is at most 4. For the sake of contradiction, suppose that there
exists a subset S = {u1, u2, u3, u4, u5} of V , such that S is shattered by R. Thus, for each
1 ≤ i < j ≤ 5, there is a ball B(r, ci,j) in Br, such that B(r, ci,j) ∩ S = {ui, uj}. Let Tr(ci,j)
be a BFS-tree of radius r rooted at ci,j in Gopt, and let Pi,j be the path between ui and uj in
Tr(ci,j). Note that Pi,j ∩ S = {ui, uj}. Moreover, since S contains five points, by planarity
constraints, at least two paths Pi,j and Pk,l, for distinct two pairs (i, j) and (k, l), intersect.
Assume, w.l.o.g., that P1,3 and P2,4 intersect and let x be their intersection point. Assume
also that x is between u1 and c1,3, and between u2 and c2,4; see Figure 6.

u1 u2 u3u4

x

c1,3c2,4

(a) (b)

a

b

c

d

u1 u2 u3u4

x

c1,3c2,4

Figure 6: P1,3 and P2,4 intersect at x. (a) x is a point of V , and (b) x is an intersection point
of the edges (a, b) and (c, d).

Lemma 4.2. Either u1 ∈ B(r, c2,4) or u2 ∈ B(r, c1,3).

Proof. The proof is similar to the proof of Lemma 3.3. We distinguish between two cases.
Case 1: x is a point of V ; see Figure 6(a). Assume, w.l.o.g., that d(x, u1) ≤ d(x, u2). Thus,

d(c2,4, u1) ≤ d(c2,4, x) + d(x, u1) ≤ d(c2,4, x) + d(x, u2) = d(c2,4, u2) ≤ r.

9



Therefore, u1 is of distance at most r from c2,4 and, hence, is contained in B(r, c2,4).
Case 2: x is not a point of V . Thus, x is an intersection point of two edges (a, b) and (c, d)
of G. Assume, w.l.o.g., that a is between x and u1 and c is between x and u2; see Figure 6(b).

• If d(a, u1) = d(c, u2), then, since Gopt is a unit disk graph, by Lemma 2.1, at least one
of the edges (a, d) and (b, c) is in Gopt. If (a, d) is in Gopt, then d(c2,4, a) = d(c2,4, c),
and hence,

d(c2,4, u1) ≤ d(c2,4, a) + d(a, u1) = d(c2,4, c) + d(c, u2) = d(c2,4, u2) ≤ r.

Therefore, u1 is of distance at most r from c2,4 and, hence, is contained in B(r, c2,4). If
(b, c) is in Gopt, then d(c1,3, a) = d(c1,3, c), and hence,

d(c1,3, u2) ≤ d(c1,3, c) + d(c, u2) = d(c1,3, a) + d(a, u1) = d(c1,3, u1) ≤ r.

Therefore, u2 is of distance at most r from c1,3 and, hence, is contained in B(r, c1,3).

• Otherwise, assume, w.l.o.g., that d(a, u1) < d(c, u2). Since Gopt is a unit disk graph,
by Lemma 2.1, at least one of the edges (a, c) and (b, d) is in Gopt. If (b, d) is in Gopt,
then d(c2,4, b) ≤ d(c2,4, c) and d(b, u1) ≤ d(c, u2). Hence,

d(c2,4, u1) ≤ d(c2,4, b) + d(b, u1) ≤ d(c2,4, c) + d(c, u2) = d(c2,4, u2) ≤ r.

If (a, c) is in Gopt, then d(c, u1) ≤ d(c, u2). Thus,

d(c2,4, u1) ≤ d(c2,4, c) + d(c, u1) ≤ d(c2,4, c) + d(c, u2) = d(c2,4, u2) ≤ r.

In both cases, u1 is of distance at most r from c2,4 and, hence, is contained in B(r, c2,4).

Since B(r, c2,4) ∩ S = {u2, u4} and B(r, c1,3) ∩ S = {u1, u3}, we have a contradiction.
Therefore, the VC-dimension of (V,R) is at most 4.

To prove that the VC-dimension of (V,R) is at least 4, we show in Figure 7 a unit disk
graph on a set of points V of diameter 2r and a subset S = {a, b, c, d} of V , such that S can
be shattered by R = {B(r, u) : u ∈ V }. The distance between every two points of S is r. For
each subset S′ ⊂ S, S ∩B(r, vS′) = S′, and S ∩B(r, a) = S.

5 Concluding Remarks

In this paper, we consider the problem of computing a maximum subgraph of diameter d.
We present the first constant-factor approximation algorithm for the problem in unit disk
graphs, for any d ≥ 2. Our algorithm is simple and efficient, however, its analysis is not trivial
and based on interesting tools from the theory of hypergraphs with bounded VC-dimension,
k-quasi planar graphs, fractional Helly theorems and several geometric properties of unit
disk graphs. Unfortunately, the constant obtained is rather large. On the other hand, this
constant does not depend on the diameter d. Moreover, our algorithm works also for an
abstract input of the unit disk graph without the geometric representation. It remains an
open problem to determine whether MaxDBS for unit disk graphs is in P for d ≥ 2.
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v{d}

v{c}

vφ

v{a,c}
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v{a,b,c}

v{a,c,d}

v{b,c}

v{b,d}

v{c,d}

v{b,c,d}

Figure 7: Shattering the points a, b, c, and d. S ∩ B(r, vS′) = S′, for each S′ ⊂ S, and
S ∩B(r, a) = S.

Recall that a d-clique of a graph G is a set S of vertices of G, such that, for every two
vertices in S, the shortest distance between them in G is at most d. Finding the maximum d-
clique problem is closely related to MaxDBS. As mentioned in Section 1.2, in general graphs,
every d-club is a d-clique, but not vice versa. This holds also for unit disk graphs (the graph
in Figure 1 can be easily realized as a unit disk graph). Unfortunately, our algorithm can
not be directly extended to the maximum d-clique problem. Except for the 1

2 -approximation
algorithm of Pattillo et al. [19], for d = 2, there is no related work discussing the maximum
d-clique problem in unit disk graphs. Hence, approximating the maximum d-clique problem
in unit disk graphs is also an interesting open problem.
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