
An In-Place Min-Max Priority Search Tree∗

Minati De† Anil Maheshwari‡ Subhas C. Nandy† Michiel Smid‡

Abstract

One of the classic data structures for storing point sets in R2 is the priority search tree,
introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e.,
it can be stored in an array such that each entry stores only one point of the point set and no
entry is stored in more than one location of that array. It combines a binary search tree with a
heap. We show that all the standard query operations can be answered within the same time
bounds as for the original priority search tree, while using only O(1) extra space.

We introduce the min-max priority search tree which is a combination of a binary search tree
and a min-max heap. We show that all the standard queries which can be done in two separate
versions of a priority search tree can be done with a single min-max priority search tree.

As an application, we present an in-place algorithm to enumerate all maximal empty axis-
parallel rectangles amongst points in a rectangular region R in R2 in O(m log n) time with O(1)
extra-space, where m is the total number of maximal empty rectangles.

1 Introduction

Let P be a set of n points in R2. A priority search tree, as introduced by McCreight [14], is a
binary tree T with exactly one node for each point of P and that has the following two properties:

• For each non-root node u, the point stored at u has a smaller y-coordinate than the y-
coordinate stored at the parent of u.

• For each internal node u, the x-coordinate of every point in the left subtree of u is less than
the x-coordinate of any point in the right subtree of u.

The first property implies that T is a max-heap on the y-coordinates of the points in P . The
second property implies that T is a binary search tree on the x-coordinates of the points in P ,
except that there is no relation between the x-coordinate of the point stored at u and that of any
of its children. We use MaxPST to denote this priority search tree with the max-heap property on
the y-coordinates. Similarly, MinPST denotes the priority search tree with the min-heap property
on the y-coordinates.

In order to use T as a binary search tree on the x-coordinates, McCreight stored at each internal
node u one additional point pu of P , called splitting point, which is the point in the left subtree of u
whose x-coordinate is maximum. Thus, both MaxPST and MinPST use O(n) space in addition

∗Research supported by NSERC and the Commonwealth Scholarship Program of DFAIT. A preliminary version
of this paper appears in the proceedings of the 23rd Canadian Conference on Computational Geometry, 2011
†Indian Statistical Institute, Kolkata, India. Part of this work was done while M.D. was visiting Carleton Univer-

sity, Ottawa, Canada.
‡School of Computer Science, Carleton University, Ottawa, Canada.

1

to the space required for storing the coordinates of the members in P . Since both MaxPST and
MinPST are balanced trees, the following range queries can be answered efficiently:

1. LeftMostNE(x0, y0): report the leftmost point of P in the north-east quadrant [x0,∞) ×
[y0,∞) of the query point (x0, y0).

2. RightMostNW(x0, y0): report the rightmost point of P in the north-west quadrant (−∞, x0]×
[y0,∞) of the query point (x0, y0).

3. HighestNE(x0, y0): report the highest point of P in the north-east quadrant [x0,∞)×[y0,∞)
of the query point (x0, y0).

4. HighestNW(x0, y0): report the highest point of P in the north-west quadrant (−∞, x0] ×
[y0,∞) of the query point (x0, y0).

5. Highest3SidedUp(x0, x1, y0): report the highest point of P in the 3-sided query range
[x0, x1]× [y0,∞).

6. Enumerate3SidedUp(x0, x1, y0): report all points of P in the 3-sided query range [x0, x1]×
[y0,∞).

7. LeftMostSE(x0, y0): report the leftmost point of P in the south-east quadrant [x0,∞) ×
(−∞, y0] of the query point (x0, y0).

8. RightMostSW(x0, y0): report the rightmost point of P in the south-west quadrant (−∞, x0]×
(−∞, y0] of the query point (x0, y0).

9. LowestSE(x0, y0): report the lowest point of P in the south-east quadrant [x0,∞)×(−∞, y0]
of the query point (x0, y0).

10. LowestSW(x0, y0): report the lowest point of P in the south-west quadrant (−∞, x0] ×
(−∞, y0] of the query point (x0, y0).

11. Lowest3SidedDown(x0, x1, y1); report the lowest point of P in the 3-sided query range
[x0, x1]× (−∞, y1].

12. Enumerate3SidedDown(x0, x1, y1): report all points of P in the 3-sided query range
[x0, x1]× (−∞, y1].

Using MaxPST, the queries 1-5 can be answered in O(log n) time, whereas the query 6 takes
O(log n + m) time, where m is the number of points of P that are in the query range. Similarly,
using MinPST, the queries 7-11 can be answered in O(log n) time, whereas the query 12 takes
O(log n+m) time.

We define the Min-Max Priority Search Tree (MinMaxPST) for a set P of n points in R2. It is a
binary tree T with the following properties:

• For each internal node u, all points in the left subtree of u have an x-coordinate which is less
than the x-coordinate of any point in the right subtree of u.

• The y-coordinate values of nodes on even (resp. odd) levels are smaller (resp. greater) than
the y-coordinate values of their descendants (if any), where the root is at level zero.

2

(b) The array containing the MinMaxPST

(b) The corresponding MinMaxPST(a) A set of points

a
c

d

e

f

g

h

b

a

b c

d

e

f

hg

ab cde f g h

Figure 1: Example of a MinMaxPST.

The first property implies that T is a binary search tree on the x-coordinates of the points in P ,
except that there is no relation between the x-coordinates of the points stored at u and any of its
children. The second property implies that T is a min-max heap [5] on the y-coordinates of the
points in P .

We show that using the single structure MinMaxPST, we can answer all the above mentioned
queries with the same time complexities.

In this paper, we show that these results can also be obtained without storing the splitting point
pu at each internal nodes u of the tree. Thus, any node of the tree stores exactly one point of P
and, as a result, we obtain an in-place implementation of the priority search tree. We take for T a
binary tree of height h = blog nc, such that the levels 0, 1, . . . , h− 1 are full and level h consists of
n− (2h − 1) nodes which are aligned as far as possible to the left. This allows us to store the tree,
like in a standard heap, in an array P [1, . . . , n]; the root is stored at P [1], its left and right children
in P [2] and P [3], etc. See Figure 1, where a set of points and the corresponding MinMaxPST is
shown.

In Sections 2 and 3, we will present algorithms for constructing the in-place MinMaxPST and
answering the above queries. Each of these algorithms use, besides the array P [1, . . . , n], only O(1)
extra space, in the sense that only a constant number of variables are used as the working space,
and each one being an integer of O(log n) bits. The main result of this paper is the following:

Theorem 1.1. Let P be a set of n points in R2.

1. The in-place MinMaxPST can be constructed in O(n log n) time using O(1) extra space.

2. Each of the queries, HighestNE, HighestNW, LowestSE, LowestSW, LeftMostNE,
RightMostNW, LeftMostSE, RightMostSW, Highest3SidedUp and
Lowest3SidedDown can be answered in O(log n) time using O(1) extra space.

3. The queries Enumerate3SidedUp and Enumerate3SidedDown can be answered in O(log n+
m) time using O(1) extra space, where m is the number of points of P that are in the query
range.

In Section 4, as an application of the in-place priority search tree, we show how one can enumerate
all the maximal empty axis-parallel rectangles among a set of n points inside a rectangular region
R in R2 in O(m log n) time, where m is the number of all maximal empty axis-parallel rectangles.
Here we need to build an in-place MaxPST data structure on the set P of points and use the
procedures LeftMostNE, RightMostNW and Highest3SidedUp to achieve the desired time

3

complexity using O(1) extra space. MaxPST can be constructed in an exactly similar manner as
MinMaxPST.

For ease of presentation, we assume that no two points in the set P have the same x and y-
coordinates. If they have the same x-coordinate, then the ties are broken by the y coordinates.
The x- and y-coordinates of a point p in R2 will be denoted by x(p) and y(p), respectively. Most
of the algorithms presented in this paper have been implemented and the code is available at [18].

1.1 Related work

In computational geometry, designing in-place algorithms have been studied only for few problems.
For the convex hull problem in both 2D and 3D, space efficient algorithms are available. In 2D,
the best known result is an O(n log h)–time algorithm with O(1) extra space by Brönnimann et
al. [9]. Brönnimann et al. [8] also showed that the upper hull of a set of n points in 3D can
be computed in O(n log3 n) time using O(1) extra space. This leads to the fact that the Voronoi
diagram of a set of n points in 2D can be constructed in O(n log3 n) time and O(1) extra space. In
the same paper it is also shown that for a parameter s satisfying c log2 n ≤ s ≤ n, (for some constant
c > 0), if O(ns) space is allowed, then the convex hull for a set of n points in 3D can be computed

in O(ns) time. Vahrenhold [19] proposed an O(n
3
2 log n) time and O(1) extra space algorithm for

Klee’s measure problem, where the objective is to compute the union of n axis-parallel rectangles of
arbitrary sizes. Bose et al. [7] used an in-place divide and conquer technique to solve the following
three problems in 2D using O(1) extra space: (i) a deterministic algorithm for the closest pair
problem in O(n log n) time, (ii) a randomized algorithm for the bichromatic closest pair problem in
O(n log n) expected time, and (iii) a deterministic O(n log n+k) time algorithm for the orthogonal
line segment intersection computation problem. For the general line segments intersection problem,
two algorithms are available by Chen and Chan [12]. If the input array can be used for storing
intermediate results, then the problem can be solved in O((n+k) log n) time and O(1) extra space.
If the input array is not allowed to be destroyed, then the time complexity increases by a factor of
log n, and it also uses O(log2 n) extra space. Later Vahrenhold [20] improved the time complexity
of this problem to O(n log2 n+ k). Finally, Chan and Chen [10] proposed a randomized algorithm
for the same problem whose expected running time is O(n log n+ k). In the same paper, they also
proposed a randomized algorithm for computing the convex hull of a set of points in 3D that runs
in O(n log n) time.

Asano et al. presented the following results in [3]: if a set of n points in 2D is given in a read-only
array, then its Delaunay triangulation and Euclidean minimum spanning tree can be computed
in O(n2) and O(n3) time, respectively. In the same paper, they showed that the shortest path
between a pair of points s and t in a simple polygon can be computed in O(n2) time if the vertices
of the polygon are given in a read-only array in counter-clockwise order. All these algorithms take
O(1) work-space in addition to the input array. This, in turn, recognizes the largest empty circle
among a set of points with the same time complexity. Recently, Asano et al. [2] showed that given
a planar straight-line graph with n vertices in a read-only array, it can be triangulated in O(n2)
time and O(1) extra space. This technique is applied to solve the shortest path query problem in
a simple polygon. Here an O(n2) time pre-processing step is executed to create a data structure in
k memory locations (k << n), and a shortest path query between a pair of points s and t inside

the polygon can be answered in O(n
2

k) time.

4

2i − 11 2 n

level = i− 1

Sorted
MinMaxPST
up to i− 1 levels

(a) The array P at the begining of i-th iteration

(b) The tree representation
of the array P

(c) the split of the unshaded
subtree into 2i blocks

Figure 2: Demonstration of the invariants of MinMaxPST

2 Constructing the in-place MinMaxPST

Let P be a set of n points in the plane. In this section, we present an algorithm for constructing
the in-place MinMaxPST.

Let h = blog nc be the height of the MinMaxPST. Our algorithm constructs the tree level by
level. After constructing the (i− 1)-th level of the tree, it maintains the following invariant:

• The subarray P [1, . . . , 2i − 1] stores levels 0, 1, . . . , i − 1 of the tree, and the points in the
subarray P [2i, . . . , n] are stored in sorted order by their x-coordinates (see Figure 2(a)).

The algorithm starts by sorting the array P [1, . . . , n] by their x-coordinates. After this sorting
step, the invariant holds with i = 0.

Let i be an index with 0 ≤ i < h, and consider the i-th iteration of the algorithm. Let A =
n− (2h − 1) be the number of nodes at level h of the tree, and let k = bA/2h−ic. Level i consists
of 2i nodes (see Figure 2(b)). If k = 2i, then each of these nodes is the root of a subtree of size
2h+1−i − 1. Otherwise, we have k < 2i, in which case level i consists of, from left to right,

1. k nodes, which are roots of subtrees, each of size K1 = 2h+1−i − 1,

2. one node, which is the root of a subtree of size K2 = 2h−i − 1 +A− k2h−i,

3. 2i − 1− k nodes, which are roots of subtrees, each of size K3 = 2h−i − 1.

See Figure 2(c) for an illustration. We divide the subarray P [2i, . . . , n] into 2i blocks: If k = 2i,
then there are k blocks, each of size 2h+1−i−1. Otherwise, there are, from left to right, (i) k blocks
of size K1, (ii) one block of size K2, and (iii) 2i − 1− k blocks of size K3.

The algorithm scans the subarray P [2i, . . . , n] and in each of the 2i blocks, finds the highest or
lowest point depending on the parity of level (Figure 3(a)). These highest or lowest points are
swapped with the subarray P [2i, . . . , 2i+1 − 1] (Figure 3(b)); note that these are the nodes of the
i-th level of the MinMaxPST. At this moment, the invariant has not been restored yet, because
the elements in the subarray P [2i+1, . . . , n] may not be sorted by their x-coordinates. Therefore,
the algorithm runs the heapsort algorithm on this subarray. The final output after i-th iteration is
shown in Figure 3(c).

5

Total number of blocks= 2i

number of subtree=2i

2i − 11

. . .

n

(a) In each block of the colored portions (non-PST part)
of the array, the element having maximum (or minimum)
y-coordinate are marked. The corresponding elements in
the tree are marked by blue dots.

MinMaxPST up to

i− 1-th level
. . .

2i − 11

. . .

n

(b) The marked elements are moved in the appropriate
position to get the MinMaxPST up to the i-th level

number of subtree=2i

Total number of blocks= 2i

MinMaxPST up to

i− 1-th level
sorted

2i+1 − 11 n

. . .

MinMaxPST up to

i-th level

(c) Shaded portion corresponds to MinMaxPST up to
i-th level. The unshaded portion is sorted with respect to
their x-coordinates

Figure 3: Construction of i-th level of MinMaxPST

The complete algorithm for constructing the in-place min-max priority search tree is given in Al-
gorithm 1. It uses algorithm HeapSort(m,n), which runs the heapsort algorithm on the subarray
P [m, . . . , n].

The correctness of this algorithm follows by observing that the invariant is correctly maintained.
The initial sorting in line 3 takes O(n log n) time using O(1) extra space. Each of the h = blog nc
iterations of the outer-most for-loop takes O(n log n) time and O(1) extra space. We can use one
extra variable to maintain the value 2i, so that it does not have to be recomputed during the
execution of the outer-most for-loop. Thus, the entire algorithm ConstructMinMaxPST takes
O(n log2 n) time and uses O(1) extra space.

Algorithm 1: ConstructMinMaxPST

Input: An array P [1, . . . , n] of points in R2.
Output: The min-max priority search tree of those points stored in P .

1 h = blog nc; A = n− (2h − 1);
2 level = 0;
3 HeapSort(1, n);
4 for i = 0 to h− 1 do
5 k = bA/2h−ic;
6 K1 = 2h+1−i − 1;

7 K2 = 2h−i − 1 +A− k2h−i;

8 K3 = 2h−i − 1;
9 for j = 1 to k do

10 ` = index in {2i + (j − 1)K1, . . . , 2
i + jK1 − 1} such that y(P [`]) is maximum or minimum

depending on the parity of level ;
11 swap P [`] and P [2i + j − 1] ;

12 if k < 2i then
13 ` = index in {2i + kK1, . . . , 2

i + kK1 +K2 − 1} such that y(P [`]) is maximum or minimum
depending on the parity of level ;

14 swap P [`] and P [2i + k];
15 m = 2i + kK1 +K2;
16 for j = 1 to 2i − k − 1 do
17 ` = index in {m+ (j − 1)K3, . . . ,m+ jK3 − 1} such that y(P [`]) is maximum or

minimum depending on the parity of level ;
18 swap P [`] and P [2i + k + j];

19 HeapSort(2i+1, n);
20 level = level + 1;

6

2i − 11 2 n

s = P [2i+1]

(a) Gray portion of the array corresponds to the Min-
MaxPST constructed so far and white portion is sorted
according to the x-coordinate

2i − 11 2 n

s = P [2i+1]

(b) Each red colored element is the point with the
maximum (or minimum) y-coordinate value among el-
ements in their respective block.

2i − 11 2 n

(c) Each green element corresponds to the first ele-
ment in its block. Each red colored element is moved
to the green position of its block by successive swap-
ping

2i − 11 2 n

(d) Green elements are the points with maximum (or
minimum) y-value in their respective blocks. These
are placed in the light-blue positions by swapping

Figure 4: Improving the construction time of MinMaxPST - the i-th iteration

2.1 Improving the construction time

We now show that the in-place MinMaxPST can be constructed in O(n log n) time. Consider
again the i-th iteration of Algorithm 1. At the beginning of this iteration, (i.e., immediately after
line 4), assign s = P [2i+1]. In Figure 4(a) this is demonstrated, where the gray portion of the array
corresponds to the MinMaxPST constructed up to the (i−1)-th level, and white portion is sorted
according to the x-coordinate. As we have seen, immediately after line 18, level i of the tree has
been constructed, but the elements in P [2i+1, . . . , n] may not be sorted by their x-coordinates. The
reason is that the newly swapped elements in the subarray P [2i+1, . . . , n] have their x-coordinates
smaller than x(s). Note that the x-coordinates of all other elements in P [2i+1, . . . , n] are greater
than x(s).

Assume that we have sorted the newly swapped elements by their x-coordinates. For any j with
2i+1 ≤ j ≤ n, define f(j) = 0 if x(P [j]) < x(s), and f(j) = 1 if x(P [j]) ≥ x(s). Then sorting the
subarray P [2i+1 . . . n] by x-coordinates is equivalent to a stable sorting1 of the bit-sequence f(j),
2i+1 ≤ j ≤ n. Katajainen and Pasanen [13] have shown that this is possible in O(n) time using
O(1) extra space.

Thus, we modify lines 9–18 of the Algorithm 1 to sort the elements in P [2i+1, . . . , n] as follows:

Step 1: In each of the 2i blocks, find the highest (or lowest) point (see red colored elements in
Figure 4(b)) and move it to the first position of its block by successive swapping. Note that all
other points in this block remain sorted by their x-coordinates (see Figure 4(c)).

Step 2: For j = 1, 2, . . . , 2i, swap P [2i + j − 1] and the point at the first position of the j-th block
(see Figure 4(d)).

Step 3: Run the heapsort algorithm on those elements that are the first elements in their block
in the subarray P [2i+1, . . . , n].

Step 4: Run Katajainen and Pasanen’s algorithm on the subarray P [2i+1, . . . , n].

Lemma 2.1. Given a set of points in R2 in an array P , the in-place construction of MinMaxPST
in the same array P uses O(n log n) time and O(1) extra work-space.

1Given a set of unsorted records having key values 0 and 1, where each record consists of some other information,
a sorting of these records is called stable if it keeps the information of all the records with equal keys in the same
relative order in the output as they were in the input.

7

Proof. Steps 1, 2, and 4 take O(n) time. In Step 3, the heapsort algorithm is run on a sequence
of size at most 2i, where the heap is stored in the first positions of those blocks that are involved
in the sorting step (i.e., in the subarray P [2i+1, . . . , n]). Thus, if the algorithm wants to access the
m-th element in the heap, it computes, in O(1) time, the first position of the m-th block in the
subarray P [2i+1, . . . , n]. It follows that Step 3 takes O(i · 2i) time.

The running time of the i-th iteration is

O
(
n+ i · 2i

)
= O(n+ 2i log n)

and, therefore, the total time of the algorithm is

O

(
h−1∑
i=0

(n+ 2i log n)

)
= O(n log n).

The algorithm uses O(1) extra space.

Remark 1. The MaxPST and MinPST data structures can be constructed in a similar manner
with the same time and space complexities, where we compute either the highest or the lowest point
at all levels of the tree instead of alternating.

3 Queries on the in-place MinMaxPST

In this section, we present three query algorithms mentioned in Section 1. For ease of presentation,
we describe the algorithms using the terminology of trees. We denote by T the MinMaxPST that
is implicitly stored in the array P [1, . . . , n], obtained by running the algorithm ConstructMin-
MaxPST. Recall that the root of T , denoted by root(T), is stored at P [1]. Consider a node whose
index in P is i. If 2i ≤ n, then the left child of this node is stored at P [2i]. If 2i + 1 ≤ n, then
the right child of this node is stored at P [2i+ 1]. This node is a leaf if and only if 2i > n. For any
element p ∈ P , we denote by Tp the subtree rooted at p. Furthermore, the left and right children
of p (if they exist) are denoted by pl and pr, respectively.

3.1 LeftMostNE(x0, y0)

For two given real numbers x0 and y0, let Q = [x0,∞)× [y0,∞) be the north-east quadrant of the
point (x0, y0), and PQ be the set of points of P that are in the region Q. If PQ ∩ P 6= ∅, define
p∗ to be the leftmost point of PQ. If PQ ∩ P = ∅, define p∗ to be the point (∞,∞). Algorithm
LeftMostNE(x0, y0) returns the point p∗.

As in the standard priority search tree [14], the search starts at the root of T . Since the x-coordinate
of the partitioning line is not available in each node, two index variables p and q are required for
navigation along the search path. Another variable best is used to store the leftmost point in Q
obtained so far. At the end of the execution best will contain the final result. At any instant of
time, the variables best , p, and q satisfy the following invariant:

• If PQ 6= ∅, then p∗ ∈ {best} ∪ Tp ∪ Tq.
• If PQ = ∅, then p∗ = best .

• p and q are at the same level of T and x(p) ≤ x(q).

8

ql

q

we assign p = q = ql

(a)

ql

q

we assign p = pr and q = ql

pr

(b)

ql

q

we assign q = pr

pr

(c)

pl

pr

ql

qr

we assign p = pr , q = ql

(d)

Figure 5: Different cases for the procedure LeftMostNE(x0, y0) and the corresponding assign-
ments of p and q

The algorithm starts by initializing best = (∞,∞) and p = q = root(T). The algorithm uses a
procedure UpdateLeftMost(t), which takes an input point t ∈ P , and updates best as follows:
if t ∈ Q and x(t) < x(best) then assign best = t.

At each iteration, UpdateLeftMost(p) and UpdateLeftMost(q) are executed to update the
variable best ; p and q move down the tree according to the relative positions of their children and
the query region Q as stated below. As soon as p reaches the leaf level, the algorithm terminates.

If p = q, then irrespective of whether or not p ∈ Q, we proceed along both left and right children
of p; thus, we assign p = pl and q = pr. If p has only one child then we assign p = q = pl.

If p 6= q, then we need to consider the following situations:

q is a leaf: Here p may or may not be a leaf. If p is not a leaf, then the search proceeds to
the children of p.

q is not a leaf: Here p is also not a leaf, and p has two children.

Now, if q has only one child then according to our inplace structure of the MinMaxPST,
p, q lies in one level above the leaf level of T . Here three situations need to be considered:
(i) x(ql) < x0, (ii) x(pr) < x0 but x(ql) > x0, and (iii) x(pr) > x0. The assignments
of p and q for executing the next iteration in these three situations are shown in Fig-
ures 5(a),5(b) and 5(c) respectively. Note that, here we need not have to consider the
y-coordinate of pr or ql since they are in the last level, and if they are not inside Q then
best will not be updated by the procedure UpdateLeftMost.

If q has two children, we need to consider the y-coordinate of the children of both p
and q to update the values of p and q for the next iteration.

Note that, here x0 (defining the vertical line L : x = x0 of the region Q) may lie in one
of the five intervals defined by I0 = [−∞, x(pl)], I1 = [x(pl), x(pr)], I2 = [x(pr), x(ql)],
I3 = [x(ql), x(qr)], I4 = [x(qr),∞].

• If x0 ∈ I0, then the x-coordinates of all the members in the set V = {pl, pr, ql, qr}
are greater than x0. In a MaxPST, we consider the members in V in increasing
order of their x-coordinates. For each θ ∈ V , we test whether θ ∈ Q (i.e., y(θ) > y0).
If so, we set p = q = θ and do not consider the other members of V ; otherwise, we
consider the next member of V . Since we are working with a MinMaxPST, while
considering θ ∈ {pl, pr, ql, qr} in this order, if either θ ∈ Q or θ 6∈ Q but any one of
its children lies in Q, then we set p = q = θ and do not check the other members in
the list. If no such θ is found then the algorithms stops2.

2In the pseudocode, we assigned p = q = pl (the right end-point of I0). This will not cause any problem; here the
algorithm continues up to the leaf level but best is not updated by the procedure UpdateLeftMost any more.

9

• If x0 ∈ Ii for some i = 1, 2, 3, then we set p to the left end point of Ii. We construct
the ordered set V with the right end point of Ii and all the end-points of Ij , i < j ≤ 4,
and update q with the leftmost element θ ∈ V as we did earlier (see Figure 5(d)).
If no such θ is found then we set q to the right-end of Ii.

• If x0 ∈ I4, then we assign p = q = qr since if there is any further update of best it
will be any of the successors of qr. Note that here we do not have to consult the
y-coordinate of qr since if it or its successors are not inside Q then best will not be
updated by the procedure UpdateLeftMost.

The detailed steps of the algorithm are given in Algorithm 2. The following lemma states the
correctness and the complexity result of this query algorithm.

Lemma 3.1. Given an in-place MinMaxPST with a set of points in R2 in an array P , the
proposed LeftMostNE(x0, y0) query algorithm correctly reports the resulting point in O(log n)
time with O(1) extra work-space.

Proof. By a careful case analysis it can be observed that the invariant is correctly maintained. This
implies the correctness of the algorithm. In each iteration of the while-loop, p and q move down
the tree, except in line 12. In the latter case, however, p will become a leaf in the next iteration.
As a result, the while-loop makes O(log n) iterations. Since each iteration takes O(1) time, the
total time for algorithm LeftMostNE is O(log n). It follows from the algorithm that it uses O(1)
extra space.

3.2 Highest3SidedUp(x0, x1, y0)

Given three real numbers x0, x1, and y0, the three-sided query range is defined by Q = [x0, x1] ×
[y0,∞). As in the earlier section, here also we will use PQ to denote the subset of points in P that
lie inside Q. If PQ 6= ∅ then the highest point of P in Q is p∗ satisfying y(p∗) = max{y(p)|p ∈ PQ}.
If PQ = ∅, then define p∗ = (∞,−∞). Algorithm Highest3SidedUp(x0, x1, y0), described in
Algorithm 3, returns the point p∗.

As before, best will store the highest point in Q found so far. Since Q is bounded by two vertical
sides, we use four index variables p, p′, q and q′ to guide the search path. In addition, we use four
bits L, L′, R and R′; these correspond to the subtrees of T rooted at the nodes p, p′, q, and q′,
respectively; if a bit is equal to one, then the corresponding node is referred to as an active node
(for example, if L = 1, then p is an active node), and the subtree rooted at that node may contain
a candidate point for p∗. So the search is required to be performed in the subtree rooted at all
active nodes. More formally, at any instant of time the variables satisfy the following invariant:

• If L = 1 then x(p) < x0.

• If L′ = 1 then x0 ≤ x(p′) ≤ x1.
• If R = 1 then x(q) > x1.

• If R′ = 1 then x0 ≤ x(q′) ≤ x1.
• If L′ = 1 and R′ = 1 then x(p′) ≤ x(q′).

• If PQ 6= ∅, then either p∗ = best or p∗ is in the subtree rooted at any one of the active nodes.
In other words, p∗ ∈ {best} ∪

(
∪z∈ActiveTτ(z)

)
, where

Active = {z|z ∈ {L,L′, R,R′} and z = 1}

10

Algorithm 2: LeftMostNE(x0, y0)

Input: Real numbers x0 and y0 defining the north-east quadrant Q.
Output: The leftmost point p∗ in Q ∩ P , if it exists; otherwise the point (∞,∞).

1 best = (∞,∞); p = root(T); q = root(T);
2 while p is not a leaf do
3 UpdateLeftMost(p); UpdateLeftMost(q);
4 if p = q then
5 if p has one child then
6 q = pl; p = pl;
7 else
8 q = pr; p = pl;

9 else
10 // p 6= q
11 if q is leaf then
12 q = p ;
13 else if q has one child then
14 if x(ql) < x0 then
15 p = ql; q = ql;
16 else if x(pr) < x0 then
17 p = pr; q = ql;
18 else
19 q = pr; p = pl;

20 else
21 // p and q both have two children

22 c1 = pl; c2 = pr; c3 = ql; c4 = qr;
23 if x0 < x(c1) then
24 V = {ct|1 ≤ t ≤ 4 and ct or one of its children is in Q};
25 if V = ∅ then
26 q = c1;
27 else
28 q = leftmost point in V ;
29 p = q;

30 else if x0 ≥ x(c4) then
31 p = q = c4;
32 else
33 i is the index such that x(ci) ≤ x0 < x(ci+1);
34 p = ci;
35 V = {ct|(i+ 1) ≤ t ≤ 4 and ct or one of its children is in Q};
36 if V = ∅ then
37 q = ci+1;
38 else
39 q = leftmost point in V ;

40 UpdateLeftMost(p); UpdateLeftMost(q);

41 return best ;

11

and τ(z) is defined as follows:

z L L′ R R′

τ(z) p p′ q q′

In the initialization, we set best = (∞,−∞). The other variables are assigned depending on the
position of the root of T with respect to the query region Q. More specifically,

• if x(root(T)) < x0 then initialize L = 1, L′ = R = R′ = 0 and p = root(T).

• if x0 < x(root(T)) ≤ x1 then initialize L′ = 1, L = R = R′ = 0 and p′ = root(T).

• if x(root(T)) > x1 then initialize R = 1, L = L′ = R′ = 0 and q = root(T).

We use level(t) to denote the level of node t ∈ T . The root(T) is assumed to have level 0. At
each iteration, we choose an active node having minimum level. If more than one such node is
available, then we choose one of them arbitrarily. We define a variable λ = minz∈Activelevel(z) and
z∗ = {z|z ∈ Active, level(z) = λ}. In other words, z∗ is the active node having minimum level. If
no active node is available then the algorithm stops. Otherwise, we call the procedure CheckLeft,
CheckLeftIn, CheckRight and CheckRightIn, depending on whether z∗ is equal to p, p′, q,
or q′, respectively. These procedures are used to decide the possible directions of the search paths
for the next iteration. We describe the details of the procedures CheckLeft and CheckLeftIn
in Sections 3.2.1 and 3.2.2. The other two procedures are symmetric to these.

Algorithm 3: Highest3SidedUp(x0, x1, y0)

Input: Real numbers x0, x1, and y0 defining the region Q = [x0, x1]× [y0,∞).
Output: The highest point p∗ in Q ∩ P , if it exists; otherwise the point (∞,−∞).

1 best = (∞,−∞);
2 if x(root(T)) < x0 then
3 p = root(T) ; L = 1; L′ = R = R′ = 0
4 else if x(root(T)) < x1 then
5 p′ = root(T); L′ = 1; L = R = R′ = 0
6 else
7 q = root(T); R = 1; L = L′ = R′ = 0
8 while L = 1 ∨ L′ = 1 ∨R = 1 ∨R′ = 1 do
9 Active = {z ∈ {L,L′, R,R′}|z = 1};

10 z = element of Active for which level(τ(z)) is minimum;
11 if z = L then
12 CheckLeft(p);
13 else if z = L′ then
14 CheckLeftIn(p′);
15 else if z = R then
16 CheckRight(q);
17 else
18 CheckRightIn(q′);

19 return best ;

Each of these procedures evokes UpdateHighest and ExUpdateHighest. UpdateHighest(t)
updates best as follows: if t ∈ Q and y(t) > y(best) then best = t is set. For a node t,
ExUpdateHighest(t) is executed only when it is certain that all the elements in the subtree
rooted at t are within the two vertical lines at x0 and x1. The procedure ExUpdateHighest(t)

12

p

pl pr

(a)

p

pl
pr

(b)

p

pl
pr

(c)

p

pl pr

(d)

p

pl pr

(e)

p

pl

pr

(f)

Figure 6: Different cases for the procedure CheckLeft(p).

also updates best by checking t and its children (if any one of them exists); in other words, it evokes
UpdateHighest(t), UpdateHighest(tl) and UpdateHighest(tr).

3.2.1 CheckLeft

This procedure is called with the node p as argument, provided it is active, i.e., L = 1 and level(p)
is minimum among other active nodes. Depending on the value of the x-coordinates of the two
children of p, the following situations may arise:

x(pl), x(pr) < x0: See Figure 6(a). Here, we set p = pr.

x(pl) < x0, x0 < x(pr) < x1: See Figure 6(b). Here, we evoke UpdateHighest(pr), and set p′ = pr
and p = pl copying the existing value of p′ in a temporary location temp. Now, if L′ = 1
and R′ = 1, then we evoke ExUpdateHighest(p′); else if L′ = 1 and R′ = 0, then we set
q′ = temp and R′ = 1.

x(pl) < x0, x(pr) > x1: See Figure 6(c). We set q = pr, p = pl and R = 1. Note that the existing
values of L′ and R′ are both zero.

x0 < x(pl) < x(pr) < x1: See Figure 6(d). Here we set L = 0 and p′ = pl copying the existing value
of p′ in temp. Here, depending on the value of L′ and R′, four situations may happen :

• L′ = 0, R′ = 0: We evoke UpdateHighest(pl) and UpdateHighest(pr), and set
q′ = pr and L′ = R′ = 1.

• L′ = 0, R′ = 1: We evoke UpdateHighest(pl) and ExUpdateHighest(pr), and set
L′ = 1.

• L′ = 1, R′ = 0: We evoke UpdateHighest(pl) and ExUpdateHighest(pr), and set
q′ = temp and R′ = 1.

• L′ = 1, R′ = 1: We evoke UpdateHighest(pl), ExUpdateHighest(pr),
ExUpdateHighest(tempr) and ExUpdateHighest(templ).

x0 < x(pl) < x1, x(pr) > x1: See Figure 6(e). We evoke UpdateHighest(pl), and set p′ = pl,
q = pr, L = 0, L′ = 1, and R = 1. Note that the existing value of R′ = 0 will remain
unchanged in this situation.

x(pl), x(pr) > x1: See Figure 6(f). We set q = pl, L = 0 and R = 1. Note that the existing values
of L′ and R′ are both zero.

13

Algorithm 4: CheckLeft(p)

Input: A node p such that x(p) < x0.
1 if p is a leaf then
2 L = 0
3 else if p has one child then
4 /* the only child is pl */

5 if x0 ≤ x(pl) ≤ x1 then
6 UpdateHighest(pl);
7 if L′ = 1 ∧R′ = 1 then
8 ExUpdateHighest(p′);
9 else if L′ = 1 then

10 q′ = p′; R′ = 1
11 p′ = pl; L

′ = 1; L = 0;

12 else if x(pl) < x0 then
13 p = pl
14 else
15 q = pl; R = 1; L = 0

16 else
17 /* p has two children */

18 if x(pl) < x0 then
19 if x(pr) < x0 then
20 p = pr
21 else if x(pr) ≤ x1 then
22 UpdateHighest(pr);
23 if L′ = 1 ∧R′ = 1 then
24 ExUpdateHighest(p′);
25 else if L′ = 1 then
26 q′ = p′; R′ = 1
27 p′ = pr; p = pl; L

′ = 1

28 else
29 q = pr; p = pl; R = 1

30 else if x(pl) ≤ x1 then
31 if x(pr) > x1 then
32 UpdateHighest(pl);
33 q = pr; p′ = pl; L = 0; L′ = R = 1;

34 else
35 UpdateHighest(pl);
36 if R′ = 1 ∧ L′ = 1 then
37 ExUpdateHighest(pr); ExUpdateHighest(q′);
38 else if L′ = 1 then
39 ExUpdateHighest(pr); q′ = p′; R′ = 1
40 else if R′ = 1 then
41 ExUpdateHighest(pr); L′ = 1
42 else
43 UpdateHighest(pr); q′ = pr; L′ = R′ = 1
44 p′ = pl; L = 0

45 else
46 q = pl; L = 0; R = 1

14

p′

p′l p′r

(a)

p′

p′l
p′r

(b)

p′

p′l p′r

(c)

p′

p′l p′r

(d)

p′

p′l p′r

(e)

p′

p′l p′r

(f)

Figure 7: Different cases for the procedure CheckLeftIn(p′).

Observe that in each case the variables satisfy all the invariants. The detailed steps of the algorithm
are given in Algorithm 4, where the special cases, when p is a leaf or p has only one child, are taken
care of appropriately.

3.2.2 CheckLeftIn

This procedure is called with the node p′ as argument, provided it is active, i.e., L′ = 1 and level(p′)
is minimum among other active nodes. If we work on MaxPST, then in this situation nothing
needs to be done. Since we are working on MinMaxPST, we may have p′ 6∈ Q (i.e., x0 ≤ x(p′) ≤ x1
and y(p′) < y0), but the children of p′ may lie in Q. This is handled by setting the variables as
follows for the next iteration.

x(p′l), x(p′r) < x0: We set p = p′r, L = 1 and L′ = 0 (see Figure 7(a)).

x(p′l) < x0, x0 < x(p′r) < x1: We evoke UpdateHighest(p′r), and set p = p′l, p
′ = p′r and L = 1

(see Figure 7(b)).

x(p′l) < x0, x(p′r) > x1: We set p = p′l, q = p′r, L = 1, L′ = 0 and R = 1. Note that the existing
value of R′ is zero (see Figure 7(c)).

x0 < x(p′l) < x(p′r) < x1: We evoke UpdateHighest(p′l), and set p′ = p′l. If R′ 6= 1, we evoke
UpdateHighest(p′r), and set q′ = p′r, R

′ = 1. IfR′ = 1, then we execute ExUpdateHighest(p′r)
(see Figure 7(d)).

x0 < x(p′l) < x1, x(p′r) > x1: We evoke UpdateHighest(p′l), and set q = p′r, p
′ = p′l, and R = 1

(see Figure 7(e)).

x(p′l), x(p′r) > x1: We set q = p′l, L
′ = 0 and R = 1. Note that the existing value of R′ is zero (see

Figure 7(f)).

We describe the pseudocode for CheckLeftIn(p′) in Algorithm 5.

Lemma 3.2. (i) In each iteration of algorithm Highest3SidedUp, the value of λ (i.e., the mini-
mum level among active nodes) increases or remains same. (ii) In each iteration, the difference of
levels among the active nodes is at most 1. (iii) There may exist at most four consecutive iterations
during which λ remains the same.

15

Algorithm 5: CheckLeftIn(p′)

Input: A node p′ such that x0 ≤ x(p′) ≤ x1.
1 if p′ is a leaf then
2 L′ = 0
3 else if p′ has one child then
4 /* assume that the only child is pl */

5 if x0 ≤ x(p′l) ≤ x1 then
6 UpdateHighest(p′l);
7 p′ = p′l;

8 else if x(p′l) < x0 then
9 p = p′l; L

′ = 0; L = 1
10 else
11 q = p′l; R = 1; L′ = 0

12 else
13 // p′ has two children

14 if x(p′l) < x0 then
15 if x(p′r) < x0 then
16 p = p′r; L = 1; L′ = 0
17 else if x(p′r) ≤ x1 then
18 UpdateHighest(p′r);
19 p = p′l; p

′ = p′r; L = 1;

20 else
21 q = p′r; p = p′l; R = 1; L = 1; L′ = 0

22 else if x(p′l) ≤ x1 then
23 if x(p′r) > x1 then
24 UpdateHighest(p′l);
25 q = p′r; p′ = p′l; R = 1;

26 else
27 UpdateHighest(p′l);
28 if R′ = 1 then
29 ExUpdateHighest(p′r);
30 p′ = p′l
31 else
32 UpdateHighest(p′r);
33 q′ = p′r; p′ = p′l; R

′ = 1

34 else
35 q = p′l; L

′ = 0; R = 1

16

Proof. (i) In each iteration we choose an active node z∗ ∈ {p, p′, q, q′} having minimum level λ.
After the execution of the corresponding procedure, either z does not remain active or it is assigned
to a child of z (in the next level). Now, the minimum level either increases or remains the same
depending on whether there exists one or more than one node having level λ.

(ii) [By induction] Assume that the result holds at the beginning of an iteration. Let z∗ ∈ Active
be the node chosen with minimum level, say λ. Let active∗ = Active \ {z∗}. If z∗ remains active
after the iteration, its level increases; otherwise it does not remain active. If active∗ = ∅ then the
difference becomes 0; otherwise, the difference becomes 1.

(iii) We show that in each iteration either the minimum level λ is increased by 1 or the number of
active nodes having minimum level is decreased by 1.

Let z∗ ∈ Active be chosen with minimum level λ in an iteration. If z∗ remains active after the
iteration, its level has been increased by 1. So, we need to consider the case where z∗ does not
remain active. In such a situation,

• if z∗ corresponds to a leaf, it no longer remains active.

• otherwise, some other variable z′ ∈ {p, p′, q, q′} \ {z∗} is assigned to a child of z∗. Note that,
if level(z′) = λ + 1 prior to the iteration, then its level is not increased. But the number of
members in the set Active having minimum level λ is reduced by 1.

Thus, if there is an instance having four members in the set Active each having level λ, at most
four consecutive iterations are executed by choosing a node from Active with level λ.

Lemma 3.3. Given an in-place MinMaxPST with a set of points in R2 in an array P , algorithm
Highest3SidedUp(x0, x1, y0) correctly reports the point having maximum y-coordinate in the query
region , in O(log n) time with O(1) extra work-space.

Proof. The space complexity trivially follows since we have used O(1) working variables (4 index
variables, 4 bit variables and 4 λ-values). The time complexity follows from Lemma 3.2 and the
fact that the height of MinMaxPST is O(log n).

3.3 Enumerate3SidedUp(x0, x1, y0)

Here the query region Q is same as that in Highest3SidedUp, and the objective is to report
all the points of P in the region Q. This algorithm uses the same approach as algorithm High-
est3SidedUp, and is presented in Algorithm 6. It uses the procedures EnumerateLeft, Enu-
merateLeftIn, EnumerateRight and EnumerateRightIn which are similar to CheckLeft,
CheckLeftIn, CheckRight and CheckRightIn, respectively. The only difference is that all
these procedures call the procedure Explore(t, y0, level(t)) instead of ExUpdateHighest(t) and
reporting of t is done instead of UpdateHighest(t).

The algorithm Explore(t, y0, level(t)) reports all points in Tt whose y-coordinates are at least y0.
An in-order traversal is performed in Tt. At each node, the corresponding point is reported if it
lies in Q. If two consecutive nodes on a path do not lie in Q, then the traversal along that path
does not progress further. A variable level is used during the traversal that indicates the level of
the current node. This is needed since we are using MinMaxPST. Thus observing whether the
current node is a t even or odd level becomes important. The input parameter level(t) is used
to initialize the variable level The procedure Explore is described in Algorithm 7. It uses two
variables current and state satisfying the following invariant:

17

Algorithm 6: Enumerate3SidedUp(x0, x1, y0)

Input: Real numbers x0, x1, and y0 defining the region Q = [x0, x1]× [y0,∞).
Output: All elements of Q ∩ P .

1 if x(root(T)) < x0 then
2 p = root(T) ; L = 1; L′ = R = R′ = 0
3 else if x(root(T)) < x1 then
4 p′ = root(T); L′ = 1; L = R = R′ = 0
5 else
6 q = root(T); R = 1; L = L′ = R′ = 0
7 while L = 1 ∨ L′ = 1 ∨R = 1 ∨R′ = 1 do
8 I = {z ∈ {L,L′, R,R}|z = 1};
9 z = element of I for which level(N(z)) is minimum;

10 if z = L then
11 EnumerateLeft(p);
12 else if z = L′ then
13 EnumerateLeftIn(p′);
14 else if z = R then
15 EnumerateRight(q);
16 else
17 EnumerateRightIn(q′);

• current is a node in Tp.

• y(current) ≥ y0.
• state ∈ {0, 1, 2}.
• If state = 1, then all elements of the set Q∩ ({current} ∪ Tcurrent l) have been reported, where
Tcurrent l is the left child of current in the tree T .

• If state = 2, then all elements of the set Q ∩ Tcurrent have been reported.

As in Section 3.2, it can be shown that the number of iterations of the while-loop of algorithm
Enumerate3SidedUp is at most four times the height of T . Thus, we have the following result.

Lemma 3.4. Given an in-place MinMaxPST in an array P and a query range Q = [x0, x1] ×
[y0,∞), the algorithm Enumerate3SidedUp(x0, x1, y0) correctly computes all elements of P in
the region Q in O(log n+ |PQ|) time using O(1) extra work space, where PQ is the set of points in
the region Q.

Remark 2. The algorithms LeftMostSE RightMostNWand RightMostSW are similar to
algorithm LeftMostNE. Similarly, Lowest3SidedDown and Enumerate3SidedDown are
analogous to Highest3SidedUp and Enumerate3SidedUp, respectively. The algorithms HighestNE,
HighestNW can be formulated using Highest3SidedUp. Similarly, LowestSE and LowestSW
can be formulated using Lowest3SidedDown.

4 Enumerating Maximal Empty Rectangles

Let R = [xmin, xmax] × [ymin, ymax] be an axis-parallel rectangular region containing a set P of n
points. An empty rectangle is an axis parallel rectangle inside R that contains no point of P inside
it. A maximal empty rectangle (MER) is an empty rectangle that is not properly contained in any

18

Algorithm 7: Explore(p, y0, level)

Input: A node p and its level in T and a real number y0.
Output: All points q in Tp for which y(q) ≥ y0.

1 current = p;
2 state = 0;
3 while current 6= p or state 6= 2 do
4 if state = 0 then
5 if y(current) ≥ y0 then
6 report current ;
7 if (current has a left child)

∧
(y(current l) ≥ y0

∨
(y(current) ≥ y0

∧
level mod 2 = 0)) then

8 current = current l; level = level + 1;
9 else

10 state = 1;

11 else
12 if state = 1 then
13 if (current has a right child)

∧
(y(currentr) ≥ y0

∨
(y(current) ≥ y0

∧
level

mod 2 = 0)) then
14 current = currentr; level = level + 1; state = 0;
15 else
16 state = 2;

17 else
18 // state = 2 and current 6= p
19 if current is the left child of its parent then
20 state = 1;
21 current = parent(current); level = level − 1;

other empty rectangle. Each edge of an MER either contains a point in P or coincides with the
boundary of R. We will consider the problem of designing an in-place algorithm for enumerating all
the MERs using O(1) extra-space. It is to be noted that we can use this algorithm for optimizing
any measure among all the MERs.

Namaad et al [15] proposed an algorithm for this problem which runs in O(min(n2, m log n)) time,
where m is the number of all possible MERs. They showed that in the worst case m may be O(n2);
but if the points are randomly placed, then the expected value of m is O(n log n).

Atallah and Frederickson [4] and Orlowski [17] proposed simple algorithms for enumerating all
the MERs that run in O(m + n log2 n) and O(m + n log n) time respectively. If the objective
is only to identify the largest MER, then efficient algorithms are available. Chazelle et al. [11]
proposed an O(n log3 n) time algorithm for this problem. Later Aggarwal and Suri [1] improved
the time complexity to O(n log2 n). The same time complexity result holds for the recognition of
the largest MER among a set of arbitrary polygonal obstacles [16]. Boland and Urrutia [6] gave an
O(n log n) time algorithm for finding the largest MER inside an n-sided simple polygon. None of
these algorithms is in-place; each of them uses O(n) work-space apart from the input array.

4.1 Algorithm

We broadly divide MERs into the following three categories:

Type-A: The MERs whose top and bottom boundaries are aligned with the top and bottom bound-
aries of R respectively.

19

Type-B: The MERs whose top boundary is aligned with the top boundary of R, but bottom
boundary passes through a point in P .

Type-C: The MERs whose top boundary passes through a point in P . Its bottom boundary may
or may not pass through a point in P .

Clearly, each MER belongs to exactly one of the above three types. Now, we will show that the
MaxPST defined in Section 1, can be used for solving our problem in an in-place manner using
only O(1) extra-space.

Algorithm EnumerateMER, given in Algorithm 8, enumerates all MERs inside R among the
set P of points. It calls the procedures EnumerateTypeA, EnumerateTypeB and Enumer-
ateTypeC to enumerate all Type-A, Type-B and Type-C MERs respectively. The Enumer-
ateTypeB and EnumerateTypeC procedures need the MaxPST data structure. So, before
executing these two procedures, we need to invoke the ConstructMaxPST procedure for build-
ing MaxPST. We describe the three procedures separately in the following subsections.

Algorithm 8: EnumerateMER

Input: An axis-parallel rectangular region R = [xmin, xmax]× [ymin, ymax] containing a set P of n
points.

Output: All axis-parallel maximal empty rectangles inside R.
1 EnumerateTypeA(R,P);
2 ConstructMaxPST(P);
3 EnumerateTypeB(R,P);
4 EnumerateTypeC(R,P);

4.1.1 EnumerateTypeA(R,P)

Type-A MERs are easy to obtain. First sort the points in P in increasing order of their x-coordinate
values in an in-place manner. Now each pair of consecutive points defines a Type-AMER. Algorithm
EnumerateTypeA, given in Algorithm 9, computes all the Type-A MERs.

Algorithm 9: EnumerateTypeA(R,P)

Input: an axis-parallel rectangular region R = [xmin, xmax]× [ymin, ymax] containing a set P of n
points.

Output: All the Type-A MERs inside R
1 HeapSort(P);
2 top = ymax; bottom = ymin; left = xmin;
3 for i = 1 to n do
4 right = x(P [i]);
5 report rectangle (left, right, top, bottom) ;
6 left = right;

7 right = xmax;
8 report rectangle (left, right, top, bottom) ;

4.1.2 EnumerateTypeB(R,P)

A Type-B MER is an MER whose top boundary coincides with the top boundary of R but bot-
tom boundary passes through a point in P . The number of Type-B MERs is at most n. The

20

reason is as follows: Let the bottom boundary of a Type-B MER pass through a point p ∈ P .
Its left and right boundaries are uniquely defined by two points RightMostNW(x(p), y(p)) and
LeftMostNE(x(p), y(p)) respectively. The algorithm EnumerateTypeB is stated below. For
a given point p ∈ P , it uses MaxPST for getting the points RightMostNW(x(p), y(p)) and
LeftMostNE(x(p), y(p)) in O(log n) time using O(1) extra space (see Section 3.1). Thus, the
time required for computing all the Type-B MERs present on R is O(n log n).

Algorithm 10: EnumerateTypeB(R,P)

Input: An axis-parallel rectangular region R = [xmin, xmax]× [ymin, ymax] and the MaxPST of the
set P of n points.

Output: All the Type-B MERs inside R.
1 top = ymax;
2 for i = 1 to n do
3 bottom = y(P [i]);
4 l = RightMostNW(x(P [i]), y(P [i]));
5 if l = (∞,−∞) then
6 left = xmin;
7 else
8 left = x(l);
9 r = LeftMostNE(x(P [i]), y(P [i]));

10 if r = (∞,−∞) then
11 right = xmax;
12 else
13 right = x(r);
14 report rectangle (left, right, top, bottom) ;

4.1.3 EnumerateTypeC(R,P)

Let p∗ ∈ P be at the root of the MaxPST. We now describe the method of computing all the
Type-C MERs with the point p∗ ∈ P on its top boundary. Note that, while computing the Type-C
MERs with top boundary passing through the point p∗, all the points {q|y(q) ≥ y(p∗)} can be
ignored. Thus, we delete the point p∗ from MaxPST.

Let us now consider a drop-down curtain whose top is fixed at p∗, and its left and right sides are
initialized by xmin and xmax respectively. Imagine lowering the curtain till either it reaches a point
of P or reaches the bottom boundary of R. If it reaches a point of P , say p, then p satisfies the
following:

(i) left < x(p) < right

(ii) y(p) < y(p∗)

(iii) y(p) is maximum among all the points in P satisfying (i) and (ii).

Note that, if MaxPST contains all the points {q|y(q) < y(p∗)}, then p can be computed by
performing the Highest3SidedUp(left, right,ymin) query in MaxPST. If p 6= NIL, then we
report a Type-C rectangle, and adjust left or right as follows: if x(p) < x(p∗) then left = x(p),
otherwise right = x(p). We further pull the curtain down till it meets a point of P or the bottom
boundary of R, and report the next Type-C MER. By repeating the above steps, we report all
Type-C MERs whose top boundary is anchored at p∗ (see Figure 8).

The iteration continues until MaxPST becomes empty. In Subsection 4.1.4, we show that deletion
of the root from a MaxPST can be performed in O(log n) time with O(1) extra storage, where n

21

(xmin, ymin)

(xmax, ymax)

p∗

Figure 8: Enumerating Type-C MER keeping the point p∗ at the top boundary.

is the number of points in the MaxPST. In Subsection 4.1.5, we mention the changes required in
the algorithm Highest3SidedUp to handle the dynamically changing MaxPST.

If m′ be the number of MERs reported with top boundary passing through p∗, then the time
complexity of this iteration is O(m′ log n). The detailed steps of this procedure is given in Algorithm
EnumerateTypeC.

Algorithm 11: EnumerateTypeC(R,P)

Input: An axis-parallel rectangular region R = [xmin, xmax]× [ymin, ymax] and the MaxPST of the
set P of n points.

Output: All the Type-C MERs inside R.
1 i = 0;
2 while i 6= n do
3 p∗ = DeleteTop(P);
4 top = y(p∗); left = xmin; right = xmax;
5 repeat
6 h = Highest3SidedUp(left, right, ymin);
7 if h = (∞,−∞) then
8 bottom = ymin;
9 else

10 bottom = y(h);
11 report rectangle (left, right, top, bottom);
12 if h 6= (∞,−∞) then
13 if x(h) < x(p∗) then
14 left = x(h);
15 else
16 right = x(h);

17 until h = (∞,−∞);
18 i = i+ 1;

4.1.4 DeleteTop

The procedure DeleteTop works as follows. It starts from the root P [1] by assigning i = 1. In
each step, it considers both the children of P [i], and choose the one, say P [j] having maximum
y-coordinate. The tie, if arises, is broken arbitrarily. It then swaps P [i] and P [j], and moves to the

22

next step by setting i = j, provided P [j] is not a leaf node. Note that, after the deletion of a point
from MaxPST, it still remains in the array P maintaining the following invariants:

(i) MaxPST contains all the points p ∈ P satisfying y(p) < y(p∗), and

(ii) any point p ∈ P is in MaxPST if and only if y(p) < y(parent(p)).

Thus, the above two invariants say that a node P [j] has no left (resp. right) child if

• 2j > n (resp. 2j + 1 > n), or

• y-coordinate of P [2j] (resp. P [2j + 1]) is greater than the y-coordinate of the root of T ,

Note that, in this dynamic setup under the deletion of the root of the MaxPST, the tree may
not remain balanced after the deletion of some points. In other words, leaf nodes may appear in
different levels. However, the length of the each search path will still be bounded by O(log n).

Algorithm 12: DeleteTop(P)

Input: The array P [1, . . . , n] containing the max priority search tree T
Output: The top of the T and delete it from T

1 i = 1;
2 while (2i ≤ n ∧ y(P [2i]) < y(P [i]))

∨
((2i+ 1) ≤ n ∧ y(P [2i+ 1]) < y(P [i]) do

3 if 2i+ 1 ≤ n then
4 if y(P [2i]) < y(P [i]) ∧ y(P [2i+ 1]) < y(P [i]) then
5 if y(P [2i+ 1]) ≥ y(P [2i]) then
6 j = 2i+ 1;
7 else
8 j = 2i;

9 else if y(P [2i+ 1]) < y(P [i]) then
10 j = 2i+ 1;
11 else
12 j = 2i;

13 else
14 j = 2i;
15 Swap P [i] and P [j] and set i = j;

16 Return(P [j]);

4.1.5 Highest3SidedUp

In Section 3.2, we described the procedure Highest3SidedUp; it is mentioned that if a node has
only one child then that must be the left child. But, in the dynamic setup under the deletion, there
may exist some node in MaxPST which has only the right child. Thus the necessary modification
(in the case p has only one child) is needed in the procedures CheckLeft, CheckRight, Check-
LeftIn and CheckRightIn, that are invoked by Highest3SidedUp presented in Algorithm 3.
However, the time complexity of the Highest3SidedUp query remains O(log n) using O(1) extra
space.

4.2 Correctness and Complexity

The correctness of the Algorithm 9 is easy to observe. The correctness of Algorithm 10 follows from
the correctness of the procedures LeftMostNE and RightMostNW. Finally, the correctness of

23

the Algorithm 11 follows from the invariants (i) and (ii) maintained by MaxPST after the deletion
of its root node, as mentioned in Subsection 4.1.4. The following theorem states the final result.

Theorem 4.1. Given a rectangular region R containing a set of n points, all the maximal empty
axis parallel rectangles can be enumerated in O(m log n) time with O(1) extra space, where m is the
number of all maximal empty rectangles.

Proof. The algorithm EnumerateMER correctly enumerates all MERs exactly once as each of
EnumerateTypeA, EnumerateTypeB and EnumerateTypeC enumerates correctly each of
the Type-A, Type-B and Type-C rectangles respectively exactly once. The time complexity of
each of the procedures EnumerateTypeA, ConstructMaxPST and EnumerateTypeB is
O(n log n). We now analyze the time complexity of the Algorithm EnumerateTypeC.

In each iteration of the while loop of EnumerateTypeC, we first delete the point p∗ at the root
using the procedure DeleteTop. This needs O(log n) time since the root needs to move at most
log n levels for the deletion. Each iteration of the inner loop reports a Type-C MER with top
boundary defined by p. Here a point is identified that obstructs the corresponding curtain using
the procedure Highest3SidedUp. This needs O(log n) time. Thus, the Procedure Enumerate-
TypeC takes O(m′ log n + n log n) time, where m′ is the number of Type-C rectangles present in
R. Since, the number of Type-A and Type-B MERs are both O(n), the time complexity result
follows. From the algorithm it is obvious that, apart from the array P , the extra space used in the
algorithm is O(1).

Corollary 4.2. A maximum area/perimeter MER can be computed in O(m log n) time with O(1)
extra space, where m is the number of all possible MERs.

5 Conclusion

An in-place algorithm for constructing a MinMaxPST tree with a set of points in R2 is presented
in this paper. The worst case time complexity of this algorithm is O(n log n) and it uses O(1)
extra workspace, and stores the MinMaxPST in the same array that contains the input. All the
standard query algorithms on the priority search tree [14] can be executed on this data structure
in logarithmic time using O(1) extra work-space. The implementation of this algorithm is available
in [18]. As an application of this algorithm, we proposed an in-place algorithm of enumerating all
the maximal empty axis-parallel rectangles (MER) among the point set P inside an axis-parallel
rectangular region R. It runs in O(m log n) time and O(1) extra workspace apart from the input
array P , where m is the number of MERs present on R. A careful look into this algorithm may
reduce the time complexity to O(m+n log n) which is best known for this problem with O(n) extra
workspace [17].

Acknowledgment: We thank Simon Pratt for his useful comments on a preliminary version of
this paper.

References

[1] A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rectangle. In
Symposium on Computational Geometry, pages 278–290, 1987.

24

[2] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. CoRR, abs/1112.5904, 2011.

[3] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. JoCG, 2(1):46–68, 2011.

[4] M. J. Atallah and G. N. Frederickson. A note on finding a maximum empty rectangle. Discrete
Applied Mathematics, 13(1):87 – 91, 1986.

[5] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps and generalized
priority queues. Commun. ACM, 29(10):996–1000, 1986.

[6] R. P. Boland and J. Urrutia. Finding the largest axis aligned rectangle in a polygon in o(n log
n) time. In CCCG, pages 41–44, 2001.

[7] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. H. M. Smid, and J. Vahrenhold. Space-
efficient geometric divide-and-conquer algorithms. Comput. Geom., 37(3):209–227, 2007.

[8] H. Brönnimann, T. M. Chan, and E. Y. Chen. Towards in-place geometric algorithms and
data structures. In Symp. on Comput. Geom., pages 239–246, 2004.

[9] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, and G. T. Toussaint. Space-
efficient planar convex hull algorithms. Theor. Comput. Sci., 321(1):25–40, 2004.

[10] T. M. Chan and E. Y. Chen. Optimal in-place and cache-oblivious algorithms for 3-d convex
hulls and 2-d segment intersection. Comput. Geom., 43(8):636–646, 2010.

[11] B. Chazelle, R. L. S. D. III, and D. T. Lee. Computing the largest empty rectangle. SIAM J.
Comput., 15(1):300–315, 1986.

[12] E. Y. Chen and T. M. Chan. A space-efficient algorithm for segment intersection. In CCCG,
pages 68–71, 2003.

[13] J. Katajainen and T. Pasanen. Stable minimum space partitioning in linear time. BIT,
32(4):580–585, 1992.

[14] E. M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.

[15] A. Naamad, D. T. Lee, and W. L. Hsu. On the maximum empty rectangle problem. Discrete
Applied Mathematics, 8(3):267 – 277, 1984.

[16] S. C. Nandy, A. Sinha, and B. B. Bhattacharya. Location of the largest empty rectangle among
arbitrary obstacles. In FSTTCS, pages 159–170, 1994.

[17] M. Orlowski. A new algorithm for the largest empty rectangle problem. Algorithmica, 5(1):65–
73, 1990.

[18] S. Pratt. Implementation of a heap-based priority search tree.
http://github.com/spratt/PrioritySearchTree.

[19] J. Vahrenhold. An in-place algorithm for Klee’s measure problem in two dimensions. Inf.
Process. Lett., 102(4):169–174, 2007.

[20] J. Vahrenhold. Line-segment intersection made in-place. Comput. Geom., 38(3):213–230, 2007.

25

