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Abstract

We introduce a generalization of monotonicity. An n-vertex polygon P is rotationally monotone
with respect to a point r if there exists a partitioning of the boundary of P into exactly two polyg-
onal chains, such that one chain can be rotated clockwise around r and the other chain can be
rotated counterclockwise around r with neither chain intersecting the interior of the polygon.
We present the following two results: (1) Given P and a center of rotation r in the plane, we de-
termine in O(n) time whether P is rotationally monotone with respect to r. (2) We can find all
the points in the plane from which P is rotationally monotone in O(n) time for convex polygons
and in O(n2) time for simple polygons. We show that both algorithms are worst-case optimal
by constructing a class of simple polygons with Ω(n2) distinct valid centers of rotation.

A direct application of rotational monotonicity is the popular manufacturing technique of
clamshell casting, where liquid is poured into a cast and the cast is removed by rotations once
the liquid has hardened.

1 Introduction

Determining whether a polygon has certain properties, such as convexity, monotonicity, or star-
shapedness, is a well-studied problem in computational geometry. This problem is not only im-
portant from a theoretical point of view, but also from a practical point of view. For surveys and
application areas of classes of polygons, the reader is referred to the Handbook of Discrete and
Computational Geometry [10, Chapter 23].

A polygon P is monotone in direction ~d if the intersection of P and any line in direction ~d is a
convex set. Preparata and Supowit [15] determine in O(n) time whether an n-vertex polygon is
monotone. Rosenbloom and Rappaport [16] determine in O(n) time whether a polygon P can be
partitioned into exactly two monotone chains, where the two chains are monotone with different
directions. Furthermore, they determine in O(n log n) time whether P can be decomposed into
two monotone chains by cutting the boundary along a straight line. Dean et al. [7] introduce
pseudo-star-shaped polygons. A polygon P is pseudo-star-shaped if there exists a point r, such that
the interior of P is visible from r if one can see through single edges. ElGindy and Toussaint [8]
consider radially monotone polygons. A polygon P is radially monotone if there exists a point r,
such that every infinite half line emanating from r intersects P in a connected component. Note
that the definitions of radially monotone and pseudo-star-shaped are equivalent.

∗Research partially supported by NSERC. A preliminary version of this paper appeared at CCCG 2006 [4].
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Further generalizations of polygons based on visibility were introduced. Avis and Toussaint [1]
examine the visibility of a polygon P from one of the P ’s edges and present algorithms to determine
visibility in linear time. The following three types of visibility are considered. First, the polygon P
is completely visible from the edge e if every point on e is visible from every point in P . Second, the
polygon P is strongly visible from the edge e if there exists a point on e that is visible from every
point in P . Third, the polygon P is weakly visible from the edge e if every point in P is visible to
any point on e. Bhattacharya et al. [2] consider weakly internally visible polygons. A polygon P
is weakly internally visible from a line segment l completely contained in the interior of P if every
point in P is visible to any point on l.

Toussaint [17] introduces a generalization of monotonicity in three dimensions. A polyhedron
is weakly-monotonic if there exists a direction ~d such that the intersection of the polyhedron and
any plane with normal ~d forms a simply-connected set. Bose and van Kreveld [5] give an algorithm
to determine in O(n log n) time whether a simple n-vertex polyhedron is weakly-monotonic.

We introduce a new generalization of monotone polygons. A polygon P is rotationally monotone
with respect to a point r in the plane if the boundary of P can be decomposed into exactly two
polygonal chains, such that one chain can be rotated in clockwise orientation around r and the other
chain can be rotated in counterclockwise orientation around r without either chain penetrating the
interior of P . Two problems are addressed. First, given a center of rotation r in the plane, determine
whether P is rotationally monotone with respect to r. We present a linear time algorithm to solve
this problem. Second, an algorithm is presented to find all the points r in the plane, such that P is
rotationally monotone with respect to r. The algorithm’s running time for convex polygons is linear
and for simple polygons is quadratic. We show that both algorithms are optimal in the worst case.

The notion of rotationally monotone polygons has a direct application to clamshell casting.
Assume that we wish to manufacture an object modeled by a polyhedron P with combinatorial
complexity n. Let the boundary of P be the cast of P . The polyhedron P is castable with respect to
a line of rotation l if the cast of P can be partitioned into exactly two parts, such that one part can
be rotated in clockwise orientation around l and the other part can be rotated in counterclockwise
orientation around l without intersecting the interior of P or the cast of P . Bose et al. [3] use
rotational monotonicity to solve the problem of clamshell casting in three dimensions.

This paper is organized as follows. Section 2 introduces the notation and preliminaries used
throughout this paper. Section 3 discusses the problem of finding a partitioning of a given polygon
based on a given point of rotation, and Section 4 discusses the problem of finding all of the points in
the plane that allow a valid partitioning of the boundary of a polygon. Finally, Section 5 concludes
and gives ideas for future work.

2 Preliminaries

Let P be a simple polygon in the plane with n vertices and let int(P ) and ∂P denote the interior and
boundary of P , respectively, so that P = int(P )∪∂P . The edges of P are oriented counterclockwise
so that int(P ) is located to their left. Parallel adjacent edges are not allowed, since this can be easily
avoided by merging the two adjacent parallel edges. The aim is to determine whether the boundary
of P can be partitioned into two pieces where each piece can be removed by a rotation. We specify
below precisely what this means.

Definition 1. Let r and p be points in the plane. Denote the circular arc with center r and angle
α starting at p winding in clockwise (cw) or counterclockwise (ccw) direction by cwarc(r, p, α) or
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ccwarc(r, p, α) respectively. An edge e of P is removable in cw orientation with respect to r if

∃ α > 0 such that ∀ p on e : cwarc(r, p, α) ∩ int(P ) = ∅

and removable in ccw orientation with respect to r if

∃ α > 0 such that ∀ p on e : ccwarc(r, p, α) ∩ int(P ) = ∅.

Then, we call the cw or ccw orientation a valid removal orientation for e with respect to r respec-
tively, and we call r a valid center of rotation for e. Figure 1 illustrates the definition of removability
for edges.

r

α

P

β

e2

e1

Figure 1: The edges e1 and e2 are removable in cw orientation with angle α and ccw orientation with
angle β with respect to r respectively.

Definition 2. Let r be a point in the plane. A polygon P is rotationally monotone with respect to
r, if ∂P can be partitioned into exactly two connected chains, such that all edges of one chain are
removable in cw orientation with respect to r and all edges of the other chain are removable in ccw
orientation with respect to r.

This implies that there exists an angle α, such that both chains can be rotated by angle α in
cw or ccw orientation with respect to r, respectively, without colliding with each other. Note that
the partitioning of the chain is not necessarily at vertices of P . We now outline a key property that
characterizes all locations from which an edge is removable.

For an edge e ∈ ∂P with incident vertices a and b, let ne(a) denote the line perpendicular to e
passing through a. The line ne(a) divides the plane into two half planes and the open half plane
containing b is denoted by n+

e (a) and the open half plane that does not contain b is denoted by
n−e (a). The supporting line l(e) of e divides the plane into two half planes. Denote the open half
plane located to the left of e when traversing P in ccw orientation by l+(e) and the open half plane
located to the right of e when traversing P by l−(e), see Figure 2. The closure of an open set S is
denoted by cl(S).

Lemma 1. Let e be an edge of P and denote the two vertices incident to e in ccw order by a and b. For
the valid removal orientation of e, the following four cases are possible:

1. The edge e is removable using a cw rotation around r, if and only if r ∈ cl(n−e (a)).
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Figure 2: The half planes associated with an edge e.

2. The edge e is removable using a ccw rotation around r, if and only if r ∈ cl(n−e (b)).

3. The edge e needs to be partitioned into two parts at the orthogonal projection of r on e in order
to be removed, if and only if r ∈ n+

e (a) ∩ n+
e (b) ∩ cl(l−(e)). One part of e is removable using a

ccw rotation and the other one using a cw rotation around r. Let r∗ be the orthogonal projection
of r on e. Denote the edge with incident vertices a and r∗ by e1 and the edge with incident vertices
r∗ and b by e2 respectively. The edge e1 is removable using a ccw rotation around r and e2 is
removable using a cw rotation around r.

4. The edge e is not removable, if and only if r ∈ n+
e (a) ∩ n+

e (b) ∩ l+(e).

Proof. Consider that every point p of e moves on cwarc(r, p, α) or ccwarc(r, p, α) when rotated by an
angle α around r. Denote the vector from p to r by ~pr and the vector ~pr rotated in ccw orientation
by 900 by ~pr⊥. The tangent of cwarc(r, p, α) or ccwarc(r, p, α) is ~pr⊥ or − ~pr⊥, respectively, for any
point p. Denote by g the line passing through p in direction ~pr⊥ and denote by g+(p) the closed
half plane bounded by g containing r. The two arcs cwarc(r, p, α) and ccwarc(r, p, α) are contained
in g+(p).

Let p be an arbitrary point in the interior of e. There exists an open disk d with positive radius
centered at p with the property that exactly half of d is contained in int(P ) and exactly half of d is
contained in the exterior of P . Denote the ray starting at p propagating in direction ~pr⊥ by q+ and
denote the ray starting at p propagating in direction − ~pr⊥ by q−.

Let r ∈ cl(n−e (a)) and let p be an arbitrary point in the interior of e. The intersection d ∩ q+

is located completely outside of int(P ). Hence, p can move by a small amount along ~pr⊥ without
penetrating int(P ). Since cwarc(r, p, α) ⊆ g+(p) and since ~pr⊥ is the tangent of cwarc(r, p, α)
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in p, small movements of p along cwarc(r, p, α) are possible without penetrating int(P ). Hence,
∃ α > 0 such that ∀ p on e : cwarc(r, p, α) ∩ int(P ) = ∅. The intersection d ∩ q− is completely
contained in int(P )∪{p} and hence, p cannot move infinitesimally along − ~pr⊥ without penetrating
int(P ). Since infinitesimal movements along − ~pr⊥ correspond to infinitesimal movements along
ccwarc(r, p, α), there is no α > 0 such that ∀ p on e : ccwarc(r, p, α) ∩ int(P ) = ∅. Hence, e is only
removable using a cw rotation around r if r ∈ cl(n−e (a)).

Let r ∈ cl(n−e (b)) and let p be an arbitrary point in the interior of e. The intersection d ∩ q− is
located completely outside of int(P ). Hence, p can move by a small amount along − ~pr⊥ without
penetrating int(P ). Since ccwarc(r, p, α) ⊆ g+(p) and since − ~pr⊥ is the tangent of ccwarc(r, p, α)
in p, small movements of p along ccwarc(r, p, α) are possible without penetrating int(P ). Hence,
∃ α > 0 such that ∀ p on e : ccwarc(r, p, α) ∩ int(P ) = ∅. The intersection d ∩ q+ is completely
contained in int(P ) ∪ {p} and hence, p cannot move infinitesimally along ~pr⊥ without penetrating
int(P ). Since infinitesimal movements along ~pr⊥ correspond to infinitesimal movements along
cwarc(r, p, α), there is no α > 0 such that ∀ p on e : cwarc(r, p, α) ∩ int(P ) = ∅. Hence, e is only
removable using a ccw rotation around r if r ∈ cl(n−e (b)).

If r ∈ n+
e (a) ∩ n+

e (b) ∩ cl(l−(e)), e is divided into two edges at the orthogonal projection r∗ of
r on e. Denote the edge with incident vertices a and r∗ by e1 and the edge with incident vertices
r∗ and b by e2 respectively. As r ∈ cl(n−e1

(r∗)) and r ∈ cl(n−e2
(r∗)), e1 is only removable using a ccw

rotation around r and e2 is only removable using a cw rotation around r.
If r ∈ n+

e (a) ∩ n+
e (b) ∩ l+(e), the orthogonal projection r∗ of r on e cannot be rotationally

removed. This means, there is no α > 0 such that cwarc(r, r∗, α) ∩ int(P ) = ∅ or ccwarc(r, r∗, α) ∩
int(P ) = ∅ respectively. Therefore, e is not removable with respect to r.

This determines the removability of e depending on the location of r in the plane. Hence, the
four statements of Lemma 1 follow directly.

3 Decision Problem

In this section, we address the question of whether a polygon is rotationally monotone with respect
to a given point of rotation and present an algorithm that solves the problem in linear time. The
main idea is to examine the relationship between the removability of edges of P and the occurrence
of local extrema of the distance between ∂P and r.

Assume that a polygon P and a center of rotation r are given. The aim is to determine whether
P is rotationally monotone with respect to r. If P is rotationally monotone with respect to r, then
the two points on ∂P , where the boundary of P is partitioned, need to be found.

Definition 3. A near point c with respect to r is defined as c ∈ ∂P with the property that an
arbitrarily small neighborhood of c on ∂P is completely outside of the open disk centered at r and
passing through c. This means there exists a disk b centered at c with a positive radius, such that
all points q ∈ (∂P ∩ b) \ {c} are outside of the closed disk centered at r and passing through c.

Hence, if c is not a vertex, c is the orthogonal projection of r on an edge of P . Therefore, c
locally minimizes the distance between the boundary of P and the center of rotation r.

Definition 4. A far point f with respect to r is defined as f ∈ ∂P with the property that an arbitrarily
small neighborhood of f on ∂P is completely contained in the closed disk centered at r and passing
through f . This means there exists a disk b centered at f with a positive radius, such that all points
q ∈ ∂P ∩ b are completely contained in the closed disk centered at r and passing through f .
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A far point is always a vertex of P that locally maximizes the distance between the boundary of
P and the center of rotation r.

Definition 5. Let p ∈ ∂P . If p is located in the interior of an edge e, split the edge into two edges at
p. The valid removal orientation with respect to r is said to change at p if one of the edges incident
to p is removable in cw orientation and the other edge incident to p is removable in ccw orientation
with respect to r.

Lemma 2. The valid removal orientation with respect to r changes at a point p ∈ ∂P if and only if p
is either a near point or a far point with respect to r.

Proof. The proof consists of two parts. First, we show that the valid removal orientation with
respect to r changes at p ∈ ∂P if p is a near point or a far point with respect to r. At a far point
f , an arbitrarily small neighborhood of f is completely contained in the closed disk induced by
the circle b centered at r passing through f . Hence, there is a smaller circle concentric to b that
passes through two points on ∂P located in an arbitrarily small neighborhood of f . As this circle
intersects the polygon twice, one intersection point penetrates int(P ) when rotated infinitesimally
in cw orientation with respect to r and the other intersection point penetrates int(P ) when rotated
infinitesimally in ccw orientation with respect to r. Hence, it is not possible to remove the boundary
of P in the same orientation. Hence, the valid removal orientation changes at f . The proof is similar
for near points where b is enlarged by a small amount. Again, the two intersection points of the
enlarged circle with the polygon can only be removed in different orientations with respect to r.

Second, the valid removal orientation with respect to r changes at no other point but a near
point or a far point. Assume that the valid removal orientation with respect to r changes at p ∈ ∂P
with p neither a far point nor a near point. Hence, the circle b centered at r passing through p
properly intersects P at p, since p neither locally maximizes nor locally minimizes the distance
between ∂P and r. If p is not a vertex of P , but situated in the interior of an edge e of ∂P , e is
split into two edges at p. Otherwise, p is a vertex of P and there exist exactly two edges adjacent
to p. Therefore, the point p has two adjacent edges. As P is a simple polygon, locally it is located
completely to the left of the boundary defined by the two edges adjacent to p. Hence, the valid
removal orientation with respect to r does not change at p, which contradicts the initial assumption.
Therefore, p must be either a near point or a far point for the valid removal orientation with respect
to r to change.

Theorem 1. Given a center of rotation r, a polygon P is rotationally monotone with respect to r if and
only if there exists exactly one near point c with respect to r and exactly one far point f with respect to
r on ∂P .

Proof. The proof consists of two parts. First, we show that P is rotationally monotone with respect
to r if there exists exactly one near point c and exactly one far point f with respect to r. If there
exists exactly one near point c and exactly one far point f with respect to r, the point c minimizes
the distance between ∂P and r and f maximizes the distance between ∂P and r. Hence, P is
completely contained in the closed annulus defined by the two concentric circles centered at r and
passing through c and f respectively. The valid removal orientation with respect to r can only
change at c and f (Lemma 2). Therefore, one part of the polygon can be removed using a cw
rotation and the other part can be removed using a ccw rotation if P is cut at c and f .

Second, if P is rotationally monotone with respect to r then there exists exactly one far point
and exactly one near point with respect to r. The boundary of a rotationally monotone polygon
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with respect to r is partitioned into two parts, i.e. there are exactly two points on ∂P where the
valid removal orientation with respect to r changes. By Lemma 2, this implies that there are exactly
two near or far points on ∂P . The extreme value theorem implies that there is always at least one
local minimum and one local maximum with respect to the distance from r to ∂P [12, Chapter 3].
Therefore, there must exist at least one near point and one far point ∈ ∂P with respect to r. Hence,
there is exactly one near point and one far point with respect to r on a rotationally monotone
polygon with respect to r.

Theorem 1 allows us to determine whether a polygon is rotationally monotone given a center
point r by testing how many points p ∈ ∂P are local extrema with respect to the distance between
p and r. The polygon is rotationally monotone if and only if there is exactly one maximum and one
minimum. To do this test efficiently, we observe the following:

Observation 1. For a simple polygon P and a point r in the plane, the number of points c ∈ ∂P
that locally minimize the distance between ∂P and r equals the number of points f ∈ ∂P that locally
maximize the distance between ∂P and r.

Observation 1 holds because P is a simple closed polygon. Hence, the function describing the
distance from r to ∂P is continuous and there is always a local minimum between two local maxima
and vice versa for continuous functions [12, Chapter 3].

Hence, it is sufficient to consider local maxima to decide whether a polygon is rotationally
monotone given a center point r. As each far point must be a vertex of P , one can test for multiple
local maxima by traversing the polygon’s vertices p and computing the distances between p and r.
Furthermore, it is required to compute the minimal distance from r to each edge of P . The reason
is that two consecutive vertices of P can both locally maximize the distance between r and ∂P .
This takes linear time.

Theorem 2. Given a polygon P with n vertices and a center of rotation r in the plane, we can test in
O(n) time whether P is rotationally monotone with respect to r.

4 Determining all valid regions of rotational monotonicity

In this section, the aim is to find all points r in the plane, such that a given polygon is rotationally
monotone with respect to r. We find those points by building an arrangement of lines in the plane
and by identifying the regions of the arrangement containing points r with the property that P is
rotationally monotone with respect to r.

Definition 6. The set of all points r in the plane with the property that P is rotationally monotone
with respect to r is the valid region of rotational monotonicity of P . The complement of the valid
region is the invalid region for rotational monotonicity of P .

The aim is to determine the valid region in the plane for a given polygon P by partitioning
the plane into valid and invalid regions for rotational monotonicity. Once a query point r is given,
it is possible to determine whether r is a valid center of rotation for P by determining whether
r is contained in a valid or an invalid region of rotational monotonicity. We will see that convex
polygons have a valid region that differs significantly from the valid region of non-convex simple
polygons.
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4.1 Rotational monotonicity of convex polygons

In this section, we consider convex polygons and show that it is possible to find the valid region
of rotational monotonicity in linear time. The plane is partitioned into valid and invalid regions of
rotational monotonicity by constructing the envelope of an arrangement of half lines.

Lemma 1 implies that every edge e with incident vertices a and b given in ccw order on ∂P
splits the plane into regions of different valid removal orientations, see Figure 3.

BLACK REGION e

ccw

cw / ccw

cw

a

b

Figure 3: An edge splits the plane into regions of different valid removal orientations

Definition 7. Let e be an edge of P and denote the two vertices incident to e in ccw order by a and
b. The open strip n+

e (a) ∩ n+
e (b) ∩ l+(e) is called the black region of e.

Note that the black region does not contain any valid centers of rotation r for which e is remov-
able (see Lemma 1, case 4).

Lemma 3. For a convex polygon P , int(P ) is contained in the union of the black regions of the edges
of P .

Proof. Every point q ∈ int(P ) has at least one near point c ∈ ∂P with respect to q. As P is convex
and as q ∈ int(P ), c is the orthogonal projection of q on an edge e and not a vertex of P . Hence, q
is contained in the black region of e.

Lemma 4. A convex polygon P is rotationally monotone with respect to a center of rotation r if and
only if r is not contained in the union of all black regions of edges of P .

Proof. This proof consists of two parts. First, a convex polygon is not rotationally monotone with
respect to r if r is contained in the union of all black regions of edges of P . If r is contained in the
union of all black regions, it is contained in the black region of at least one edge e. The edge e is
therefore not removable with respect to r by Lemma 1.

The second part is that P is rotationally monotone with respect to r if r is not contained in the
union of all black regions of edges of P . Assume, r is outside of the union of the black regions,
and P is not rotationally monotone. Theorem 1 and the Extreme Value Theorem [12, Chapter 3]
imply that there are at least two far points with respect to r. Denote the two far points by f1 and
f2. Two cases can occur: either r ∈ int(P ) or r 6∈ int(P ). If r ∈ int(P ), Lemma 3 ensures that P
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is contained in the black region of at least one edge. Hence, r 6∈ int(P ) must hold. The following
description is illustrated in Figure 4. Since r 6∈ int(P ), it is possible to compute two tangents from
r to ∂P . Denote the two vertices where the tangents touch ∂P by t1 and t2, respectively. If a
tangent touches ∂P in more than one vertex, choose the vertex closest to r as t1 or t2, respectively.
The two tangents decompose ∂P into two chains, the lower chain contained in the triangle T with
vertices t1, t2, and r and the upper chain not contained in T . Since P is convex, no far point of P
with respect to r can be on the lower chain. Hence, both f1 and f2 are on the upper chain. There
are two near points on ∂P with respect to r, one on each chain connecting f1 and f2. Since both
f1 and f2 are on the upper chain, there must be a near point c1 with respect to r on the upper
chain between f1 and f2 (see Observation 1). Since P is convex and c1 is on the upper chain, c1

cannot be a vertex of P . Hence, c1 is the orthogonal projection of r onto an edge e of P . Since
e is on the upper chain and r projects orthogonally onto e, r is located to the left of e. Therefore
r ∈ n+

e (a)∩n+
e (b)∩l+(e), where a and b denote the vertices incident to e. This means, r is contained

in the black region of e. But this contradicts the initial assumption that r is not contained in the
union of black regions of edges of P . Hence, P is only rotationally monotone with respect to r if r
is outside of the union of black regions of edges of P .

r

t1

t2

f1

f2

c1

upper chain

lower chain

T

Figure 4: The center r is located in the black region of the edge containing c1.

Lemma 5. The valid region of rotational monotonicity of a convex polygon P consists only of un-
bounded regions in the plane.

Proof. Note that Lemma 4 implies that the complement of the union of the black regions of edges
of a convex polygon P is the valid region of rotational monotonicity of P . Assume there exists a
point r in a bounded region such that P is rotationally monotone with respect to r. Then, r is
contained in a region bounded by the black regions of at least two edges e1 and e2 of P and the
convex polygonal chain h connecting e1 and e2 that has r to its left, see Figure 5. Let p1 and p2 be
the vertices e1 ∩ h and e2 ∩ h. The vertices p1 and p2 minimize the distance from r to e1 and e2

respectively. As the function describing the distance from r to ∂P is continuous and as P is simply
connected, there exists at least one near point c with respect to r on h. As r is located to the left
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of h and as h is convex, c is located in the interior of an edge e with incident vertices a and b.
Hence, r ∈ n+

e (a) ∩ n+
e (b) ∩ l+(e), i.e. r is contained in the black region of e. This contradicts the

initial assumption and proves that the valid region of rotational monotonicity of P consists only of
unbounded regions in the plane.

e2

e1

p1

p2
h

r

Figure 5: Location of a point r in a bounded region.

Based on Lemma 4 and Lemma 5, we compute the boundary of the union of all black regions
of edges of P . For this, the notion of an envelope of n lines is defined.

Definition 8. A set of n lines in the plane induces a subdivision S of the plane. The envelope of the
n lines is the polygon formed by the bounded edges of all the unbounded regions of S [11].

Similarly, a convex polygon P and the half lines bounding the black regions of its edges induce
a subdivision S of the plane. Parallel half lines with the same orientation intersect at infinity and
are therefore considered to be bounded edges. The polygon formed by the bounded edges of all
the unbounded regions of S is called the envelope of the arrangement induced by P .

Lemma 5 implies that all valid regions of rotational monotonicity of P are contained in the
complement of the envelope of the arrangement induced by P . This can be computed in linear
time by modifying the algorithm by Keil [11] for computing envelopes of arrangements of lines as
outlined below.

Theorem 3. Given a convex polygon P with n vertices, a description of the valid region of rotational
monotonicity of P has O(n) size and can be computed in O(n) time.

Proof. Using the algorithm of Keil [11], it is possible to compute the envelope of an arrangement
of n lines in O(n) time given that the lines are sorted according to their slope. Keil’s algorithm
processes the set of lines in order of slope and uses a stack to maintain intermediate results for
the envelope. This algorithm can be modified to find the union of all black regions of edges of P
by defining an arrangement consisting of the half lines that bound black regions of edges. In this
arrangement, the left and the right envelopes are computed, and their union corresponds to the
union of all black regions of P . The modified algorithm first splits the polygon at the two points
with minimum and maximum y-coordinate. The right envelope is computed by starting at the
lowest point of the polygon and traversing it in clockwise order up to the highest point. For each
edge e we traverse, denote the half line in the direction of the inner normal of e passing through
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the first vertex of e encountered during the traversal by li and the half line in the direction of the
inner normal of e passing through the second vertex of e encountered during the traversal by l∗i ,
1 ≤ i ≤ s, s < n. See Figure 6. Denote by Bi the convex polygonal chain bounding the region
below the half lines l1 to li, 1 ≤ i ≤ s, and by Ai the convex polygonal chain bounding the region
above the lines l∗i+1 to l∗s , 0 ≤ i ≤ s− 1. Concatenate A0, for 1 ≤ i ≤ s− 1 the boundary of Ai ∩Bi,
Bs, and in case that A0 and Bs are disjoint the part of P used to compute the right envelope. For a
visualization of the result of this right envelope, refer to Figure 6.

To compute the left envelope, traverse the polygon in ccw direction starting at the lowest point
and ending at the highest point. Define li and l∗i , 1 ≤ i ≤ s, s < n as above for every edge of
P . Computing Ai and Bi in the same way as before and concatenating A0, for 1 ≤ i ≤ s − 1 the
boundary of Ai ∩ Bi, Bs, and in case that A0 and Bs are disjoint the part of P used to compute
the left envelope yields the left envelope. Note that the only difference between this algorithm and
Keil’s algorithm is the use of two different sets of lines li and l∗i to compute Bi and Ai, respectively.
Hence, only minor changes in Keil’s algorithm are required to perform these computations. As there
are 2n half lines already sorted by slope, this algorithm takes O(n) time.

l1

l2

l3

l∗1

l∗2

l∗3

Figure 6: Result of the right envelope algorithm (shown in bold)

Two planar regions are created, and if we imagine that parallel lines intersect at infinity, the
two regions are simply connected planar polygons. The algorithm by Finke and Hinrichs [9], that
computes the overlay of simply connected planar subdivisions in time linear in the size of the
output, is used to compute the union of those two regions. The algorithm assumes that the two
subdivisions are given in quad view data structure and changes that structure in a way that the
result represents the overlay of the two regions.

The size of the two envelopes E1 and E2 is linear in the number n of vertices of the polygon
P , because it can be computed using Keil’s algorithm in O(n) time. As both envelopes ordered
in clockwise order are given, one can construct a quad view data structure in linear time. The
time required for Finke and Hinrichs’s algorithm is O(n + k), where n is the combined size of the
two polygons to be overlayed and k is the number of intersection points of E1 and E2. Lemma 5
guarantees that there are no unbounded valid regions in the overlay of E1 and E2. Hence, when an
edge of E1 intersects an edge of E2, only one of the edges can have further intersection points with
E1 or E2 respectively. Therefore, the number of intersection points of E1 and E2 is O(n) resulting
in an O(n) time algorithm. In the resulting subdivision, any region labeled as unbounded is a valid
region of rotational monotonicity of P .
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The combination of the two algorithms allows to find the valid region of rotational monotonicity
of P in O(n) time where n is the number of vertices of P .

Corollary 1. A convex polygon P with n vertices can be preprocessed in O(n) time, such that for any
given point r, we can decide in O(log n) time if P is rotationally monotone with respect to r.

Proof. Theorem 3 allows to find the valid region of rotational monotonicity of P in O(n) time.
Hence, in O(n) time, the plane is preprocessed, such that every face of the planar subdivision
induced by black regions of P is labeled as a valid or invalid region.

For any query point r, after O(n) preprocessing time, it is possible to determine the face of the
arrangement containing r in time O(log n) [13]. Once the face is known, we can determine in
constant time whether that face is contained in the union of the black regions of P , i.e. whether r
is a valid center of rotation.

4.2 Rotational monotonicity of simple polygons

In this section, we consider simple (not necessarily convex) polygons with n vertices and show that
it is possible to find the valid region of rotational monotonicity of P in O(n2) time. If the aim is to
report the valid region, this time bound is shown to be worst case optimal.

Let r be a point in the plane. If the valid removal orientation of a simple polygon P changes
with respect to r at a reflex vertex v ∈ ∂P , v penetrates int(P ) when rotated infinitesimally around
r with arbitrary orientation. This yields the following observation:

Observation 2. A rotationally monotone polygon P with respect to r cannot be divided at one of its
reflex vertices v unless the center of rotation r is v. Hence, v cannot be a far point with respect to r and
v can only be a near point with respect to r if r = v.

Definition 9. Let v be a vertex of P and denote the two edges adjacent to v by e1 and e2. The near
cone of v is defined as cl(n−e1

(v) ∩ n−e2
(v)) and denoted by NC(v).

The near cone of v is the set of all points X ∈ R2 with the property that v is a near point with
respect to X, see Figure 7.

Definition 10. Let v be a vertex of P and denote the two edges adjacent to v by e1 and e2. The far
cone of v is defined as n+

e1
(v) ∩ n+

e2
(v) and denoted by FC(v).

The far cone of v is the set of all points X ∈ R2 with the property that v is a far point with
respect to X, see Figure 7.

Definition 11. The black region of a reflex vertex v is (NC(v) ∪ FC(v)) \ {v}.

Note that Observation 2 ensures that the black region of v does not contain any valid centers of
rotation r that allow v to be removed from ∂P .

Lemma 6. For a simple polygon P , int(P ) is contained in the union of the black regions of the edges
and the reflex vertices of P .

Proof. Every point p ∈ int(P ) has at least one near point c ∈ ∂P with respect to p. If c is the
orthogonal projection of p on the interior of an edge e, p is contained in the black region of e.
Otherwise, c is a reflex vertex and p is contained in the black region of c.

12



e1
e2

far cone

v

near cone

Figure 7: The near cone and the far cone of v.

Lemma 7. A simple polygon P is rotationally monotone with respect to a center of rotation r if and
only if r is not contained in the union of all black regions of edges and reflex vertices of P .

Proof. This proof consists of two parts. First, a simple polygon is not rotationally monotone with
respect to r if r is contained in the union of all black regions of edges and reflex vertices of P . If r is
contained in the union of all black regions, it is either contained in the black region of at least one
edge e or in the black region of at least one reflex vertex v. Hence, either e or v cannot be removed
from ∂P .

Second, a simple polygon is always rotationally monotone if r is not contained in the union of
the black regions of its edges and reflex vertices. Assume that P is not rotationally monotone with
respect to r and that r is not contained in the union of black regions of edges and reflex vertices of
P . Hence, there are at least two far points f1 and f2 on ∂P with respect to r, see Theorem 1 and the
Extreme Value Theorem [12, Chapter 3]. Note that neither f1 nor f2 can be a reflex vertex as r is
not contained in the black region of any reflex vertex. Two situations are possible: either r ∈ int(P )
or r 6∈ int(P ). Lemma 6 ensures that r 6∈ int(P ) as any point q ∈ int(P ) is contained in the union
of the black regions of the edges and reflex vertices of P . The following description is illustrated
in Figure 8. Denote the far point with smallest distance to r by f1. If this far point is not unique,
choose an arbitrary far point with smallest distance to r. Denote the circle centered at r passing
through f1 by c. In a local neighborhood of f1, ∂P is contained in the interior of c. However, since
f2 is a far point on ∂P with respect to r with greater or equal distance from r than f1, ∂P intersects
c in at least one point not equal to f1. Find the first point q1 of ∂P that intersects c when starting
at f1 and walking along ∂P in ccw orientation. The polygonal chain starting at f1 and ending at q1

splits c into two regions. If r is contained in the region of c located to the left of the polygonal chain
starting at f1 and ending at q1, we call the polygonal chain an upper chain. Otherwise, find the first
point q2 of ∂P that intersects c when starting at f1 and walking along ∂P in cw orientation. By the
Jordan Curve Theorem [14, Chapter 1], the polygonal chain starting at q2 and ending at f1 must
be completely contained in the region of c located to the left of the polygonal chain starting at f1

and ending at q1. Furthermore, int(P ) is contained in the region bounded by the polygonal chain
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starting at q2 and ending at f1 and by the polygonal chain starting at f1 and ending at q1. Hence,
r is contained in the region of c located to the left of the polygonal chain starting at q2 and ending
at f1. Denote the polygonal chain starting at q2 and ending at f1 by upper chain. The points f1, q1,
and q2 are points that maximize the distance from the two polygonal chains considered above to
r. Hence, by Observation 1 there exists a near point c1 on the upper chain. Since r is located in
the region of c located to the left of the upper chain, c1 cannot be a convex vertex. Hence, c1 is
either located on an edge e of P or c1 is a reflex vertex of P . If c1 is located on an edge e, c1 is the
orthogonal projection of r on e and therefore, r is contained in the black region of e. Otherwise, c1

is a reflex vertex that is a near point and therefore, r is contained in the black region of c1. Hence,
r is either contained in the black region of the reflex vertex c1 or in the black region of the edge e.
But this contradicts the initial assumption that r is not contained in the union of all black regions
of edges and reflex vertices of P . Hence, P is only rotationally monotone with respect to r if r is
outside of the union of the black regions of the edges and reflex vertices of P .

r

f1

q1

q2

upper chain

int(P )

c1

c

Figure 8: The center r is located in the black region of the reflex vertex c1.

Theorem 4. Given a simple polygon P with n vertices, a description of the valid region of rotational
monotonicity of P has O(n2) size and can be computed in O(n2) time.

Proof. We preprocess the plane by constructing the full arrangement A of the (full) lines bounding
the black regions of edges and reflex vertices. A doubly-connected edge list of the arrangement of
n lines has complexity O(n2) and can be constructed in O(n2) time. See [6, Chapter 8]. Once A is
constructed, each face needs to be labeled as valid or invalid region of rotational monotonicity. For
this purpose, a boolean value is associated with every edge e and reflex vertex v of P that indicates
whether the current location is contained in the black region of e or v respectively. We start at
an arbitrary face f of A and test for each edge and reflex vertex of P whether it causes f to be
invalid. After testing, we set the boolean value of each edge and reflex vertex appropriately and
compute the number b of edges and reflex vertices that cause f to be invalid. Clearly, f is valid if
and only if b = 0. This computation takes O(n) time as every edge and reflex vertex of P needs to
be considered. Next, A is traversed in depth-first order on the graph induced by the vertices and the
edges of A. Each time, an edge eA of A is crossed, we update both the boolean value of the edge or
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reflex vertex of P that induces eA and the counter b. This way, every face of A is labeled in constant
time per face. The edge eA and its incident vertices are valid regions of rotational monotonicity if
and only if one or more of eA’s adjacent faces is a valid region of rotational monotonicity. Hence,
A can be labeled in O(n2) time.

Corollary 2. A simple polygon P with n vertices can be preprocessed in O(n2) time, such that for any
query point r, we can decide in O(log n) time if P is rotationally monotone with respect to r.

Proof. Theorem 4 allows to find the valid region of rotational monotonicity of P in O(n2) time.
Hence, the plane is preprocessed, such that every face of the planar subdivision induced by black
regions of P is labeled as valid or invalid region in time O(n2).

For any query point r, after O(n2) preprocessing time, it is possible to determine the face of
the arrangement containing r in time O(log n) [13]. Once the face is known, the label of the face
can be retrieved in constant time. Hence, determining whether r is a valid center of rotation for P
takes O(log n) time.

We now examine the worst case complexity of the valid region of rotational monotonicity of
P . In the best case, i.e. in the case of a convex polygon, the number of valid regions of rota-
tional monotonicity is O(n). The number of valid regions cannot be ω(n2) as the complexity of
an arrangement induced by O(n) lines is O(n2). Next we show that there exists a class of simple
polygons where the number of valid regions is Ω(n2). This implies that the O(n2) time bound is
worst case optimal if the aim is to report all valid regions of rotational monotonicity for a simple
polygon. We now outline the construction of the lower bound.

We construct a simple polygon P consisting of n = 3s − 1 vertices located on two different
polygonal chains. Let s vertices of P be evenly distributed on the upper half of the unit circle. The
coordinates of those vertices are

(cos((i− 1)φ1), sin((i− 1)φ1)) , i = 1, . . . , s,

where φ1 = π
s−1 . Hence, the vertices form a convex polygonal chain c1. All valid regions induced

by c1 are cones whose apexes a are on the unit circle and opening angle φ1

2 , see Figure 9.
The second polygonal chain c2 consists of 2s−1 vertices. Let s vertices of c2 be evenly distributed

on the arc of the circle with center
(
−1

2 , 0
)

and radius 1 starting at 3π
2 and ending at 25π

16 . The
coordinates of those vertices are(

−1
2

+ cos
(

3π

2
+ (i− 1)φ2

)
, sin

(
3π

2
+ (i− 1)φ2

))
, i = 1, . . . , s,

where φ2 = π
16(s−1) . Denote the vertices by v1, . . . , vs and note that vi is not located in the interior

of the unit disk for i = 1, . . . , s. Define the vertices v0, vs+1 as(
−1

2
+ cos

(
3π

2
− φ2

)
, sin

(
3π

2
− φ2

))
,

(
−1

2
+ cos

(
3π

2
+ sφ2

)
, sin

(
3π

2
+ sφ2

))
,

respectively. Let s − 1 vertices of c2 be defined as the intersections of the line passing through
vi−1 and vi with the line passing through vi+1 and vi+2, where i = 1, . . . , s − 1. These vertices are
located on a circle. The polygonal chain c2 consists of s − 2 reflex, s − 1 convex, and 2 boundary
vertices. Note that c2 consists of sides of isosceles triangles, i.e. all the edges have the same length,
see Figure 10. Valid regions bounded by part of c2 and two parallel half lines occur.
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REGION

φ1
2

φ1
2

φ1π − φ1
2

π
2 − φ1

a

O

r = 1

BLACK
REGION

BLACK
REGION

c2

Figure 9: Approximation of half circle

The two polygonal chains c1 and c2 can now be connected by two edges. This does not introduce
further reflex vertices to P , but only two black regions of the new edges. Those black regions have
no influence on further considerations. Each of the black regions induced by reflex vertices on c2

induces a bounded valid region when intersecting the valid region induced by vertices located on
the arc of c1 starting at 7π

16 and ending at π
2 . Hence, there are at least (s − 2)b s

8c bounded valid
regions. As n = 3s− 1, there are n−5

3 bn+1
24 c = Ω(n2) bounded valid regions. Hence, the number of

valid regions of rotational monotonicity of a simple polygon is Ω(n2). An example with s = 10 is
shown in Figure 11.

5 Conclusion and Future Work

We have introduced the notion of rotationally monotone polygons and we have studied the problem
of rotational monotonicity in two dimensions. An algorithm was developed to solve the problem
of determining whether a polygon with n vertices is rotationally monotone with respect to a given
point in the plane with running time O(n). Furthermore, two algorithms were developed to report
all the valid centers of rotation for a given polygon in the plane. The running times of the algorithms
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VALID REGION
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Figure 10: Polygonal chain

are O(n) for convex polygons and O(n2) for simple polygons in general and shown to be worst-case
optimal.

The new results on rotationally monotone polygons have direct applications to clamshell casting
in three dimensions [3].

The following interesting related problems require further research. The definition of rotational
monotonicity with respect to a point r only tests whether the boundary of the polygon can be
decomposed into two chains, such that both chains can be rotated around r by an arbitrarily small
angle without colliding with the interior of the polygon. An interesting extension is to determine
whether the two chains can be rotated by a given angle α without colliding with the interior of the
polygon. Another related problem is to find the maximal angle α the two chains can be rotated by
without colliding with the interior of the polygon for a rotationally monotone polygon with respect
to r.

For simple polygons, we showed the running time O(n2) to be worst-case optimal if the aim
is to report all the valid centers of rotation. It remains an open problem whether it can be deter-
mined faster whether there exists a point r in the plane, such that a simple polygon is rotationally
monotone with respect to r.
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(a) (b)

Figure 11: Example with s = 10. (a) shows the polygon, (b) shows an enlargement of the polygonal
chain c2.

References

[1] D. Avis and G. Toussaint. An optimal algorithm for determining the visibility of a polygon
from an edge. IEEE Transactions on Computers, 30(12):910–914, 1981.

[2] B. Bhattacharya, G. Das, A. Mukhopadhyay, and G. Narasimhan. Optimally computing a
shortest weakly visible line segment inside a simple polygon. Computational Geometry Theory
and Applications, 23:1–29, 2002.

[3] P. Bose, P. Morin, M. Smid, and S. Wuhrer. Rotational clamshell casting in three dimensions.
Technical Report TR0604, Carleton University, 2006.

[4] P. Bose, P. Morin, M. Smid, and S. Wuhrer. Rotationally monotone polygons. In Proceedings
of the Canadian Conference on Computational Geometry, to appear, 2006.

[5] P. Bose and M. van Kreveld. Generalizing monotonicity: On recognizing special classes of
polygons and polyhedra by computing nice sweeps. International Journal of Computational
Geometry, 15(6):591–608, 2005.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry
Algorithms and Applications Second Edition. Springer-Verlag, 1991.

[7] J. Dean, A. Lingas, and J. Sack. Recognizing polygons, or how to spy. The Visual Computer,
3(6):344–355, 1988.

[8] H. ElGindy and G. Toussaint. On geodesic properties of polygons relevant to linear time
triangulation. The Visual Computer, 5:68–74, 1989.

18



[9] U. Finke and K. Hinrichs. Overlaying simply connected planar subdivisions in linear time.
In SCG ’95: Proceedings of the eleventh annual symposium on Computational geometry, pages
119–126, New York, NY, USA, 1995. ACM Press.

[10] J. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geometry, Second
Edition. Chapman & Hall CRC, 2004.

[11] M. Keil. A simple algorithm for determining the envelope of a set of lines. Information
Processing Letters, 39(3):121–124, 1991.

[12] H. Keisler. Elementary Calculus An Infinitesimal Approach Second Edition. Prindle, Weber, and
Schmidt, 1986.

[13] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28–
35, 1983.

[14] J. O’Rourke. Computational Geometry in C, Second Edition. Cambridge University Press, New
York, 1998.

[15] F. Preparata and K. Supowit. Testing a simple polygon for monotonicity. Information Process-
ing Letters, 12(4):161–164, 1981.

[16] A. Rosenbloom and D. Rappaport. Moldable and castable polygons. Computational Geometry
Theory and Applications, 4:219–233, 1994.

[17] G. Toussaint. Movable separability of sets. Computational Geometry, North-Holland, pages
335–375, 1985.

19


