
Faster Algorithms for the Minimum Red-Blue-Purple Spanning

Graph Problem∗

Ahmad Biniaz† Prosenjit Bose∗ Ingo van Duijn ‡ Anil Maheshwari∗

Michiel Smid∗

August 30, 2016

Abstract

Consider a set of n points in the plane, each one of which is colored either red, blue, or
purple. A red-blue-purple spanning graph (RBP spanning graph) is a graph whose vertices
are the points and whose edges connect the points such that the subgraph induced by the
red and purple points is connected, and the subgraph induced by the blue and purple points
is connected. The minimum RBP spanning graph problem is to find an RBP spanning graph
with minimum total edge length. First we consider this problem for the case when the points
are located on a circle. We present an algorithm that solves this problem in O(n2) time,
improving upon the previous algorithm by a factor of O(n). Also, for the general case we
present an algorithm that runs in O(n5) time, improving upon the previous algorithm by a
factor of O(n).

1 Introduction

Let S be a set of n points in the plane that is partitioned into {R,B, P}. The points of R
are colored red, the points of B are colored blue, and the points of P are colored purple. A
red-blue-purple spanning graph (RBP spanning graph) on S is a graph whose vertices are the
points of S and whose edges connect the points such that each of the subgraphs induced by
R ∪ P and by B ∪ P are connected. In other words, if we remove the red points then the
resulting subgraph is connected, and if we remove the blue points then the resulting subgraph
is connected. One may think of the purple points belonging to both the red set and the blue
set. The minimum RBP spanning graph problem is to compute an RBP spanning graph that
has minimum weight (total edge length). See [4, 5] for applications of this problem.

When the points of S are located on a line and given in sorted order, this problem can be
solved in O(n) time (see [4, 5]). If the points of S are located on a circle and given in circularly
sorted order this problem can be solved in O(n3) time; specifically, it can be solved in O(k3 +n)
time, where k is the number of purple points (see [4, 5]). For points on a circle, in Sections 3 and
4, we show how to improve the running time to O(k2 + n). In [4] it is claimed that the general
case of this problem is NP-hard; this claim is based on a reduction from planar 3-SAT. They
also presented an O(n log n)-time (1 + ρ

2)-approximation algorithm for this problem, where ρ is
the Steiner ratio. However, in [5] it is claimed that the NP-hardness reduction of [4] is incorrect,

∗A preliminary version of this paper has appeared in CCCG 2016.
†School of Computer Science, Carleton University, Ottawa, Canada, ahmad.biniaz@gmail.com, {jit, anil,

michiel}@scs.carleton.ca. Supported by NSERC.
‡MADALGO, department of Computer Science, Aarhus University, Denmark, ivd@cs.au.dk. MADALGO is

supported in part by DNRF84.

1

and an O(n6)-time exact algorithm for this problem is presented. This algorithm uses weighted
matroid intersection. In Section 5 we show how to modify this algorithm to run in O(n5) time.

The input to the RBP spanning graph problem can be interpreted as a set of points in the
plane and two primary color classes (red and blue in our case) such that each point belongs
to one or more color classes (in our case the purple points belong to two classes). Recently,
Akitaya et al. [2] considered this problem with more than two primary color classes; they showed
that this version of the problem is NP-hard. For the case where the number of color classes is
three, they presented a polynomial-time (2− 1

3+2ρ)-approximation algorithm.

2 Properties of Minimum RBP Spanning Graphs

In this section we review some properties of minimum RBP spanning graphs. Given a graph G
with vertex set S, and a set S′ ⊆ S, we denote by G[S′] the subgraph of G that is induced by
S′.

For three sets R, B, and P of red, blue, and purple points, respectively, we denote by
G∗(R,B, P) a minimum RBP spanning graph on R ∪ B ∪ P ; this is denoted by G∗ when the
triple (R,B, P) is clear from the context. As in [4, 5] we classify the edges of G∗ into red, blue,
and purple. An edge is red if it connects two red points, or a red point and a purple point.
An edge is blue if it connects two blue points, or a blue point and a purple point. An edge is
purple if it connects two purple points. Note that G∗ does not contain any edge between a red
point and a blue point. The subgraph G∗[P] that is induced by the purple points is acyclic,
because otherwise we could remove a purple edge from a cycle and reduce the weight of G∗

without destroying the connectivity of G∗[R∪P] and G∗[B∪P]. The subgraph G∗[R∪P] (resp.
G∗[B ∪ P]) is a spanning tree because otherwise we could remove a red edge (resp. blue edge)
from a cycle without affecting the connectivity of G∗[B ∪ P] (resp. G∗[R ∪ P]). We refer to
G∗[R ∪ P] as the red tree and to G∗[B ∪ P] as the blue tree.

Every red edge in G∗ is also an edge of a minimum spanning tree of R∪P , because otherwise
we could replace it by another red or purple edge of smaller weight. The corresponding statement
holds for the blue edges. Thus, the red edges of G∗ do not cross each other, and the blue edges of
G∗ do not cross each other. The corresponding statements do not hold for purple edges. There
can be purple edges in G∗ that are not present in any minimum spanning tree of the purple
points. Moreover, a purple edge in G∗ can cross Θ(|P |) other purple edges [4, 5]. In [4, 5] it is
shown that the maximum degree of a purple point in G∗ is at most 18 and the maximum degree
of a red point or a blue point is at most 6. Moreover, there exists an optimal graph in which
the maximum degree of every purple point is at most 15 and the maximum degree of every red
point or blue point is at most 5. The proofs for these degree constraints are inherited from the
proofs of maximum degree constraints of minimum spanning trees of a point set in the plane.

3 The Algorithm for Points on a Circle

Let S be a set of n points on a circle C that are colored red, blue, or purple. Let R, B, and P
denote the set of red, blue, and purple points of S, respectively. Let k denote the number of
purple points, i.e., k = |P |. The problem is to compute a minimum RBP spanning graph for S.
Although for points in the plane, and even for points in convex position, a purple edge can be
crossed by other purple edges, for points on a circle, purple edges cannot be crossed by other
purple edges. Based on this, Hurtado et al. [4, 5] presented a dynamic programming algorithm
that solves this problem in O(k3 + n) time. We use a similar dynamic programming approach
and improve the running time to O(k2 + n). First we review a lemma from [4, 5].

2

Lemma 1 (see [4, 5]). Let S be a set of points on a circle, each one of which is colored either
red, blue, or purple. Let G∗ be a minimum RBP spanning graph for S. Then the following
statements holds.

1. No purple edge of G∗ can cross any other edge of G∗.

2. No red or blue edge of G∗ can cross any segment between two purple points (which are not
necessarily connected by an edge in G∗).

3. For any purple point p in S, let p′ be the point on the circle diametrically opposite to p,
and let SC be any of the two closed semicircles containing both p and p′. Then in G∗, p
has at most one purple neighbor in SC, and thus at most two purple neighbors in total.

3.1 The Dynamic Programming Algorithm

In this section we give an overview of the dynamic programming algorithm presented in [4, 5].
Assume that the points of S are circularly sorted. Let p1, . . . , pk be the purple points in clockwise
order. For any 1 6 i 6 k, let Si be the set of red and blue points between pi and pi+1. Assume
that all indices are taken modulo k.

Let G∗ be a minimum RBP spanning graph for S. By Lemma 1 no edge of G∗ that is
incident to a point in Si can cross segment pipi+1 (pipi+1 is not necessarily an edge of G∗).
Thus, a solution for each set Si can be computed independently. Moreover, this is analogous to
the case when the points are on a line, and thus, it can be solved in linear time for all sets Si.

For any two purple points pi and pj , Lemma 1 guarantees that if pipj is an edge in G∗ then
it cannot be crossed by any other edge of G∗. This introduces two independent subproblems,
one to the left of the oriented segment pipj , and one to the right. Each subproblem has four
different types PC, RC, BC, and NC. In the PC-type, pi and pj are connected in both red and
blue subgraphs. In the RC-type, pi and pj are connected in the red subgraph but disconnected
in the blue subgraph; any solution for this type must connect pi and pj in its blue subgraph.
In the BC-type, pi and pj are disconnected in the red subgraph but connected in the blue
subgraph. In the NC-type, pi and pj are neither connected in the red subgraph nor in the blue
subgraph. The algorithm maintains four tables, PC, RC, BC, and NC, each of size O(k2),
that are indexed by pairs of purple points. Each entry [i, j] of each table, stores the length of
a minimum RBP spanning graph of the corresponding type for the point set {pi, pi+1, . . . , pj}.
Based on this, the length of an optimal solution can be found as

min
26j6k

{PC[1, j] +NC[j, 1], NC[1, j] + PC[j, 1], RC[1, j] +BC[j, 1], BC[1, j] +RC[j, 1]} .

Let Λ ∈ {P,R,B,N}. The entries of each table are filled in order, so that when it is time
to compute the value of an entry Λ[i, j], all the entries corresponding to smaller problems, i.e.,
subproblems introduced by purple pairs to the left of the oriented segment pipj , have already
been computed. In order to fill entry ΛC[i, j], where 1 6 i < j 6 k, the following two cases
are considered, and the one with minimum cost will be stored in ΛC[i, j]. See [4, 5] for more
details.

1. pi is connected to some purple point(s) in an optimal solution of the subproblem (i, j);
recall that by Lemma 1, pi can be connected to at most two purple points. Let ph be the
one in the sequence pi+1, . . . , pj that is closer to pj , see Figure 1(a). Note that pi and ph
are connected in both red and blue subgraphs. Therefore, ph and pj must be connected in
the same way as pi and pj . Since we do not know ph, we try all possible candidates and
keep the one minimizing the cost, i.e., ΛC[i, j] = min

i+16h6j
{PC[i, h] + ΛC[h, j] + |piph|}.

This case takes O(j − i) time.

3

pjpi

ph

pjpi

pi+1

(a) (b)

Figure 1: Solving subproblem (i, j): (a) pi is connected to a purple point ph, and (b) pi is not
connected to any purple point.

2. pi is not connected to other purple points in any optimal solution of the subproblem (i, j).
Now Consider pi+1. By Lemma 1, in an optimal solution no edge can cross the segment
pipi+1. Since no purple edge is incident to pi, the segment pi+1pj cannot be crossed either;
see Figure 1(b). Therefore, an optimal solution for the subproblem (i, j) can be computed
by combining the solutions associated to the subproblems (i, i+1) and (i+1, j). See [4, 5]
for more details. This case takes O(1) time.

Based on the description above, the total running time of the algorithm is O(k3 + n).

3.2 Improving the Running Time

In this section we show how to improve the running time of the algorithm presented in Section 3.1
to O(k2 + n). First we prove Lemma 2 which plays an important role in this regard.

A chord of a circle is a straight line segment whose endpoints lie on the circle. For any two
points p and q on C let SC(p, q) denote the smaller arc of C that is determined by the chord
pq.

Lemma 2. Let S be a set of red, blue, and purple points located on a circle. Let P be the set
of purple points. Let a and b be any two points of P such that SC(a, b) contains at least two
points of P \ {a, b}. Let a∗, b∗ ∈ P be the purple neighbors of a and b on SC(a, b), respectively.

1. If |aa∗| + |bb∗| < |ab|, then ab does not belong to any minimum RBP spanning graph for
S.

2. If |aa∗| + |bb∗| = |ab|, then there exists a minimum RBP spanning graph of S that does
not contain ab.

Proof. First we prove statement 1 of the lemma. The proof is by contradiction. Assume there
exists a minimum RBP spanning graph G∗ for S that contains ab. Recall that G∗ consists of a
red tree and a blue tree; moreover, the purple edges of G∗ belong to both trees. Let Ra and Rb
be the two red trees obtained by removing ab from G∗, such that a ∈ Ra and b ∈ Rb. Let Ba
and Bb be the two blue trees obtained in a similar way.

Claim 1: It is not possible to have a∗ ∈ Rb and b∗ ∈ Ra, or a∗ ∈ Bb and b∗ ∈ Ba.
We prove this claim for the case where a∗ ∈ Rb and b∗ ∈ Ra; the proof for the other case

is similar. By Lemma 1 (item 2) no red edge or blue edge can “jump” over a∗ or b∗. Thus,
in order to have a∗ ∈ Rb and b∗ ∈ Ra there must be two purple edges in G∗ that cross; this
contradicts Lemma 1 (item 1). This proves the claim.

By Claim 1, a∗ ∈ Ra or b∗ ∈ Rb. Without loss of generality assume that a∗ ∈ Ra. If
a∗ ∈ Ba, then by replacing the edge ab in G∗ with the purple edge a∗b we obtain a valid RBP

4

spanning graph that is smaller than G∗ (note that a∗b is shorter than ab); see Figure 2(a).
This contradicts the minimality of G∗. Assume that a∗ ∈ Bb; see Figure 2(b). Then by Claim
1, we have b∗ ∈ Bb. If b∗ ∈ Rb, then by replacing the edge ab with the purple edge ab∗ we
obtain a valid RBP spanning graph that is smaller than G∗; see Figure 2(b). This contradicts
the minimality of G∗. Assume that b∗ ∈ Ra; see Figure 2(c). Then, by replacing ab with aa∗

and bb∗ we obtain a valid RBP spanning graph that is smaller than G∗. This contradicts the
minimality of G∗.

a

b

b∗

o

a∗

Ra, Ba

Rb, Bb

a

b

b∗

o

a∗

Ra, Ba

Rb, Bb

a

b

b∗

o

a∗

Ra, Ba

Rb, Bb

(a) (b) (c)

Figure 2: Proof of Lemma 2: (a) a∗ ∈ Ra and a∗ ∈ Ba. (b) a∗ ∈ Ra and a∗ ∈ Bb. (c) a∗ ∈ Bb
and b∗ ∈ Ra.

Now we prove statement 2 of the lemma. As we have seen in the proof of statement 1, if
|aa∗| + |bb∗| = |ab|, in all cases we obtain an RBP spanning graph that is smaller than G∗,
except for the case when we replace ab with aa∗ and bb∗. Let G′ be the graph that is obtained
after replacing all such kind of edges. Since |aa∗| + |bb∗| = |ab|, G′ has a weight equal to the
weight of G∗. Moreover, G′ does not contain ab. Thus, G′ is a spanning graph that satisfies
statement 2 of the lemma.

We prove the following theorem in Section 4.

Theorem 1. Let P be a set of points on a circle C. Let E2 be the set of edges that contains an
edge ab if and only if a, b ∈ P and |aa∗|+ |bb∗| > |ab|, where a∗ and b∗ are two points of P that
are neighbors of a and b on the smaller arc of C that is determined by the chord ab, respectively.
Then, no three edges of E2 can pairwise cross.

Theorem 2. Let S be a set of n points located on a circle that are angularly sorted, and each
one of which is colored either red, blue, or purple. Let k be the number of purple points. Then,
a minimum red-blue-purple spanning graph on S can be computed in O(k2 + n) time.

Proof. We define three sets of edges, E0, E1, and E2, on the purple points as follows. Let a
and b be any pair of purple points. If SC(a, b) has no point of P \ {a, b} then add ab to E0.
If SC(a, b) contains exactly one point of P \ {a, b} then add ab to E1. Let E2 be the set of
purple edges that is defined in the statement of Theorem 1. Let EP = E0 ∪ E1 ∪ E2. As a
consequence of Lemma 2 there exists an optimal solution in which all the purple edges belong
to EP . Thus, in case 1 of the dynamic programming algorithm, instead of looking at all pairs
(pi, ph) it is enough to only consider the pairs (pi, ph) that are connected by an edge in EP .
Each pair (pi, ph) is considered only for the subproblems that have pi or ph as an endpoint; the
number of such subproblems is O(k). Thus, the total time we spend for case 1 is O(k|EP |).
Therefore the total running time of the algorithm is O(k|EP |+ n).

5

Note that EP can be computed in O(k2) time in the preprocessing phase. We are going
to show that |EP | = O(k); this will complete the proof of the theorem. Each of E0 and E1

contains k = |P | edges. By Theorem 1 no three edges of E2 pairwise cross. Agarwal et al. [1]
have shown that any graph with n vertices that can be drawn in the plane such that no three
edges pairwise cross, has O(n) edges. Thus, E2 has O(k) edges. Therefore, |EP | = O(k).

4 Proof of Theorem 1

In this section we prove Theorem 1. First we prove some lemmas that will be used in the proof
of the theorem.

4.1 Preliminary Results

a

a′
b

b′

α
α′

o

a

a′b

b′

α

α′
o β

a′′

b′′

(a) (b)

Figure 3: Proof of Lemma 3: (a) o does not lie in convex quadrilateral a, b, a′, b′, and (b) o lies
in convex quadrilateral a, b, a′, b′.

Lemma 3. Let aa′ and bb′ be two intersecting chords of a circle C such that the center of C
is to the left of the oriented segment aa′ and to the right of the oriented segment bb′. Then,
|ab| < |a′b′|.

Proof. Let o be the center of C. Let α = ∠aob and α′ = ∠a′ob′. The triangles 4abo and 4a′b′o
are isosceles. Based on this and assuming that the radius of C is 1, we have |ab| = 2 sin

(α
2

)
and

|a′b′| = 2 sin
Ä
α′

2

ä
. See Figure 3. Let Q be the convex quadrilateral with vertices a, b, a′, and

b′. If o does not lie in Q (see Figure 3(a)), then we have α < α′. This implies that |ab| < |a′b′|.
Assume o lies in Q; see Figure 3(b). Let a′′ and b′′ be two points on C such that aa′′ and bb′′

are two diameters of C. Let β = ∠a′′ob′′. Note that β = α. Moreover, we have β < α′. This
implies that that α < α′, and consequently |ab| < |a′b′|.

Lemma 4. Let b, a, and p be three points on a circle C, in clockwise order, such that the
center of C is to the right side of the oriented segment bp. Let b′′ be the point such that bb′′ is
a diameter of C. Let p′ be a point on SC(p, b′′). Then |ap′| − |ap| > |bp′| − |bp|.

Proof. Refer to Figure 4. Let C(a, |ap|) be the circle of radius |ap| that is centered at a, and
let C(b, |bp|) be the circle of radius |bp| that is centered at b. Since a, p, and p′ are on the same
side of the line through bb′′, we have |ap′| > |ap| and |bp′| > |bp|. Let a′ be the intersection
point of ap′ with C(a, |ap|), and let b′ be the intersection point of bp′ with C(b, |bp|). Then
|aa′| = |ap| and |bb′| = |bp|. Thus, |ap′| − |ap| = |a′p′| and |bp′| − |bp| = |b′p′|. In order to

6

a

p

b

b′′

o

p′

b′
a′

C(a, |ap|)

C(b, |bp|)

`

SC

Figure 4: Proof of Lemma 4.

prove the statement of the lemma it suffices to show that |a′p′| > |b′p′|. Let ` be the line that is
tangent to C(b, |bp|) at b′. Observe that a′ and p′ are on different sides of `. Thus, in triangle
4a′b′p′, the angle ∠a′b′p′ is at least π

2 . This implies that a′p′ is the longest side of 4a′b′p′.
Therefore, |a′p′| > |b′p′|; this completes the proof of the lemma.

Lemma 4 can be restated as follows. If we fix the position of a and b, then by moving p
towards b′′, the length of ap increases more than the length of bp.

a

c

b

o
d

αβ
a

cb

o

d

b′ c′

C

C ′

(a) (b)

Figure 5: (a) Proof of Lemma 5 and Lemma 6. (b) Proof of Lemma 6.

Lemma 5. Let 0 < α 6 π be fixed, and let C be a circle that is centered at o. Let a, b, and
c be three points on C, in clockwise order, such that ∠aoc = α. Then, |ab| + |bc| is maximum
when ∠aob = ∠boc = α

2 .

Proof. Let f = |ab| + |bc|, and let β = ∠aob. See Figure 5(a). Since the triangles 4aob and
4aoc are isosceles, we have f = 2 sin

Ä
β
2

ä
+ 2 sin

Ä
α−β
2

ä
. By taking the derivative of f with

respect to β, we can see that f is maximum when β = α
2 , and thus, ∠aob = ∠boc = α

2 .

The following is a corollary of Lemma 5.

7

Corollary 1. Let C be a circle that is centered at o. Let a, b, and c be three points on C, in
clockwise order, such that ∠aoc 6 2π

3 . Then |ab|+ |bc| 6 |ao|+ |co|.

Proof. By Lemma 5, |ab|+ |bc| is maximum when ∠aob = ∠boc, and thus, both these angles are
at most π

3 . This implies that |ab| 6 |ao| and |bc| 6 |co|, which proves the claim.

The following theorem is a restatement of Theorem 7.11 in [3].

Theorem 3 (See [3]). If C1 and C2 are convex polygonal regions with C1 ⊆ C2, then the length
of the boundary of C1 is at most the length of the boundary of C2.

Lemma 6. Let a, b, c, and d be four points on a circle C, in clockwise order, such that the
center of C is on or to the right side of the oriented segment ad. Then |ab|+ |bc|+ |cd| 6 3

2 · |ad|.

Proof. Without loss of generality assume C is centered at o and has radius 1. We consider two
cases: (i) o is on ad, and (ii) o is not on ad. First, we prove case (i). Then, we show how to
reduce case (ii) to case (i). Assume o is on ad, that is, ad is a diameter of C, and thus, |ad| = 2.
See Figure 5(a). If we fix the position of c on C, then by Lemma 5, |ab|+ |bc| is maximum when
∠aob = ∠boc. If we fix the position of b on C, then by Lemma 5, |bc|+ |cd| is maximum when
∠boc = ∠cod. Therefore, |ab| + |bc| + |cd| is maximum when ∠aob = ∠boc = ∠cod = π

3 , and
thus, |ab| = |bc| = |cd| = |ao| = |od|. This implies the statement of the lemma for case (i).

Now we show how to handle case (ii). Assume o is not on ad, and thus, ad is not a diameter
of C. We show how to reduce this case to case (i). Follow Figure 5(b). Let C ′ be the circle
with diameter ad. Since C and C ′ intersect only at the two points a and d, we argue that b and
c are in the interior of C ′. Extend ab and dc to intersect C ′ at b′ and c′, respectively. Now we
consider two cases depending on whether bb′ and cc′ intersect or not. In the former case, let o′

be the intersection point of bb′ and cc′. By Theorem 3 we have |ab|+ |bc|+ |cd| 6 |ao′|+ |o′d|.
Since o′ is in the interior of C ′ then |ao′|+ |o′d| 6

√
2 · |ad|; and we are done with this case. In

the latter case, by Theorem 3 we have |ab|+ |bc|+ |cd| 6 |ab′|+ |b′c′|+ |c′d|. As we have seen
in case (i), |ab′|+ |b′c′|+ |c′d| 6 3

2 · |ad|; which completes the proof of the lemma.

4.2 Proof of Theorem

Recall that P is a set of points on a circle C. The edge set E2 contains an edge ab if and only
if a, b ∈ P and |aa∗|+ |bb∗| > |ab|, where a∗ and b∗ are the two points of P that are neighbors
of a and b on the smaller arc of C that is determined by the chord ab, respectively. Without
loss of generality assume C is centered at o and has radius 1. Based on the definition of E2, the
following observation is valid.

Observation 1. For any edge ab ∈ E2, we have |aa∗| > 1
2 · |ab| or |bb∗| > 1

2 · |ab|.

Corollary 2. For any edge ab ∈ E2, we have |a∗b∗| < 1
2 · |ab|.

Proof. Since ab ∈ E2, we have |aa∗|+ |bb∗| > |ab|. By Lemma 6 we have |aa∗|+ |a∗b∗|+ |b∗b| 6
3
2 · |ab| where a, a∗, b∗, and b play the role of a, b, c, and d, respectively. This implies that
|a∗b∗| < 1

2 · |ab|.

Now we have all the tools that we need to prove Theorem 1. For the sake of contradiction
assume that three edges aa′, bb′, and cc′ of E2 are pairwise crossing. Observe that if we remove
all points of P except a, b, c, a′, b′, c′, and then recompute E2, the edges aa′, bb′, and cc′ will
remain in E2. Thus, without loss of generality we assume that P = {a, b, c, a′, b′, c′}. Moreover,
assume a, b, c, a′, b′, c′ appear in clockwise order on C. Let 4 be the triangle whose vertices are
the intersection points of aa′, bb′, and cc′. We differentiate between the following two cases: (i)

8

a

c

b o
b′

a′

c′

Figure 6: Proof of case (i) in Theorem 1.

o is in the interior of 4, and (ii) o is not in the interior of 4. We will get contradictions in both
cases.

First we handle case (i). Refer to Figure 6. Since aa′, bb′, and cc′ are edges of E2, we
have |ab| + |a′c| > |aa′|, |ab| + |b′c′| > |bb′|, and |b′c′| + |a′c| > |cc′|. By adding up these three
inequalities, we get

|ab|+ |a′c|+ |b′c′| > |aa
′|+ |bb′|+ |cc′|

2
. (1)

By Lemma 3 we have |ab| < |a′b′|, |a′c| < |ac′|, and |b′c′| < |bc|. Adding up these three
inequalities implies

|ab|+ |a′c|+ |b′c′| < |a′b′|+ |ac′|+ |bc|. (2)

In view of Corollary 2, we have |bc| < 1
2 · |aa′|, |ac′| < 1

2 · |bb′|, and |a′b′| < 1
2 · |cc′|. This implies

|bc|+ |ac′|+ |a′b′| < |aa
′|+ |bb′|+ |cc′|

2
.

This and Inequality (2) imply

|ab|+ |a′c|+ |b′c′| < |aa
′|+ |bb′|+ |cc′|

2
,

which contradicts Inequality (1); this is a contradiction for case (i).
Now we are going to handle case (ii) where o is not in the interior of the triangle formed

by the intersection of aa′, bb′, and cc′. Without loss of generality assume that o is on or to the
right side of all the oriented segments aa′, bb′, and cc′; see Figure 7(a). Since aa′, bb′, and cc′

are edges of E2, we have |ab| + |a′c| > |aa′|, |bc| + |a′b′| > |bb′|, and |a′c| + |b′c′| > |cc′|. By
adding up these three inequalities, we get

|ab|+ |bc|+ |a′b′|+ |b′c′|+ 2|a′c| > |aa′|+ |bb′|+ |cc′|. (3)

Let a′′ and c′′ be the two points on C such that a′a′′ and cc′′ are diameters of C. By Lemma 4,
|a′′b| − |ab| > |a′′a′| − |aa′| and |b′c′′| − |b′c′| > |cc′′| − |cc′|. By adding these two inequalities to
Inequality (3) we get

|a′′b|+ |bc|+ |a′b′|+ |b′c′′|+ 2|a′c| > |a′′a′|+ |bb′|+ |cc′′|. (4)

Thus, if o is on or to the right side of all the oriented segments aa′, bb′, and cc′, then Inequality (4)
is valid. In fact, Inequality (4) is the same as Inequality (3) where a′′ and c′′ play the role of a

9

a

a′

c′

b′

b

c

o

c′′

a′′ a

a′

c′

b′

b

c

o

α

(a) (b)

Figure 7: Proof of case (ii) in Theorem 1.

and c′, respectively. Therefore, without loss of generality, from now on we assume that a is on
a′′ and c′ is on c′′, that is, aa′ and cc′ are two diameters of C.

Let α = ∠aoc′ = ∠coa′. We claim that α 6 π
3 . Assume α > π

3 . This implies that ∠aoc 6 2π
3

and ∠a′oc′ 6 2π
3 . By Corollary 1 we have |ab|+ |bc| 6 |ao|+ |oc| and |a′b′|+ |b′c′| 6 |a′o|+ |oc′|.

As a consequence of Corollary 2, for edge bb′ we have 2|a′c| < |bb′|. By adding these three
inequalities we get

|ab|+ |bc|+ |a′b′|+ |b′c′|+ 2|a′c| < |ao|+ |oc|+ |a′o|+ |oc′|+ |bb′| = |aa′|+ |bb′|+ |cc′|,

which contradicts Inequality (3). Therefore, α 6 π
3 .

a′c

o

α

b
b′

c′a

qp

C2

C ′
1

C1

C ′
2

2-|a′c|2-|a′c|

a′c

o

α

b b′

c′a

x

2-x2-x

ββ

(a) (b)

Figure 8: Proof of case (ii) in Theorem 1.

Recall that C has radius 1, and thus, |aa′| = |cc′| = 2. Consider two circles C1 = C(a′, |a′c|)
and C2 = C(c, |a′c|). Let C ′1 be the circle that is centered at a and touches C1, i.e., C ′1 has radius
2− |a′c|. Similarly, let C ′2 be the circle that is centered at c′ and touches C2. See Figure 8(a).

10

Let ıac (resp. ã′c′) be the smaller arc of C that has endpoints a to c (resp. a′ and c′). Let p be
the intersection point of C ′1 and ıac. Let ıap and ıpc be the two sub-arcs of ıac. Similarly, let q be

the intersection point of C ′2 and ã′c′, and let â′q and q̂c′ be the two sub-arcs of ã′c′.
If b is in the interior of ıap then |ab| + |a′c| < 2 = |aa′|, which contradicts the existence of

aa′ in E2. Thus b ∈ ıpc, and similarly, b′ ∈ â′q. We are going to show that |bc| + |a′b′| 6 |bb′|;
this will contradict the existence of bb′ in E2.

Since bb′ ∈ E2 we have |bc| + |a′b′| > |bb′|. By Lemma 4 if we move b towards p, then |bc|
increases more than |bb′|. Similarly, if we move b′ towards q, then |a′b′| increases more than |bb′|.
Therefore, |bc|+ |a′b′| > |bb′| holds after moving b to p, and b′ to q. Thus, from now we assume
b = p and b′ = q. See Figure 8(b). Note that all the triangles 4aob, 4boc, 4coa′, 4a′ob′,
4b′oc′, and 4bob′ are isosceles. Let x = |a′c|, and thus, |ab| = |b′c′| = 2 − |a′c| = 2 − x. Note
that x = 2 sin

(α
2

)
. Let β = ∠aob = ∠b′oc′. Then, β = 2 arcsin

Ä
2−x
2

ä
= 2 arcsin

(
1− sin

(α
2

))
.

Note that ∠bob′ = 2π − α− 2β. Thus,

|bb′| = 2 sin

Å
π − α

2
− β
ã

= 2 sin

Å
α

2
+ β

ã
.

Moreover, ∠boc = ∠a′ob′ = π − α− β. Thus,

|bc| = |a′b′| = 2 sin

Å
π − α− β

2

ã
= 2 cos

Å
α+ β

2

ã
.

Now we show that |bc|+ |a′b′| 6 |bb′|, which contradicts the existence of bb′ in E2. In order to
show this, it suffices to prove that

4 cos

Å
α+ β

2

ã
6 2 sin

Å
α

2
+ β

ã
, (5)

where β = 2 arcsin
(
1− sin

(α
2

))
, for all 0 < α 6 π

3 . Inequality (5) simplifies to

2

1− sin2

Å
α

2

ã
1−
Å

1− sin

Å
α

2

ãã2
+ 2

Å
1− sin

Å
α

2

ãã2
+ sin

Å
α

2

ã
6 3, (6)

where 0 < α 6 π
3 . Let u = sin

(α
2

)
. Then, Inequality (6) simplifies to

4u2 − 4u+ 1 > 0, (7)

where 0 6 u 6 1
2 ; it is easy to verify that Inequality (7) is valid in this range of u. This

contradicts the fact that |bc| + |a′b′| > |bb′|, and hence the existence of bb′ in E2; this is a
contradiction for case (ii). This completes the proof of Theorem 1.

5 The Algorithm for the General Case

In this section we consider the general case of the problem. The input to the problem consists
of three pairwise disjoint sets R, B, and P of points in the plane that are colored red, blue, and
purple, respectively. The problem is to compute a minimum RBP spanning graph for R∪B∪P .
In [4] it was claimed that this problem is NP-hard. However, the NP-hardness reduction turned
out to be incorrect, and a polynomial time algorithm for this problem is presented in [5]. The
algorithm is greedy and based on matroid theory. In fact it is based on the existence of an
efficient algorithm for the weighted matroid intersection problem. The algorithm runs in O(n6)
time where n is the total number of points. In Section 5.1 we give an overview of the algorithm
presented in [5]. We also add more details on the weighted matroid intersection algorithm. In
Section 5.2 we show how to improve the running time to O(k5 + k3n + kn2), where k is the
number of purple points.

11

5.1 Overview of the Algorithm

Let S = R∪B ∪P . Let E be the set of edges of the complete geometric graph on S except the
edges that connect a red point to a blue point. Let m = |E| and n = |S|. Note that m = Θ(n2).
Let G = (S,E) be the edge-weighted graph with vertex set S and edge set E, where the weight
w(e) of an edge e ∈ E is its Euclidean length. Let G∗ = (S,X∗) be any minimum RBP spanning
graph on S. Note that X∗ is a subset of E.

Let Ir be the collection of all subsets of E that form a forest on R ∪ P . Similarly, let Ib
be the collection of all subsets of E that form a forest on B ∪ P . The pairs (E, Ir) and (E, Ib)
are matroids (and known as graphic matroids). See [6, Chapter 39] for the basic concepts of
matriod theory. The elements of Ir are called independent sets. The independents sets of Ir
that have the maximum number of elements are called bases. Thus, the bases of Ir are the
spanning trees for R ∪ P . Let Br be the set of bases of Ir. Similarly let Bb be the set of bases
of Ib. We define supersets of Br and Bb as follows:

Qr = {X ⊆ E : X contains some B ∈ Br},
Qb = {X ⊆ E : X contains some B ∈ Bb}.

Note that Qr (resp. Qb) is the set of all spanning graphs of R ∪ P (resp. B ∪ P). Then, the
minimum RBP spanning graph problem is formulated as follows:

(P0) Minimize
∑
e∈X

w(e) subject to X ∈ Qr ∩Qb.

Let Ir = {E \Y : Y ∈ Qr} and Ib = {E \Y : Y ∈ Qb}. Then, (E, Ir) and (E, Ib) are matroids
that are dual of (E, Ir) and (E, Ib), respectively. Consider the following maximization problem

(P1) Maximize
∑
e∈Y

w(e) subject to Y ∈ Ir ∩ Ib.

Note that the complement of any element Y in Ir ∩ Ib is a valid RBP spanning graph that
belongs to Qr ∩ Qb and spans both R ∪ P and B ∪ P . On the other hand, any element X
in Qr ∩ Qb is a valid RBP spanning graph whose complement belongs to Ir ∩ Ib. Thus, the
complement of a solution for (P0) is a solution for (P1) and vice versa, that is, both problems
are equivalent. The problem (P1) is an instance of the weighted matroid intersection problem
in which we are looking for a common element of Ir and Ib that has maximum-weight; for
this problem a polynomial-time algorithm exists. In the following paragraph we give a brief
description of an algorithm that finds a maximum-weight independent set Y ∗ in Ir ∩Ib. Then,
X∗ = E \ Y ∗ will be a solution for (P0).

The general idea of the (maximum) weight matroid intersection algorithm is as follows
(see [6, Chapter 41] for more details). Let I be a common independent set that has the maximum
weight among all the common independents sets of size |I|. The algorithm computes a common
independent set I ′, with |I ′| = |I| + 1, that has the maximum weight among all the common
independent sets with |I|+ 1 elements. Let M be the maximum-size of a common independent
set of the two matroids. Since I0 = ∅ is a maximum-weight common independent set of size
zero, the algorithm iteratively finds common independent sets I0, I1, . . . , IM , such that Ii is a
maximum-weight common independent set of size i, i.e. |Ii| = i. Note that IM is a maximum-
weight common independent set of maximum-size. Taking one among I0, . . . , IM of maximum
weight, we have a maximum-weight common independent set.

Since the minimum-size of an element in Qr∩Qb is n−1, the maximum-size M of a common
independent set of Ir and Ib is |E|−(n−1) = m−n+1. Therefore by computing I0, . . . , Im−n+1

12

one can obtain a maximum-weight element of Ir ∩ Ib; the algorithm presented in [5] runs this
way. This algorithm solves m−n+1 = O(n2) instances of weighted matriod intersection, where
each instance can be solved in O(m2 + m logm) = O(n4) time. Thus, the total running time
of their algorithm is O(n6). See [5] for more details on the time complexity analysis and for an
interpretation of this algorithm in terms of the original problem (P0).

5.2 Improving the Running Time

In this section we show how to improve the running time of the algorithm described in Section 5.1
to O(k5 + k3n+ kn2). This improvement is obtained by modifying the algorithm in two ways:
(i) by decreasing the total number of edges that have to be considered, and (ii) by reducing
the number of instances of the weighted matroid intersection problem. The Gabriel graph on a
given set of points in the plane is defined to have an edge between any two input points p and
q if the closed disk with diameter pq does not contain any other input point.

Lemma 7. Every red edge (resp. blue edge) of any minimum RBP spanning graph on (R,B, P)
belongs to the Gabriel graph with vertex set R ∪ P (resp. B ∪ P).

Proof. We prove the statement for the red edges; the proof for the blue edges is similar. Let G∗

be a minimum RBP spanning graph. Take a red edge ab from G∗. Note that ab belongs to a
Euclidean minimum spanning tree T with vertex set R ∪B. Let D[a, b] be the closed disk that
has ab as a diameter. Since ab belongs to T , D[a, b] does not contain any point of R∪B, because
otherwise we could replace ab by another red or purple edge of smaller size which contradicts
the minimality of T . This implies that ab is an edge of the Gabriel graph on R ∪ P .

Let ER (resp. EB) be the set of edges of the Gabriel graph with vertex set R ∪ P (resp.
B ∪ P). Let EP be the set of purple edges between any pair of purple points. Note that
|ER| = O(|R| + |P |), |EB| = O(|B| + |P |), and |EP | = O(|P |2). Let E′ = ER ∪ EB ∪ EP ,
and m′ = |E′|. Note that m′ = O(k2 + n). Let G∗ = (S,X∗) be any minimum RBP spanning
graph for S. As a consequence of Lemma 7, X∗ is a subset of E′. Thus, in the algorithm of
Section 5.1 it suffices to look at the matriods defined on E′. This improves the running time to
O(m′ · ((m′)2 + m′ logm′)) = O(k6 + k4n + k2n2 + n3). In the rest of this section we describe
how to improve the running time further.

Lemma 8. Let R, B, and P be pairwise disjoint sets of points in the plane that are colored red,
blue, and purple, respectively. Then every minimum RBP spanning graph for R ∪B ∪ P has at
most |R|+ |B|+ 2|P | − 2 edges.

Proof. Let G∗ be a minimum RBP spanning graph for R ∪ B ∪ P . The induced subgraphs
G∗[R∪P] and G∗[B ∪P] are trees and have |R|+ |P | − 1 and |B|+ |P | − 1 edges, respectively.
Since the edge set of G∗ is the union of the edge set of G∗[R∪P] and the edge set of G∗[B ∪P],
we conclude that G∗ has at most |R|+ |B|+ 2|P | − 2 edges.

Lemma 9. Let S be a set of n points in the plane that are colored either red, blue, or purple.
Then,

1. every RBP spanning graph for S has at least n− 1 edges.

2. there exists an RBP spanning graph for S that has n− 1 edges.

3. in any RBP spanning graph of S with n − 1 edges, the subgraph induced by the purple
points is a tree.

13

Proof. Since any RBP spanning graph is connected, it has at least n− 1 edges. This proves the
first statement.

To prove the second statement we construct an RBP spanning graph with n−1 edges. First
we compute a spanning tree on the purple points, then we connect every other point (red or
blue) to a purple point. The resulting graph is a valid RBP spanning graph that is a tree and
and has n− 1 edges.

In order to prove the third statement, let G be an RBP spanning graph of S, having n− 1
edges. Since G is connected and has n− 1 edges, it is a tree. Let P be the set of purple points
of S. For the sake of contradiction assume there are two points p and q in P such that there
is no path between them in G[P], i.e., there is no purple path between p and q. Since G is an
RBP spanning graph, there is a path between p and q in the red tree, and there is another path
between p and q in the blue tree. This creates a cycle in G, which contradicts the fact that G
is a tree. Thus, G[P] is connected; moreover it is a tree.

Let X∗i denote the set of edges of a minimum RBP spanning graph with exactly i edges. As a
consequence of Lemma 9 there exists a minimum RBP spanning graph with |R|+ |B|+ |P |−1 =
n−1 edges; note that this is the smallest possible number of edges for any RBP spanning graph.
By Lemma 8 any minimum RBP spanning graph has at most |R|+ |B|+ 2|P | − 2 = n+ k − 2
edges. Thus, the weight of X∗ is equal to the smallest weight among the weights of X∗i for all
n − 1 6 i 6 n + k − 2. Since the addition of edges maintains the RBP spanning property, we
conclude that for every i ∈ {n − 1, . . . , n + k − 2} there exists an RBP spanning graph with
exactly i edges. Based on Lemma 9, X∗n−1 can simply be computed by first computing the
minimum spanning tree of the purple points, and then adding the red points, and then the blue
points, in an optimal manner in a similar way as Prim’s algorithm for minimum spanning trees.

One can easily modify the weighted matroid intersection algorithm as follows: having a
maximum-weight common independent set I with |I| elements, we can compute a maximum-
weight common independent set I ′ with |I ′| = |I|−1 elements. Let M ′ be the maximum-size of
a common independent set of the two matroids. Therefore, if we have IM ′ , the algorithm can
be modified to first compute IM ′ , IM ′−1, . . . , I0 and then take the one with maximum weight.

Since the minimum-size of an element in Qr∩Qb is n−1, the maximum-size M ′ of a common
independent set of Ir and Ib is |E′|− (n−1) = m′−n+1. As described above, we can compute
a minimum-weight element X∗n−1 in Qr ∩ Qb that has n − 1 edges. The complement of X∗n−1
is a maximum-weight common independent set Im′−n+1 of Ir and Ib. Therefore by computing
Im′−n+1, . . . , Im′−n−k+2 and taking the one with maximum weight, we obtain a maximum-weight
element of Ir ∩Ib. Note that in (P0) we compute X∗n−1, . . . , X

∗
n+k−2 and take the one with the

smallest weight as X∗. We solve O(k) instances of the weighted matriod intersection problem,
each of which can be solved in O((m′)2 + m′ logm′) = O(k4 + k2n + n2) time (recall that
m′ = O(k2 + n)). Thus, the total running time of the algorithm is O(k5 + k3n+ kn2). Since k
is at most n, the running time of the algorithm is O(n5).

Recently, Akitaya et al. [2] showed that it is possible to solve this problem by computing a
subset of red edges and a subset of blue edges of a minimum RBP spanning graph in advance
in O(n log n) time, and then run the matroid intersection algorithm on a set m′ of size O(k2).
This, in turn, improves the running time of the algorithm to O(k5 +n log n), however, the worst
case running time of the algorithm is still O(n5). We summarize the result of the discussion of
this section in the following theorem.

Theorem 4. Let S be a set of n points in the plane, each one of which is colored either red, blue,
or purple. Let k be the number of purple points. Then, a minimum red-blue-purple spanning
graph on S can be computed in O(k5 + n log n) time.

14

References

[1] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir. Quasi-planar graphs have a
linear number of edges. Combinatorica, 17(1):1–9, 1997.

[2] H. A. Akitaya, M. Löffler, and C. D. Tóth. Multi-colored spanning graphs. CoRR,
arXiv:1608.07056 [cs.CG], 2016. Also to appear in 24th International Symposium on Graph
Drawing and Network Visualization (GD), 2016.

[3] R. V. Benson. Euclidean geometry and convexity. McGraw-Hill, 1966.

[4] F. Hurtado, M. Korman, M. J. van Kreveld, M. Löffler, V. S. Adinolfi, R. I. Silveira, and
B. Speckmann. Colored spanning graphs for set visualization. In 21st Int. Symp. on Graph
Drawing, pages 280–291, 2013.

[5] F. Hurtado, M. Korman, M. J. van Kreveld, M. Löffler, V. Sacristán, A. Shioura, R. I.
Silveira, B. Speckmann, and T. Tokuyama. Colored spanning graphs for set visualization.
CoRR, arXiv:1603.00580 [cs.CG], 2016. Also to appear in Comput. Geom., special issue in
Memoriam: Ferran Hurtado.

[6] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

15

