
Querying Relational Event Graphs using
Colored Range Searching Data Structures?

Farah Chanchary, Anil Maheshwari, and Michiel Smid

School of Computer Science, Carleton University,
Ottawa, ON, K1S 5B6, Canada

farah.chanchary@carleton.ca,anil@scs.carleton.ca,michiel@scs.carleton.ca

Abstract. We present a general approach for analyzing structural pa-
rameters of a relational event graph within arbitrary query time intervals
using colored range query data structures. Relational event graphs gen-
erally represent social network datasets, where each graph edge carries a
timestamp. We provide data structures based on colored range searching
to efficiently compute several graph parameters (e.g., density, neighbor-
hood overlap, h-index).

Keywords: colored range searching, relational event graph, social net-
work analysis, timestamp

1 Introduction

A relational event (RE) graph G = (V,E) is defined to be an undirected graph
with set of vertices V and a set of edges (or relational events) E = {ek|1 ≤
k ≤ m} between pairs of vertices. We assume that each edge has a unique
timestamp. We denote the timestamp of an edge ek ∈ E by t(ek). Without loss
of generality, we assume that t(e1) < t(e2) < · · · < t(em). Given a relational
event graph G, for a pair of integers 1 ≤ i ≤ j ≤ m, we define the graph slice
Gi,j = (V ′, E′ = {ei∪ei+1∪· · ·∪ej}), where V ′ is the set of vertices incident on
edges of E′. In this paper, for a query time interval [i, j], where 1 ≤ i ≤ j ≤ m,
we are interested in answering questions about various graph parameters on the
graph slice Gi,j .

A social network can naturally be represented by an RE graph, where each
vertex of the graph represents an entity of the social network, and edges rep-
resent communication events between pair of entities occurred at some specific
time. The RE graph model was first proposed by Bannister et al. [1]. They pre-
sented data structures to find the number of connected components, number of
components containing cycles, number of vertices with some predetermined de-
gree and number of reachable vertices on a time-increasing path within a query
time window. Later, Chanchary and Maheshwari [6] presented data structures to
solve subgraph counting problems for triangles, quadrangles and complete sub-
graphs in RE graphs. In this paper, we present a general approach to construct

? This research work was supported by NSERC and Ontario Graduate Scholarship.

2 Farah Chanchary, Anil Maheshwari, and Michiel Smid

data structures on a set of colored points in Rd, (d ≥ 1), that support colored (or
generalized) range queries, and efficiently count and/or report various structural
parameters of the underlying RE graph G within a query pair of indices [i, j].

1.1 Preliminaries

We define some structural graph parameters that we want to compute using our
data structures. One of the basic indicators for measuring graph structure is the
density of a graph. It evaluates how close the graph is to a complete graph. The

density of an undirected simple graph G = (V,E) is defined as D(G) = |E|
(|V |

2)
[15].

In social networks, center vertices of k-stars are considered as hubs. In net-
work analysis, hubs have been extensively studied as they are the basis of many
tasks, for example web search and epidemic outbreak detection [2]. A k-star is
defined to be a complete bipartite graph K1,k, i.e., a tree with one internal node
and k leaves. The h-index is the largest number h such that the graph contains
h vertices of degree at least h. For any graph with m edges, h = O(

√
m) [1].

Embeddedness of an edge (u, v), denoted as emb(u, v), in a network is the
number of common neighbors the two endpoints u and v have, i.e., emb(u, v) =
|N(u) ∩ N(v)|[8]. Embeddedness of an edge (u, v) in a network represents the
trustworthiness of its neighbors, and the confidence level in the integrity of the
transactions that take place between two vertices u and v [8]. A local bridge in a
graph G is an edge whose endpoints have no common neighbour. Neighborhood
overlap of an edge (u, v), denoted as NOver(u, v), is the ratio of the number of
vertices who are neighbors of both u and v, and the number of vertices who are
neighbors of only one of them [8].

NOver(u, v) =
emb(u, v)

|N(u) ∪N(v)| − emb(u, v)− 2
(1)

In the denominator, u or v are not counted as the neighbor of one another. Neigh-
borhood overlap of an edge represents the strength (in terms of connectivity) of
that edge in its neighborhood. The neighborhood overlap of an entire graph G
is defined as the average of the neighborhood overlap values of all the edges of

G, i.e., NOver(G) = 1
|E|

∑|E|
k=1NOver(ek) [14]. Suppose G = (V = A ∪ B,E)

is a bipartite graph. Neighborhood overlap of a pair of vertices u, v ∈ A of G is
defined as the following ratio [8].

NOver(u, v) =
emb(u, v)

|N(u) ∪N(v)| − emb(u, v)
(2)

In social network analysis, this bipartite graph is known as the affiliation net-
work. An affiliation network represents how entities of a network (i.e., vertices
in A) are affiliated with other groups or activities (i.e., vertices in B).

Modularity of a network is a measure that quantifies the quality of a given
network division into disjoint partitions or communities [15]. Many real world

Querying Relational Event Graphs 3

complex networks, e.g., the world wide web, biological or social networks, demon-
strate some forms of community structures that are important for various topo-

logical studies. The modularity of a vertex pair (u, v) is defined as d(u)×d(v)
2|E| ,

where d(u) is the degree of vertex u [15].
Analysis of the diffusion phenomena in graphs is a very widely studied re-

search area in many communities including computer science, social sciences and
epidemiology. Although the basic model of diffusion shares common properties
across various disciplines, it is highly context dependent [3, 5, 9]. In particular,
the spread of information in any social network requires some influence from a set
of designated agents (vertices) and depends on the connectivity of the network.
We want to solve the problem of counting and reporting influenced vertices in
an RE graph slice using the following model.

Suppose, G = (V,E) is an RE graph with n vertices and m edges with a
fixed set of influential vertices V ′ ⊆ V . Let f : V → N be a function assigning
thresholds values to vertices such that, (a) f(v) = 0 if v is an influential vertex;
(b) 1 ≤ f(v) ≤ d(v) otherwise, where d(v) is the degree of v ∈ V . A vertex can
be influenced only if it is on a path of influence. A simpler model for counting
influential vertices has been presented in [1].

Definition 1. For a pair of vertices u and v, and a positive integer r, a path
π = (u = v1, v2, v3, · · · , vk, vk+1 = v) is a path of influence with parameter r, if
the following holds:

1. u is an influential vertex and v is a non-influential vertex
2. v2, v3, · · · , vk are influenced vertices
3. t(vi, vi+1) < t(vi+1, vi+2)
4. t(vk, vk+1)− t(v1, v2) ≤ r.

2
4

1

6

5

3

7

r = 4

u

v5

v4

v2

v1

v3v6

Fig. 1. A path of influence π = (u, v1, v2, v4, v6) starting from an influential vertex u
(shaded dark blue) to vertices v1, v2, v4 and v6 (shaded light blue) given r = 4. Vertices
v3 and v5 (opaque) are not influenced by u since there is no path with increasing
timestamps from u to these vertices.

Definition 2. A vertex v is influenced with respect to r if either v is an influ-
ential vertex, i.e., v ∈ V ′ or v is a non influential vertex and there are at least
f(v) edge-disjoint paths of influence with parameter r by which v can be reached
from some influential vertices.

4 Farah Chanchary, Anil Maheshwari, and Michiel Smid

We assume an influential vertex u can influence other vertices v1, v2, · · · , vk+1

on a path of influence π such that the time difference t(vk, vk+1)− t(v1, v2) ≤ r,
where r > 0. After r rounds, vi’s influence becomes inactive on other vertices on
this particular path of influence. This is known as the degradation of influence
in social networks. A similar model has been proposed by Gargano et al. [9] for
non-temporal graphs.

1.2 New Results

Let G be a relational event graph consisting of m edges and n vertices, and
let q = [i, j] be an arbitrary query time interval, where 1 ≤ i ≤ j ≤ m. Our
data structures can efficiently answer queries on computing the graph density,
number of vertices, degrees of all vertices, k-stars, h-index, embeddedness of
edges, average neighborhood overlap (for general and bipartite graphs) and the
number of influenced vertices in the graph slice Gi,j . The contributions of this
paper are summarized in Table 1. Some of the queries mentioned above are
obtained by reducing the problem to a new colored range query problem stated
as follows: Given a set of n colored points on the real line and a fixed threshold
value k, we can construct an insertion-only persistent data structure in O(n log n)
time using O(n) space that can report those colors that have at least k elements
within any query interval q = [a, b] in O(log n+w) time, where w is the number
of reported colors (Theorem 1).

Table 1. Summary of Results. Here, w is the size of the output, h is the h-index, s is
the number of edges having neighboring edges, t is the number of edges with positive
embeddedness, p is the number of vertex pairs having some common neighbors, k is
the number of vertices having some neighbors in Gi,j , a(G) is the arboricity of G, and
n = |V |, m = |E|.

Problems Preprocessing time Query time

|Vi,j | O(m+ n) O(logn) (Theorem 2)

D(Gi,j) O(m+ n) O(logn) (Theorem 2)

d(v ∈ Vi,j) O(m+ n) O(log2 n+ w) (Theorem 3)

k-stars O(m+ n) O(logn+ w) (Theorem 4)

h-index (approx.) O(m+ n) O(log2 n+ h logn) (Theorem 5)

Embeddedness O(a(G)m) O(log2 n+ t logn) (Theorem 6)

NOver(Gi,j) O(mn) O(log2 n+ (t+ s) logn) (Theorem 6)

NOver(Gi,j)-bipartite O(a(G)m) O(log2 n+ p logn+ k) (Theorem 7)

Influenced vertices O(m logn) O(logn+ w) (Theorem 8)

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents some existing
and new results on colored range query data structures. Section 3 presents the
general approach for solving problems in RE graphs using colored range queries.
In Section 4, we provide algorithms and their analysis for solving queries. Section
5 concludes this paper.

Querying Relational Event Graphs 5

2 Colored Range Searching Data Structures

Colored range searching problems are variations of the standard range searching
problems, where a set of colored objects (e.g., points, lines or rectangles) is given.
Typically, the color of an object represents its category. In the generic instance
of the range searching problems, a set of objects S is to be preprocessed into a
data structure so that given a query range q, it can efficiently answer counting
or reporting queries based on the intersection of q with the elements in S. In
the colored version, the query should efficiently report those colors that have
at least one object intersecting the query range. For example, we have a set of
points S ∈ R2 and each point is colored by one of the four different colors, i.e.,
C = {c1, c2, c3, c4} (see Figure 2). Suppose a query rectangle q = [a, b]× [c, d] is
given. The standard colored range counting (reporting) query will count (report)
the number of colors that have at least one point inside q. In this example, there
are three colors (red, green and blue) that have points inside q, hence they will be
reported. A different version namely Type-2 counting problem reports the number
of points for each color intersected by q as a pair of values (ck, #ck-colored points
intersected by q). Following our example, the type-2 counting query will generate
the output as (red, 2), (green, 2), (blue, 1). A variety of colored range searching
problems have been studied extensively, see for example [4, 10, 11, 13].

d

c
a b

Fig. 2. Example of colored range queries.

2.1 k-threshold color queries

We wish to preprocess a set S of colored points on a horizontal line so that
given a threshold k, where k ≥ 0, an integer, and a query interval q = [a, b], we
can quickly report the colors that have at least k points in q ∩ S. To solve this
problem, we construct an insertion-only persistence based data structure. 1

1 In the conference version of this paper (CALDAM’17), we presented a data structure
based on a chaining technique to solve this problem. The persistence based data
structure presented here improves both total space and the query time by a factor
of O(logn).

6 Farah Chanchary, Anil Maheshwari, and Michiel Smid

The Static Counting Problem: At first, we assume k is fixed and solve a
similar k-threshold color counting problem where the query interval is of the
form q = [a,∞). Suppose, S is a set of n colored points. For each color c, we sort
all points of color c by non-decreasing x co-ordinate and let Sc be this sorted
list. Let X be another sorted list, where each element Xc of X is the k-th largest
element in Sc. For a query interval [a,∞), we start from the right end of list X,
walk up till we reach a and report all points in between. Total space required for
this structure is O(n). Queries can be answered in time O(w), where w is the
number of reported colors.

Lemma 1. Let k ≥ 1 be a fixed integer. A set S of n colored points on the real
line can be preprocessed into a data structure of size O(n) such that the number
of colors that have at least k points contained in any query interval q = [a,∞)
can be reported in O(w) time, where w is the number of reported colors. Total
preprocessing time is O(n log n).

The Insertion-only Persistent Structure: Now we solve the problem of k-
threshold color queries for a query interval q = [a, b]. The idea is as follows. We
first sort the list S of n colored points. Then we start with an empty list L.
We insert the points of S, according to their sorted order, into L. During this
sequence of insertions, we maintain the data structure of Lemma 1. A persistent
version of this list will allow us to answer queries for arbitrary intervals [a, b].

During the insertions, we maintain the following information: For each color
c, Lc is a sorted list containing the k largest elements among all points having
color c that have been inserted so far. In case fewer than k elements of color c
have been inserted, Lc stores all these elements having color c. We also maintain
the number size(Lc) of elements in the list Lc. Note that size(Lc) ≤ k at any
moment. We maintain a list L that stores the following elements (in sorted
order): For each color c with size(Lc) = k, the list L stores the k-th largest
element having color c. Finally, we maintain a balanced binary search tree T
whose leaves store, in sorted order, the elements of the current list L. This tree
will allow us to search and update the list L.

Initially, the list L, the tree T , and all lists Lc are empty. Moreover, size(Lc)
is zero for each color c.

When we insert a point p of color c, we add p at the end of Lc and in-
crease size(Lc) by one. In case size(Lc) = k, we insert p into T and L. In case
size(Lc) = k + 1, we delete, from T , L, and Lc, the smallest element of Lc, we
insert p into T and L, and we decrease size(Lc) by one. See Algorithm 1 for
details.

Sorting S takes O(n log n) time. Total preprocessing time required for insert-
ing n points into tree T is at most O(n log n). The amount of memory changes
in L, per insertion, is O(1). Total space required to maintain T is O(n). Given
a query interval [a, b], we do a binary search on b in the sorted sequence S. The
result of this search gives us the version number of L in which we report all
colors that occur at least k times in the query interval [a,∞). This gives a query
time of O(log n+ w), where w is the number of reported colors.

Querying Relational Event Graphs 7

Algorithm 1: k-threshold(S, k)

Input : Set S of n colored points, a positive integer k.
1 Sort S in the non-decreasing order of the x-coordinate values of n colored points.
2 Set T,L and all Lc empty.
3 Set all size(Lc) = 0.
4 for each point p in S do
5 Let c be the color of p.
6 Add p at the end of Lc.
7 Set size(Lc) = size(Lc) + 1.
8 if size(Lc) = k then
9 Insert p into T and L.

10 if size(Lc) = k + 1 then
11 Set q = the first element of Lc.
12 Remove q from T,L and Lc.
13 Insert p into T and L.
14 Set size(Lc) = size(Lc)− 1.

Theorem 1. Let k ≥ 1 be a fixed integer. A set S of n colored points on the
real line can be preprocessed into a persistent data structure of size O(n) in time
O(n log n) such that the number of colors that have at least k points contained
in any query interval q = [a, b] can be reported in O(log n+w) time, where w is
the number of reported colors.

3 General Approach for Modeling Problems

In this paper we present the following general approach to solve problems in RE
graphs. Suppose an RE graph G = (V,E) is given and we want to answer queries
about some structural parameters of G. To solve each problem, we will define
a set of colors C = {c1, c2, · · · , cp}, where each color ck ∈ C is encoded as an
integer in the range [1, p] for some integer p. We process each edge e = (u, v) of
G according to the timestamps of the edges in increasing order and scan either
each adjacent edge of e or each neighboring vertex of both u and v. Depending
on the problem in hand, our algorithm associates C either to the set of vertices
V (i.e., |C| = n) or to the set of edges E (i.e., |C| = m). When each vertex
vk ∈ V is associated with a color ck, the algorithm scans each neighbor Ni of vk,
where 1 ≤ i ≤ d(vk), generates a ck colored point p, and assigns the timestamp
t(vk, Ni) as p’s coordinate value (see Figure 3(a)). Similarly, when each edge
ek ∈ E is associated with a color ck, the algorithm scans each adjacent edge Mi

of ek, and generates a ck colored point p with the timestamp of Mi assigned as
p’s coordinate value (see Figure 4(b)). This general approach will be extended
when we report influenced vertices or preprocess bipartite graphs. We explain
these in later sections.

8 Farah Chanchary, Anil Maheshwari, and Michiel Smid

Now, we summarize the components of our general approach as follows. To
solve any problem with our model, we need to specify the following components.

1. The set of colors C and the corresponding graph element (i.e., vertices,
edges);

2. The representation of points in Rd, where d ≥ 1;
3. Appropriate colored range searching data structure to answer queries.

4 Algorithms for Answering Window Queries

4.1 Counting Vertices, Density, and Degrees of Vertices

Given an RE graph G = (V,E) and a query time slice [i, j], we want to find the
number of vertices |Vi,j |, the density D(Gi,j), and report all the vertices with
non-zero degrees in Vi,j .

Counting number of vertices |Vi,j |: We use a set C = {c1, c2, · · · , cn} of n colors,
where each ck is associated with a vertex vk, for 1 ≤ k ≤ n. For each vertex
vk ∈ V , we maintain a linked list adj[vk], where each node of the list contains
its neighboring vertex Ni, where 1 ≤ i ≤ d(vk), and the timestamp of the edge
between them, i.e., t(vk, Ni). We associate color ck with all timestamps stored
in adj[vk], for all 1 ≤ k ≤ n. Now we have exactly 2|E| colored points on the
real line (see Figure 3 for an example). Let this set of colored points be P . Using
1-dimensional colored range counting data structure on P with query interval
q = [i, j], we can find all distinct colors intersected by q. Each of these distinct
colors represents a vertex having adjacent edges in Gi,j . Thus, we can report
|Vi,j | in O(logm) = O(log n) time (by [11], Theorem 3.2) using a data structure
of size O(m log n).

vk

2

7

25

1 10 20 30cba

Fig. 3. (a) A vertex vk and its three neighbors a, b and c. Since the timestamp t(vk, a) of
the edge (vk, a) is 2, (vk, a) is shown as a ck-colored point on the line with x-coordinate
value = 2. (b) The set of all ck colored points on the line.

Computing density D(Gi,j): This step requires computing the value of |Ei,j | in
addition to |Vi,j |. For any graph slice Gi,j , the value of |Ei,j | can be computed
in constant time since |Ei,j | = j − i+ 1. We summarize these results as follows.

Theorem 2. Given an RE graph G with m edges and n vertices, and a query
time interval [i, j], the problem of computing |Vi,j | and the density D(Gi,j) of

Querying Relational Event Graphs 9

the graph slice can be reduced to 1-dimensional colored range queries in linear
time. Queries can be answered in O(log n) time using O(m log n) space.

Reporting degrees of vertices d(v): We want to report the degree of each vertex
vk ∈ V such that vk has some neighboring edges in Gi,j . So, we construct a
1-dimensional type-2 color counting data structure on P . This query will report
all vertices that have non-zero degrees in Gi,j in O(log n+ w) time, where w is
the number of reported vertices.

Theorem 3. Given an RE graph G with m edges and n vertices, and a query
time interval [i, j], the problem of computing degrees of all vertices vk ∈ Vi,j can
be reduced to 1-dimensional type-2 colored range queries in linear time. Queries
can be answered in O(log n+w) time, where w is the number of reported vertices.

4.2 Counting k-stars and h-index

Given an RE graph G with m edges and n vertices, a fixed threshold k and
a query time slice [i, j], we want to count all k-stars in Gi,j . We use a similar
model as described in the previous section (see Figure 3). Each edge adjacent
to a vertex vk will have the color ck. Thus we again have a set of colored points
on the real line. By applying k-threshold color queries (Theorem 1) with query
interval q = [i, j] we can report all vertices that have at least k neighbors in Gi,j ,
hence are at the center of k-stars in Gi,j .

Theorem 4. Given an RE graph G with m edges and n vertices, a query time
slice [i, j], and a fixed threshold value k, the problem of finding all k-stars in
Gi,j can be reduced to k-threshold color queries in linear time. Queries can be
answered in O(log n+ w) time, where w is the number of k-stars.

Given an RE graph G with m edges and n vertices, and a query time slice
[i, j], we want to compute the h-index of (Gi,j). We use the same model and
build the parameterized k-threshold color counting data structures to answer
this query. A k-threshold color counting data structure reports the number of
vertices (w) that have at least k neighbors in Gi,j . Therefore, if the number of
reported vertices w ≥ k, then the h-index of Gi,j is at least k. Now we perform
a set of decision problems to compute the h-index(Gi,j), i.e., ‘Are there at least
k vertices of degree k in Gi,j?’

We query the k-threshold color counting data structure with parameter k = 1
and compare the number of colors (w) reported by this query with the value of
k. We perform the following steps for k = 1, (1+ε), (1+ε)2, · · · for up to log1+ε n
blocks, where ε is an arbitrarily small positive constant:

1. If w = k, we return k as the h-index of Gi,j .
2. If w > k, we search using the data structure with the next value of k in the

sequence.
3. Otherwise, if k′ < w < k, where k′ was the previous block size, we return w

as the approximation to h-index.

10 Farah Chanchary, Anil Maheshwari, and Michiel Smid

In case we do not find the exact answer for h, we report an approximate
h-index(Gi,j) with approximation ratio of (1 + ε). Total preprocessing time re-
quired to build this data structure will be O(n log2 n). The following theorem
summarizes this result.

Theorem 5. Given an RE graph G with m edges and n vertices, and a query
time slice [i, j], the problem of computing the h-index of Gi,j can be reduced to
the parameterized k-threshold color counting problem in linear time. Queries can
be answered in O(log2 n + h log n) time with an approximation ratio of (1 + ε),
where ε is a small positive constant and h is the h-index of Gi,j.

4.3 Computing Neighborhood Overlap and Embeddedness

We notice, from the definition of neighborhood overlap of an edge (u, v) that the
numerator term represents the embeddedness of the edge (u, v) (i.e., the number
of triangles containing the edge (u, v)) and the denominator is the number of
edges adjacent to edge (u, v) minus the common edges (triangles). So, to answer
the main query we need to solve two subproblems; i.e., for each edge ek ∈ Gi,j ,
where i ≤ k ≤ j, we count (a) the number of edges adjacent to ek, and (b) the
number of triangles containing ek. We describe below the preprocessing steps for
these subproblems.

Counting the number of adjacent edges: We use a set ofm colors, C = {c1, c2, · · · , cm},
where each color ck will be associated with an edge ek, for 1 ≤ k ≤ m. Now,
for each edge ek we associate each adjacent edge of ek with a color ck ∈ C.
Suppose, ek has a set of adjacent edges A(ek) = {e′, e′′, · · ·}. We create a ck-
colored point in R2 for each edge e′ ∈ A(ek) with coordinate values (t(ek), t(e′))
(see Figure 4). The total number of colored points is

∑
e=(u,v)(d(u) + d(v)) =∑

u d(u)2 ≤ (n − 1)
∑
u d(u) = 2m(n − 1) = O(mn). Using 2-dimensional

type-2 counting query data structure (Theorem 1.4, [10]) with query inter-
val [i, j] the number of edges adjacent to each ek ∈ Ei,j can be found in
O(log2mn + s logmn) = O(log2 n + s log n) time using O(mn) space, where
s is the total number of edges in Ei,j having some neighboring edges.

Counting the number of triangles: We observe that we can preprocess G in
O(a(G)m) time to count the number of triangles in Gi,j ([6], Theorem 2), where
a(G) is the arboricity of G. Arboricity is defined as the minimum number of
edge-disjoint spanning forests into which G can be partitioned [12]. For a general
connected graph G, a(G) = O(

√
m) [7]. Algorithm-1 presented in [6] represents

each triangle of G as a point p = (high, low) ∈ R2, where high (low) is the max-
imum (minimum) timestamp of the participating edges of that triangle. Now
we modify the algorithm in [6] so that each point p in the original algorithm
representing a triangle will now have three copies of itself and each copy will
be associated with the color of each participating edge of the triangle (see Fig-
ure 5). There will be exactly 3K colored points in R2, where K is the number of
triangles in G. Using 2-dimensional type-2 range counting query data structure

Querying Relational Event Graphs 11

c

d

e

f b

1

10
4

5

7
8

6

2 9

3

a

(bd, 3), (af, 2), (bf, 4)

G3,8

1094 65 871 32
ab ed df be ce bd af bf cd ac

Count adjacent edges: (df, 3), (be, 3), (ce, 1)

Fig. 4. (a) Relational event graph G, and (b) Number of adjacent edges in the graph
slice G3,8.

([4], Theorem 6.2) with query rectangle [i, j] × [i, j], the number of triangles
containing edges ek, where (i ≤ k ≤ j), can be found in O(log2K + t logK)
time, where t is the number of output edges. The maximum number of tri-
angles in any graph G can be O(n3). So the query time can be re-defined as
O(log2 n+ t log n). From this result, we can also report (i) total number of local
bridges #LB(Gi,j) = (j − i− t+ 1) and (ii) value of embeddedness of any edge
in Gi,j .

c

d

e

f b

1

10
4

5

7
8

6

2 9

3

a

1 2 3 4 5 7 8 9 10

G2,8

(2, 2)

(8, 8)

6

Fig. 5. (a) Relational event graph G, and (b) Number of triangles adjacent to edges in
the graph slice G2,8.

Analysis: For part (a), there are overall O(mn) points representing all edge ad-
jacencies in G. For part (b), identifying all triangles in G requires O(a(G)m)
preprocessing time. Thus, the total time required to reduce the problem of com-
puting neighborhood overlap to colored range queries takes O(a(G)m + mn) =
O(mn) time. Total query time is O(log2 n + t log n) + O(log2 n + s log n) =
O(log2 n+ (t+ s) log n). The following theorem summarizes the results.

Theorem 6. Given an RE graph G with m edges and n vertices, and a query
time slice [i, j], the problem of computing the average neighborhood overlap of
Gi,j can be reduced to the colored range counting in O(mn) time. NOver(Gi,j)
can be computed in O(log2 n+ (t+ s) log n) time, where t is the number of edges

12 Farah Chanchary, Anil Maheshwari, and Michiel Smid

in Gi,j with positive embeddedness and s is the number of edges having some
neighboring edges in Ei,j.

4.4 Neighborhood Overlap in Bipartite Graphs

Given a bipartite RE graph G = (V = {A∪B}, E) with m edges and n vertices,
and a query time interval [i, j], we now want to compute the neighborhood over-
lap of Gi,j . Recall from Definition 2 that for every pair of vertices (u1, u2) ∈ A,
we need to compute (a) total number of common neighbors and (b) the total
number of neighbors of the vertex pair.

Counting common neighbors of vertex pairs: To count all common neighbors of
a pair of vertices (u1, u2) ∈ A of a bipartite graph G, we use the edge searching
technique applied in the quadrangle counting algorithm in [6]. The original al-
gorithm represents a set of quadrangles sharing a common pair of vertices (two
opposite corners of a rectangle) (u1, u2) as a tuple (u1, u2, X = {v1, v2, · · ·}) such
that every pair of elements in X is connected to u1 and u2. In our case, for every
tuple u1, u2 ∈ A, X = {v1, v2, · · ·} ∈ B, and we want to count |X|. Therefore,
we modify the original algorithm presented in [6] such that the following holds.

1. The algorithm always starts searching with the vertices of set A.
2. Once a tuple (u1, u2, X = {v1, v2, · · ·}) is identified, (a) the pair of vertices

(u1, u2) will correspond to a color cu1u2
, which is then added to the set of col-

ors C, and (b) for each element vi ∈ X we store a point (t(u1, vi), t(u2, vi)) ∈
R2 of color cu1u2 , where t(u1, vi) is the timestamp of the edge (u1, vi).

Analysis: The modified algorithm identifies all neighbors of all pairs of vertices
of A in O(a(G)m) time [6]. For a complete bipartite RE graph G, |C| will be
at most O(n2), and there can be at most O(n3) colored points identified using
this algorithm. Now given a query time slice [i, j], we can find the total num-
ber of neighbors of each pair of vertices in the bipartite graph slice Gi,j using
2-dimensional type-2 color counting data structure (Theorem 1.4, [10]). This
query can be answered in O(log2 n+ p log n) time, where p is the total number
of vertex pairs having some common neighbors.

Counting all neighbors of vertex pairs: To count the total number of neighbors of
each vertex pair, we count total degrees of all vertices ui ∈ A using 1-dimensional
Type-2 colored range counting data structure in O(log n + k) time, where k is
the total number of vertices having some neighbors in Gi,j (see Theorem 3,
Section 4.1). Thus the average neighborhood overlap of a bipartite graph slice
Gi,j can be computed in O(log2 n+p log n+k) time. The preprocessing time for
the whole process is dominated by the process of counting common neighbors of
all vertex pairs. Hence, total time required for preprocessing is O(a(G)m). Thus
we have the following results for bipartite RE graphs.

Theorem 7. Given a bipartite RE graph G with m edges and n vertices, and a
query time slice [i, j], the problem of computing the average neighborhood overlap

Querying Relational Event Graphs 13

u1, u2: {v2}

u2, u3: {v2, v3}

u1, u3: {v1, v2, v4}

v1

v2

v3

v4

u1

u2

u3

2

6

5

4

1

9

3

8

7

1 982 3 4 5 6 7

1

2

4

3

5

6

(a) (b) (c)

Common neighbors of
each vertex pair G2,7

(2, 2)

(7, 7)

Fig. 6. (a) A bipartite RE graph (b) Set of neighbors adjacent to each vertex pairs,
(c) Common neighbors for vertex pairs within query interval q = [2, 7].

of a bipartite graph slice Gi,j can be reduced to type-2 colored range searching
problem in O(a(G)m) time. NOver(Gi,j) can be computed in O(log2 n+p log n+
k) time, where p is the total number of vertex pairs having some common neigh-
bors in Gi,j and k is the total number of vertices having some neighbors in Gi,j.

4.5 Reporting Influenced Vertices

Given an RE graph G = (V,E) with a fixed set of influential vertices V ′ ⊆ V ,
a positive integer r, and a query time slice [i, j], we want to find the total num-
ber of influenced vertices in Gi,j . We associate each vertex vk ∈ V with a color
ck ∈ C = {c1, c2, · · · , cn}. Each point representing an influenced vertex vk will
be colored with ck.

v

4

1 1

1

1

1

2

v′1 v′2

v′1

v′2

a

c

d

f

1

5
9

3

7

12 11

6
b

8
w

v

10

a b
e

10

63

4

7 1112

8

4

13
2

13

2 9

c d e f

Fig. 7. (a) An RE graph with two influential vertices v′1 and v′2, (b) An influenced
vertex v with r = 3 and f(v) = 3. The influence threshold f(v) is mentioned inside the
circle of each vertex v.

Preprocessing Step: Recall Definitions 1 and 2. For each vertex v ∈ V having
thresholds f(v) ≥ 1, we associate it with a queueQ[v] of size f(v), initially empty.
Queues are maintained by balanced binary search trees, so that the minimum

14 Farah Chanchary, Anil Maheshwari, and Michiel Smid

element of the queue can be retrieved when required. In addition, we maintain
α(v), for all v ∈ V , where α(v) is the largest timestamp of an edge e such that e
is adjacent to an influential vertex v′ and there is a path of influence from v′ to
v. Initially α(v) is set to zero, for all v ∈ V . We process each edge ek = (uk, vk)
according to the sequence of their timestamps, i.e., t(e1) < t(e2) < · · · < t(em),
and set α(uk) and α(vk). We explain the process as follows. At time k, let
ek = (uk, vk).

Case 1: Both uk and vk are influential vertices. Then uk and vk are already
influenced. We set both α(uk) and α(vk) to k. We also store two points (k, k) of
colors cuk

and cvk respectively.

Case 2: uk is an influential vertex and vk is a non-influential vertex. We store a
point (k, k) of color cuk

and set α(vk) to k.

Case 3: uk is already an influenced non-influential vertex and α(uk) = l has been
set. If k− l ≤ r, ul influences vk. If α(vk) < α(uk) and we set α(vk) = α(uk) = l.
Otherwise, we keep α(vk) unchanged.

Each time we set α(vk) = l for some vertex vk, we add l to Q[vk]. In case
Q[vk] is full after inserting l, we remove the smallest element s from the queue,
and store (k, s) as a point in R2 with color cvk (see Algorithm 2 for details). The
cvk -colored point (k, s) implies that vk is influenced by f(vk) paths of influence
in the graph slice Gs,k. Vertices vs and vl are respectively the first and the last
influential vertex that influence vk in Gs,k. See Figure 7 for an example.

Preprocessing Analysis: All initializations take linear time (lines 1-4, Algorithm 2).
There will be n queues, one for each vertex and each queue can have size at most
equal to the degree of the vertex d(v). Maintaining a queue for each vertex using
balanced binary search tree requires O(d(v) log d(v)) time, and both insertion
and removal of a queue element requires O(log d(v)) time. We visit each edge
exactly once to set the values of α (lines 7 and 19), and to perform operations
on queues (lines 13 and 20 for insertions, lines 15 and 22 for deletions). Thus,
the total preprocessing time will be

∑
v O(d(v) log d(v)) = O(m log n).

Now, we can reduce this problem to the colored range searching problem. In
the worst case, every vertex can be influenced by each of its neighboring vertices.
Thus, we have a set of at most O(n2) colored points in plane. Now our problem of
reporting all influenced vertices within Gi,j reduces to the problem of reporting
the number of distinct colors in plane. By using 2-dimensional range reporting
data structure with query rectangle [0, j] × [i,∞], we can report all influenced
vertices in Gi,j in O(log n+w) time, where w is the number of influenced vertices
([10], Theorem 1.12).

Theorem 8. Given an RE graph G with m edges and n vertices, and a query
time slice [i, j], the problem of reporting the total number of influenced vertices
can be reduced to 2-dimensional colored range reporting problem in O(m log n)
time. Queries can be answered in O(log n + w) time, where w is the number of
influenced vertices in Gi,j.

Querying Relational Event Graphs 15

Algorithm 2: Influence(G, r)

Input : An RE graph G, a positive integer r.
Output: A colored point set P ∈ R2.

1 for each vertex vk ∈ V for k = 1 to n do
2 Set α(vk) ← 0.
3 if f(vk) > 0 then
4 Set queue Q[vk] ← ∅ with size f(vk).

5 for each edge ek = (uk, vk) ∈ E for k = 1 to m do
6 if uk is an influential vertex then
7 Set α(uk)← k and α[vk]← k.
8 Store a point (k, k) ∈ R2 of color cuk .
9 if vk is a non-influential vertex then

10 if f(vk) = 1 then
11 Store a point (k, k) ∈ R2 of color cvk .

12 else
13 Add α(uk) to Q[vk]

14 if the queue Q[vk] is full then
15 Remove the minimum element s from Q[vk].
16 Store a point (k, s) ∈ R2 of color cvk .

17 if uk is an influenced vertex then
18 if α(uk)(= l) > α(vk) and (k − l) ≤ r then
19 Set α[vk]← l.
20 Add l to Q[vk].
21 if the queue Q[vk] is full then
22 Remove the minimum element s from Q[vk].
23 Store a point (k, s) ∈ R2 of color cvk .

5 Conclusion

In this paper, we have presented a general approach for solving queries regarding
various structural parameters of relational event graphs in an arbitrary query
time slice using colored range query data structures. Our approach models the
reachability relationships between vertices and edges of a given RE graph by
transforming them into colored points in Rd, where d ≥ 1. Subsequently, we
reduce original problems into colored range searching problems to efficiently an-
swer the queries. Following our model, we showed (a) how to compute the value
of a specific structural parameter of any graph slice Gi,j ; e.g., density, embedded-
ness, neighborhood overlap, h-index; and (b) how to count and report vertices in
any Gi,j with some specific properties; e.g., being influenced vertices or k-stars.
We also presented a new persistence based k-threshold colored range searching
data structure, where k is a fixed positive integer. However, this problem is still
open if the value of k is given during the query time.

16 Farah Chanchary, Anil Maheshwari, and Michiel Smid

References

1. Bannister, M.J., DuBois, C., Eppstein, D., Smyth, P.: Windows into relational
events: Data structures for contiguous subsequences of edges. In: Proceedings of
the 24th ACM-SIAM SODA. pp. 856–864. SIAM (2013)

2. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: The pur-
suit of hubbiness: Analysis of hubs in large multidimensional networks. Journal of
Computational Science 2(3), 223–237 (2011)

3. Bettencourt, L.M., Cintrón-Arias, A., Kaiser, D.I., Castillo-Chávez, C.: The power
of a good idea: Quantitative modeling of the spread of ideas from epidemiological
models. Physica A: Statistical Mechanics and its Applications 364, 513–536 (2006)

4. Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.: New upper bounds for gener-
alized intersection searching problems. In: ICALP, pp. 464–474. Springer (1995)

5. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. American
Journal of Sociology 113(3), 702–734 (2007)

6. Chanchary, F., Maheshwari, A.: Counting subgraphs in relational event graphs. In:
WALCOM: Algorithms and Computation, vol. 9627, pp. 194–206. Springer (2016)

7. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal
on Computing 14(1), 210–223 (1985)

8. Easley, D., Kleinberg, J.: Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press (2010)

9. Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social net-
works under time window constraints. Theoretical Computer Sc. 584, 53–66 (2015)

10. Gupta, P., Janardan, R., Rahul, S., Smid, M.: Computational geometry: Gener-
alized (or colored) intersection searching. In: Handbook of Data Structures and
Applications, 2nd Edition. In Press.

11. Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection
searching problems: Counting, reporting, and dynamization. Journal of Algorithms
19(2), 282–317 (1995)

12. Harary, F.: Graph theory. Addison-Wesley, Reading, MA (1969)
13. Janardan, R., Lopez, M.: Generalized intersection searching problems. Interna-

tional Journal of Computational Geometry & Applications 3(01), 39–69 (1993)
14. Meghanathan, N.: A greedy algorithm for neighborhood overlap-based community

detection. Algorithms 9(1), 8 (2016)
15. Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-

varying graphs and social network analysis: Temporal indicators and metrics. In:
3rd AISB SNAMAS. pp. 32–38 (2011)

