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Abstract5

We present data structures that can answer window queries for a sequence of

geometric objects, such as points, line segments, triangles and convex c-gons. We

first present data structures to solve windowed intersection decision problems

for line segments, triangles and convex c-gons. We also present data structures

to count points on maximal layer, k-dominated and k-dominant points for some

fixed integer k, and to decide whether a given point belongs to a maximal

layer for a sequence of points in Rd, d ≥ 2. Finally we present techniques to

approximate window-aggregate queries for (1 + ε)-approximations for various

geometric measures such as diameter, width, radius of a minimum enclosing

ball, volume of the smallest bounding box, and the cost of `-center clustering

(` ≥ 2) for a set of points using coresets. All data structures presented in this

paper answer queries in polylogarithmic time and use subquadratic space.

Keywords: coreset, intersection decision problem, maximal point, maximal

layer, window query

1. Introduction

We construct data structures for various geometric objects (e.g., points, line

segments, triangles and convex c-gons) to efficiently answer window queries. In10

a window query we are given two positive integers i and j, with i < j, such

that the interval [i, j] represents a query window of width W = j − i + 1. Let

S = (s1, s2, . . . , sn) be a sequence of n geometric objects. For 1 ≤ i < j ≤ n,

let Si,j denote the subsequence (si, si+1, . . . , sj). We want to preprocess S into
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some data structures such that given a query interval q = [i, j] and a predicate15

P, we can answer window queries using the objects in Si,j that match P.

Recently the same model of data structure has been considered in various

studies (see [2],[3],[4],[5],[6],[7]), where the authors mapped a sequence of geo-

metric objects (or graph edges) to a sequence of timestamped events, where for

each k, with 1 ≤ k ≤ n, an object sk has a unique timestamp k.20

In this paper, we present new results for windowed intersection decision

problems and a variety of windowed reporting problems using points on maximal

layers. Let P be a set of n points in R2. The first maximal layer L1 of P is

defined to be the maximal points under the dominance relation where a point

p is said to be dominated by a point p′ if p[x] ≤ p′[x] and p[y] ≤ p′[y], and25

p 6= p′. For γ > 1, the γ-th maximal layer Lγ is the set of maximal points

in P − ⋃γ−1
l=1 Ll [8]. We define the windowed intersection decision problem as

‘Given a pair of indices (i, j), where 1 ≤ i < j ≤ n, report whether there is any

intersection between objects in (si, . . . , sj)’. In [5], Chan and Pratt presented

orthogonal segment intersection decision problems, whereas our algorithms can30

preprocess sequences of objects, i.e., line segments, triangles, and convex c-

gons, with arbitrary orientations. For our second set of problems, we consider

a sequence of n points P = (p1, p2, . . . , pn) in Rd, where d ≥ 2, and we answer

queries related to maximal layers and dominance. More specifically we solve

three types of windowed queries of the following forms: Given a query interval35

[i, j] (i) count the number of maximal points in Pi,j = (pi, pi+1, . . . , pj), (ii)

given an integer k, with i ≤ k ≤ j, decide if point pk is on the maximal layer Lγ

of Pi,j , where γ = 1, or 2, or ≥ 3, and (iii) for a fixed integer k ≥ 1, (a) report all

points in the query interval that are dominated by at least k points of Pi,j (i.e.,

k-dominated points) and (b) report all maximal points in Pi,j such that each40

point dominates at least k points of Pi,j (i.e., k-dominant points). Lastly we

show techniques to approximate window-aggregate queries using decomposable

coresets of size fd(ε) to compute (1 + ε)-approximations for various geometric

problems such as the diameter, width, radius of a minimum enclosing ball,

volume of the smallest bounding box and `-center clustering of a queried point45
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set Pi,j . Coresets that can be computed based on the extent measures of a point

set are called decomposable coresets, and the extent measure of a point set P

with respect to a point x ∈ Rd is defined as w(P, x) = maxp,q∈P (p− q) · x [9].

1.1. Previous Work

Bannister et al. [3] were the first to consider this window model for prepro-50

cessing timestamped graph edges into data structures that can answer windowed

queries. Subsequently more results on windowed graph problems were presented

in [6] and [7]. Similar time window model for geometric objects was first studied

in [2], where the authors presented results for reporting the convex hull of points

in the plane, and skyline and proximity relations of point sets in Rd. They used55

a hierarchical decomposition in time to construct binary decomposition trees

on a given set of temporal points to answer windowed queries related to con-

vex hull and proximity relations. The authors solve various problems related

to the convex hull in polylogarithmic time and approximations for the nearest

neighbour queries and the construction of proximity graphs. However, their60

skyline queries use a different preprocessing technique based on the rectangle

stabbing data structures. Mouratidis et al. [10] considered problems of moni-

toring top-k maximal layers (mentioned as k-skyband in [10]) using fixed-width

sliding query windows. Our results for points on maximal layers presented in

this paper consider variable-width query windows and are different from those65

of [2] and [10].

Subsequently more results have been presented by Bokal et al. [4], and Chan

and Pratt [5] on window queries. They mainly focused on answering decision

problems on hereditary properties, such as the convex hull area decision prob-

lem (in 2D), the diameter decision problem (in 2D and 3D), the width decision70

problem (in 2D) and the orthogonal segment intersection detection problem.

Bokal et al. [4] showed a sketch-based general methodology for finding all max-

imal subsequences for a set of n points in plane, i.e., for all i, with 1 ≤ i ≤ n,

they find the largest index of the maximal interval starting at i that holds some

hereditary property P.75
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The authors solved problems for finding all maximal subsequences with unit

diameter, all maximal subsequences whose convex hull area is at most 1 and all

maximal subsequences that define monotone paths in some (subpath-dependent)

direction. Later, Chan and Pratt [5] improved preprocessing times for diam-

eter decision problems and convex hull area decision problems. The authors80

presented techniques to solve the diameter decision problem in 2D and in 3D,

and the orthogonal line segment intersection detection problems by reducing

the windowed decision problems into range successor problems. As the sec-

ond approach, the authors used dynamic data structures and a first-in-first-out

sequence of processing geometric objects to find all maximal subsequences of85

intervals that satisfies some property P. Authors named this process FIFO up-

dates and used this technique to solve the 2D convex hull area decision problem

and the 2D width decision problem. Table 1 summarizes previous results of

window queries for geometric problems.

1.2. New Results90

The main contributions of this paper are listed below, and are also summa-

rized in Table 2.

1. Intersection decision problems: Given a sequence S of n geometric objects,

we can preprocess S for the windowed intersection decision problem in

O(n4/3 · polylog(n)) time using O(n4/3 · polylog(n)) space so that queries95

can be answered in O(log n) time.

2. Problems on points on maximal layers: Given a sequence of n points

P = (p1, p2, . . . , pn) in Rd we can preprocess P into data structures to

report the following.

• Given a query interval [i, j] and a point pk with i ≤ k ≤ j, we can100

report whether pk is on the maximal layer of the sequence of points

Pi,j = (pi, . . . , pj) in O(1) time. Preprocessing takes O(n logd−1 n)

time using O(n logd−2 n) space .

• Given a query interval [i, j] and a point pk with i ≤ k ≤ j, we

can report whether pk is on layer 2 or ≥ 3 of the sequence Pi,j105
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Table 1: Summary of previous results on window queries for geometric problems. Here n is

the number of input objects, h is the size of the convex hull, w is the size of the output, W is

the size of the query window and α is the inverse Ackermann function.

Problems Preprocess Query Ref.

time time

Convex hull reporting O(n logn) O(h log2 W) [2]

Gift wrapping, line stabbing,

tangent queries O(n logn) O(log2 W) [2]

Linear prog., line decision queries O(n logn) O(logW) [2]

Skyline reporting O(n1+ε) O(w) [2]

Spherical range reporting O(n logn) O(logW+ w) [2]

Approx. nearest neighbor O(n logn) O(logW) [2]

Diameter decision problem (2D) O(n log2 n) O(1) [4]

O(n logn) O(1) [5]

Diameter decision problem (3D) O(n log2 n) O(1) [5]

Convex hull area decision problems O(n logn log log n) O(1) [4]

O(nα(n) logn) O(1) [5]

Monotone paths O(n) O(1) [4]

Orthogonal segment

intersection detection O(n logn log log n) O(1) [5]

Width decision problem (2D) O(n log8 n) O(1) [5]

in O(logd+1 n) time. Preprocessing takes O(n logd+1 n) time using

O(n logd+1 n) space.

• We can count the total number of maximal points of Pi,j in O(log2 n)

time. Preprocessing takes O(n logd−1 n) time using O(n logd−2 n)

space when d ≥ 4. However, for d ∈ {2, 3} preprocessing takes110

O(n log2 n) time and O(n log2 n) space.

• Given a fixed integer k, we can report all points in Pi,j that are

dominated by at least k points (i.e., k-dominated points) inO(log2 n+

kw) time, where w is the size of the output. Preprocessing takes
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O(kn log2 n) time using O(kn log n) space when 2 ≤ d ≤ 3. For115

d ≥ 4, preprocessing takes O(kn logd−1 n) time and O(kn logd−2 n)

space.

• Given a fixed integer k, we can report all maximal points in Pi,j each

dominating at least k points (i.e., k-dominant points) in O(log4 n +

kw) time, where w is the size of the output. Preprocessing takes120

O(kn log4 n) time using O(kn log3 n) space when 2 ≤ d ≤ 5. For

d ≥ 6, preprocessing takes O(kn logd−1 n) time and O(kn logd−2 n)

space.

3. Approximations using coresets:

• Let P be a sequence of n points in Rd, where d is a fixed dimension.125

The sequence P can be preprocessed into a data structure of size

O(n log n) such that for a query interval [i, j], with 1 ≤ i < j ≤ n, we

can compute a (1 + ε)-coreset of size fd(ε) in O(fd(ε) log n) time for

geometric problems that admit some decomposable coresets. Here

fd(ε) is the smallest integer such that for any real number ε > 0 the130

ε-coreset of P has size at most fd(ε).

• Let P be a sequence of n points in R2 that can be preprocessed

into a data structure of size O(n log n) such that given a query

window [i, j] and two parameters ` ≥ 2 and ε > 0, a coreset of

size O(`(f2(`)/(cε))2) for the `-center clustering can be computed in135

O(`((f2(`)/(cε)) log n) + `(f2(`)/(cε))2 + W) time, where W is the

width of the query window and c is a positive constant.

1.3. Organization

This paper is organized as follows. In Section 2, we present algorithms for

windowed intersection decision problems using various geometric objects such as140

segments, bichromatic segments, triangles and c-gons. Section 3 presents more

results for windowed queries using points on maximal layers. In Section 4 we

present two techniques to obtain (1 + ε)-approximations for geometric problems

using coresets. Section 5 concludes this paper.
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Table 2: Summary of results. Here n is the number of input objects in dimension d ≥ 2, γ ≥ 2

is the number of maximal layer, w is the output size, k is a fixed parameter, W = j − i + 1

is the width of the query window, ` ≥ 2 is an input parameter, ε > 0 and c > 0 are small

constants.

Problems Preprocessing Space Query

time time

Intersection Decision

Segment, Triangle Th. 1,

and c-gons O(n4/3 polylog(n)) O(n) O(logn) Cor. 5- 8

Points on Maximal Layers

pk on maximal layer:

L1 O(n logd−1 n) O(n logd−2 n) O(1) Th. 8

Lγ , γ = 2,≥ 3 O(n logd+1 n) O(n logd+1 n) O(logd+1 n) Th. 12

Count maximal points:

d = 2, 3 O(n log2 n) O(n log2 n) O(log2 n) Th. 9

d ≥ 4 O(n logd−1 n) O(n logd−2 n) O(log2 n) Th. 9

k-dominated points:

2 ≤ d ≤ 3 O(kn log2 n) O(kn logn) O(log2 n+ kw) Th. 10

d ≥ 4 O(kn logd−1 n) O(kn logd−2 n) O(log2 n+ kw) Th. 10

k-dominant points:

2 ≤ d ≤ 5 O(kn log4 n) O(kn log3 n) O(log4 n+ kw) Th. 11

d ≥ 6 O(kn logd−1 n) O(kn logd−2 n) O(log4 n+ kw) Th. 11

Approximation using Coresets

Decomposition O(n logn) O(n logn) O(fd(ε) logn) Th. 13

`-clustering cost O(n logn) O(n logn) O(`((f2(`)/(cε)) logn) Th. 14

+`(f2(`)/(cε))
2 +W)
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2. Geometric Object Intersections145

In this section, we discuss windowed intersection decision problems on a

given sequence of geometric objects (e.g., line segments, triangles, and constant-

size polygons) within a query interval [i, j]. Input consists of a sequence of n

geometric objects S = (s1, s2, . . . , sn). We will represent the sequence S in an

array A, where A[i] = si, for i = 1, 2, . . . , n. The windowed intersection decision150

problem is ‘Given a pair of indices (i, j), where 1 ≤ i < j ≤ n, report whether

there is any intersection between objects in (si, . . . , sj)’.

2.1. Preliminaries

To solve windowed intersection decision problem of geometric objects given

in Rd, we use the following structures described in [11].155

Corollary 1. [11, Corollary 7.3(i)] Given n points in Rd, we can form O(n)

canonical subsets of total size O(n log n) in O(n log n) time, such that the sub-

set of all points inside any query simplex can be reported as a union of disjoint

canonical subsets Ci with
∑
i |Ci|1−1/d ≤ O(n1−1/d log n) in time O(n1−1/d log n)

with high probability with respect to n.160

Corollary 2. [11, Corollary 7.5] Given n simplices in Rd, there is a data

structure with O(n logd+1 n) preprocessing time and O(n logd n) space, such

that we can find all simplices containing a query point in O(n1−1/d logd n) ex-

pected time; and we can find all simplices contained inside a query simplex in

O(n1−1/d logd n) expected time.165

Corollary 3. [11, Corollary 7.7(i)] Suppose there is a d-dimensional halfspace

range counting data structure for point sets of size at most B with P (B) pre-

processing time, S(B) space, and Q(B) (expected) query time. Then there is a

d-dimensional halfspace range counting data structure for point sets of size at

most n with O(n/B)P (B)+O(n log n) preprocessing time, O(n/B)S(B)+O(n)170

space, and O(n/B)1−1/dQ(B) + O(n/B)1−1/d expected query time, assuming

B < n/ logω(1) n.
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Corollary 4. [11, Corollary 7.8]] There is a d-dimensional halfspace range

counting data structure with O(m2O(log∗ n)) preprocessing time and O((n/m1/d)2O(log∗ n))

expected query time for any given m ∈ [n log n, nd/ logd n].175

2.2. Overview of Our Data Structure

Before we discuss our data structure, we define a valid pair of indices (α, β)

with 1 ≤ α < β ≤ n as follows: For each 1 ≤ α ≤ n, let β be the smallest index

larger than α such that the object A[β] intersects A[α]. If there is no A[β] that

intersects A[α] then there is no valid pair (α, β). See Figure 1 for an illustration.180

1 nα β

Do not intersect A[α]

Intersects A[α]

Figure 1: A valid pair (α, β).

Suppose, there exists a data structure that can find all valid pairs (α, β).

Then we can reduce the windowed intersection decision problem into a range

query problem as follows. For each valid pair (α, β), we store a point (α, β) ∈ R2

using a priority search tree (PST) data structure [12]. A PST takes linear space

to store O(n) points in the plane and it can be built in O(n log n) time. For185

a given query interval [i, j], we perform a range search in PST with the query

rectangle Rq = [i,∞) × (−∞, j]. Note that, there will be an intersecting pair

of objects (A[α], A[β]) in query interval [i, j] if and only if there is a point

(α, β) ∈ Rq. Hence, if the range searching query returns a positive count of

points in Rq, then we report that some objects intersect in the interval [i, j].190

This query can be answered in O(log n) time. Thus we obtain the following

lemma.

Lemma 1. Suppose a sequence of n geometric objects is stored in an array

A[1. . n], where i is the index of the object stored in A[i]. Given all valid pairs

(α, β) for every 1 ≤ α ≤ n in A, we can build a data structure of size O(n) that195

can answer windowed intersection decision queries in O(log n) time.
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Next we show how to find all the valid pairs. Let X be a set of n geometric

objects. We assume that we have a data structure DS(X) that tells us whether

a query object q intersects any member of X. Furthermore, DS(X) takes M(n)

space, P (n) preprocessing time and Q(n) query time, where M(n)/n, P (n)/n200

and Q(n) are all non-decreasing functions. To find all the valid pairs, we main-

tain a tree T defined as follows. The leaves of T store objects A[1], A[2], . . . , A[n]

in order from left to right. For each internal node v of T , let P [v] be the set of

objects at the leaves of the subtree rooted at v. Each node v of T stores all the

objects in its subtree in a secondary data structure DS[P [v]]. Each level i of T205

has 2i nodes. So each node at level i requires M(n/2i) space. The total space

requirement is

O(n) +

logn∑
i=0

2i ·M(n/2i) = O(n) +

logn∑
i=0

n · M(n/2i)

n/2i

≤ O(n) +

logn∑
i=0

n · M(n)

n

[since
M(n/2i)

n/2i
is non-decreasing]

≤ O(n) +

logn∑
i=0

M(n)

= O(M(n) · log(n)).

The total preprocessing time can analogously be computed as O(P (n) log n).

Now for any 1 ≤ α ≤ n, we can find β in time O(Q(n) log n) as follows. To

identify a valid pair (α, β), we first search T to find the leaf v′ containing α.210

It requires O(log n) time using a standard binary search. Then we move up

from v′ towards the root node and at every step perform the following search.

Each time we move from a child node v′ towards its parent node p(v′), we query

the secondary structure stored at the right child of p(v′) to decide whether it

contains an object β that intersects with α. If the search is unsuccessful, we215

move upwards one more level in T , and repeat the process. Otherwise, we find

the node that contains the intersecting object and we continue descending from
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α β

v

Figure 2: Query path from α to β in our multilevel data structure.

p(v′) to locate the leaf node containing β (see Figure 2). In this way, the total

time required to find all valid pairs is O(n · Q(n) log n). From Lemma 1 we

obtain the following result.220

Theorem 1. Given a sequence S of n geometric objects, we can preprocess S

into a data structure of size O(n) in time O(P (n) log n+n ·Q(n) log n) so that it

can answer windowed intersection decision queries in O(log n) time. The space

used during preprocessing is O(M(n) log n).

Next, we discuss the construction of the secondary data structure DS(X)225

for different problems.

Segment Intersections: Given a sequence of n line segments S = (s1, s2, . . . , sn)

in the plane, we want to preprocess S to answer windowed queries for seg-

ment intersections. As we have described previously, our primary data struc-230

ture T stores n input segments at the leaf nodes sorted in order from left to

right. At each node v of T we build a multi-level partition tree that answers

queries of the form ‘Given a query segment sq, does sq intersect any segment of

{sa, sa+1, . . . , sb}, where 1 ≤ a < b ≤ n?’. For a sequence of n line segments in

the plane, we can obtain a data structure with O(n log3 n) preprocessing time235

and O(n log2 n) space such that we can report whether a query line segment sq
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intersects any input segment in O(
√
n log2 n) expected time by applying Corol-

lary 7.3(i) in [11] three times, where d = 2. Finally, by repeated applications of

Corollary 7.3(i) and Corollary 7.8 in [11] with d = 2, we can build a data struc-

ture to answer the above mentioned queries. This requires preprocessing time240

P (n) = O(m ·polylog(n)) and query time Q(n) = O(n/
√
m ·polylog(n)), where

m = n4/3. So by Corollaries 1- 4, the total time required for segment intersection

preprocessing is O(n4/3 ·polylog(n)+n ·n1/3 ·polylog(n)) = O(n4/3 ·polylog(n)).

Corollary 5. Given a sequence S of n segments, we can preprocess S for the

windowed segment intersection decision problem in O(n4/3 · polylog(n)) time245

using O(n4/3 · polylog(n)) space.

Bichromatic Segment Intersections: Let S = (B ∪ R) be a sequence of

bichromatic line segments, where B is a sequence of b pairwise disjoint blue

segments, R is a sequence of r pairwise disjoint red segments, and N = b +

r. Our data structure for segment intersection problem can be extended for250

reporting windowed bichromatic segment intersection problem (intersections of

red segments with blue segments) using the same preprocessing time and space

bound. We assume that every segment in S has a unique timestamp. We build

two sets of the same data structure we presented in this section. Let TB be one

structure where we store b blue segments, make queries with r red segments,255

and find valid pairs (sr′ , sb′), where a red segment sr′ intersects with a blue

segment sb′ . TR is the analogous structure that gives us all valid pairs (sb′ , sr′).

The only minor change occurs when searching the primary data structures with

a query segment. For example, when we query TB with any red segment sr,

first we have to find the leaf node containing a blue segment with the smallest260

timestamp such that t(sb) > t(sr). The rest of the search algorithm remains

unchanged.

Corollary 6. Given a sequence S = (B ∪R) of N bichromatic line segments,

where B is a sequence of b pairwise disjoint blue segments, R is a sequence

of r pairwise disjoint red segments, and N = b + r. We can preprocess S for265
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the windowed bichromatic segment intersection decision problem in O(N4/3 ·
polylog(N)) time using space O(N4/3 · polylog(N)).

Triangle Intersections: The input for this problem is a sequence of n trian-

gles T = (t1, t2, . . . , tn) and we want to preprocess them to answer queries for

windowed triangle intersections. First, we categorize all possible orientations of270

triangle intersections. Figure 3 illustrates three orientations of a query triangle

tq that intersects with a triangle ti. We describe inputs and query types for

each of the cases. Note that, these cases are not mutually exclusive. However,

our data structure returns true if at least one of these intersections is present.

275

Case (a): A sequence of triangles ()t1, t2, . . . , tn) is stored and we ask the query:

Given a point p, is p contained in some triangle ti?

Case (b): A sequence of points (p1, p2, . . . , pn) (one vertex of each triangle in

(t1, t2, . . . , tn)) is stored and we ask the query: Given a triangle t, does t contain

some point pi?280

Case (c): A sequence of triangles (t1, t2, . . . , tn) is stored and we ask the query:

Given a triangle t, does t overlap some triangle ti?

ti

t

t

ti

t

(a) (b) (c)

pip

ti

Figure 3: Three possible orientations of intersections of a query triangle tq (blue) with some

triangle ti (black).

For cases (a) and (c), by repeated applications of Corollary 7.3(i) and Corollary

7.5 in [11] we can build a data structure that can answer such queries with285

preprocessing time O(m · polylog(n)) and query time O(n/
√
m · polylog(n)),

where m = n4/3. For case (b), we build a data structure by applying Corollary
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7.5 and Corollary 7.7(i) in [11], which requires the same preprocessing and query

time as mentioned for the previous two cases. Finally, we put together all cases

in a single data structure DS(T ) that we use as the secondary data structure290

stored at each node of our main search tree.

Corollary 7. Given a sequence T of n triangles, we can preprocess T for the

windowed triangle intersection decision problem in O(n4/3 · polylog(n)) time

using O(n4/3 · polylog(n)) space.

We observe that our data structure for the windowed triangle intersection295

problem can be extended to any convex polygon with c sides, where c is a

constant. Solving the windowed c-gon intersection decision problem will add

some extra levels to our structure, and thus the preprocessing time increaseas

by a polylogarithmic factor. Hence we obtain the following result.

Corollary 8. For some constant c, given a sequence S of n convex c-gons300

(polygons with c sides), we can preprocess S for the windowed c-gon intersection

decision problem in O(n4/3 · polylog(n)) time using O(n4/3 · polylog(n)) space.

3. Points on Maximal Layers

Initially we present results for windowed queries on points on maximal layers

of a given sequence of points in R2. The generalized solutions for all problems305

in Rd, where d ≥ 2, are presented in Section 3.6.

Definition 1. Let P be a set of n points in R2. The first maximal layer L1

of P is defined to be the maximal points under the dominance relation where a

point p is said to be dominated by a point p′ if p[x] ≤ p′[x] and p[y] ≤ p′[y], and

p 6= p′. For γ > 1, the γ-th maximal layer Lγ is the set of maximal points in310

P −⋃γ−1
l=1 Ll [8].

Definition 2. For a point q = (q1, q2) ∈ R2, we define NE(q) to be the set of

points in R2 that lie in the North-East quadrant of q, i.e., NE(q) = {(a, b) ∈
R2 : a > q1 and b > q2} and SW (q) to be the set of points in R2 that lie in the
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South-West quadrant of q, i.e., SW (q) = {(c, d) ∈ R2 : c < q1 and d < q2} (see315

Figure 4).

(c, d)

q

NE(q)

SW (q)

(a, b)

Figure 4: A point (a, b) ∈ NE(q) and a point (c, d) ∈ SW (q).

3.1. Is pk on the Maximal Layer L1?

Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R2. We want to

preprocess P into a data structure such that given a query interval [i, j] and

an integer k with i ≤ k ≤ j we can report whether the point pk is on the320

maximal layer L1 of Pi,j = (pi, pi+1, . . . , pj). We assume that no two points

have the same x-coordinate or the same y-coordinate. Let p0 = (∞,∞) and

pn+1 = (∞,∞) be two new points added to P . Let A[0. . n + 1] be an array,

where A[i] = pi for all 0 ≤ i ≤ n + 1. For any k with 1 ≤ k ≤ n, we define

the following two functions: α(k) = min{i : i > k and pi ∈ NE(pk)} and325

β(k) = max{i : i < k and pi ∈ NE(pk)}

0

pk

β(k) k α(k)

∈ NE(pk) ∈ NE(pk)

6∈ NE(pk) 6∈ NE(pk)

n+1

Figure 5: A[α(k)] and A[β(k)] of a point pk in array A[0. . n+ 1].

A point pk is on the maximal layer L1 of a sequence of points Pi,j =
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(pi, pi+1, . . . , pj) if none of these points dominates pk. We have the following

lemma.

Lemma 2. Suppose 1 ≤ i ≤ k ≤ j ≤ n. The point pk is on the maximal layer330

L1 of Pi,j = (pi, pi+1, . . . , pj) if and only if α(k) > j and β(k) < i.

Suppose that we have a data structure that computes α(k) and β(k) for

each pk ∈ P . Now we augment array A such that every element A[k] stores

two pointers pointing to A[α(k)] and A[β(k)], respectively. This data structure

requires O(n) space. Now according to Lemma 2, we can answer the query335

whether a given point pk is on the maximal layer of Pi,j with i ≤ k ≤ j in O(1)

time by checking A[α(k)] and A[β(k)].

Lemma 3. Suppose a sequence of n points P = (p1, p2, . . . , pn) in R2 is given

and there exists a data structure that computes α(k) and β(k) for each pk ∈
P using S(n) space and T (n) time. Then P can be preprocessed into a data340

structure of size O(n) in O(T (n)) time such that given a query interval [i, j]

and a point pk with i ≤ k ≤ j, we can decide whether pk is on the maximal

layer L1 of Pi,j in O(1) time.

Data structure for computing α and β for points in R2: Given a sequence

of n points P = (p1, p2, . . . , pn) in the plane, we want to build a data structure to345

compute α(k) and β(k) for 1 ≤ k ≤ n. We present the technique for computing

α(k) here (see Algorithm 1). We initialize an empty priority search tree (PST)

T . For 1 ≤ i ≤ n, we query T with q = (−∞, pi,x]× (−∞, pi,y], where pi,x and

pi,y are respectively the x-coordinate and the y-coordinate of point pi. This

yields points that appear before pi in the sequence and are dominated by pi.350

Let this set of points be Si. According to the definition of α, i becomes the α

value for all these points. For each pk ∈ S we set α(k) = i and delete pk from T .

Now we insert pi into T . More specifically, we maintain the following invariant.

• For each k with 1 ≤ k ≤ i: if pk is in T , then α(k) ≥ i. If pk is not in T ,

then α(k) < i and α(k) has been determined.355
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This data structure requires O(n) space and O(n log n) time to set α(k) for all

pk ∈ P , where 1 ≤ k ≤ n. Similarly we can compute β(k) for all pk by reversing

their order of insertion into T .

Algorithm 1: SetAlpha(P )

Input : A sequence of n points P = (p1, p2, . . . , pn) ∈ R2.

1 Initialize an empty PST T .

2 for i = 1 to n do

3 Si = T .Query((−∞, pi,x]× (−∞, pi,y]).

4 foreach pk ∈ Si do

5 Set α(k) = i.

6 T .Delete(pk).

7 T .Insert(pi).

Lemma 4. Given a sequence of n points P = (p1, p2, . . . , pn) in R2, we can360

compute the values of α(k) and β(k) for all pk ∈ P , in O(n log n) total time

using O(n) space.

Data structure for computing α and β for points in Rd: We build a

range tree for n points on their first d− 2 coordinates. At each canonical node

v of the last level of the range tree we add a PST that is built on the last two365

coordinates of the subset of points stored at v. So this structure can be built in

O(n logd−1 n) time using O(n logd−2 n) space. Thus for the general case, where

d ≥ 2, we obtain the following result.

Theorem 2. Given a sequence of n points, we can compute the values of α(k)

and β(k) for k ∈ {1, 2, . . . , n}, in O(n logd−1 n) total time using O(n logd−2 n)370

space.

Remark: Bannister et al. [2] used a dynamic data structure for dominance

queries by Mortensen [13] to compute α and β values for all points in Rd. Our
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data structure for computing all α and β values is faster by a factor of O(log n)

and uses less space by a factor of O(log2 n).375

Finally from Lemmas 3 and 4 we obtain the following theorem for points in R2.

Theorem 3. A sequence of n points P = (p1, p2, . . . , pn) in R2 can be prepro-

cessed into a data structure of size O(n) in O(n log n) time such that given a

query interval [i, j] and a point pk with i ≤ k ≤ j, we can report whether pk is380

on the maximal layer L1 of points Pi,j in O(1) time.

3.2. Count Points on Maximal Layer L1

Given a sequence of n points P = (p1, p2, . . . , pn) in R2, and a query interval

[i, j] with 1 ≤ i ≤ j ≤ n, we want to count the total number of points on the

maximal layer L1 of Pi,j = (pi, pi+1, . . . , pj).385

Following Lemma 2, we transform each point pk = (pk,x, pk,y) ∈ P into a

point p′k = (k, α(k), β(k)) ∈ R3 for 1 ≤ k ≤ n. Now we have a set of n points

in R3. We can compute all α(k) and β(k) in O(n log n) time by Lemma 4. We

build a standard 3-dimensional range tree [14], where the first level of the tree

is based on the time of the points. At the second level of the tree, for each390

canonical node we build a range tree using the second (α(k)) and the third

coordinates (β(k)) of each point p′k. The total space requirement is O(n log2 n)

and this data structure can be built in O(n log2 n) time [14].

We transform a given query interval [i, j] into a query box [i, j]×[j+1,+∞)×
(−∞, i− 1]. The first level of the range tree is queried using interval [i, j]. This395

requires O(log n) query time. For each canonical subset in the second level, we

query using [j+ i,+∞)× (−∞, i− 1]. This step requires O(log n) time for each

canonical node on the search path. Thus, given any query interval q = [i, j] we

can report the total number of maximal points in Pi,j in O(log2 n) time.

Theorem 4. A sequence of n points P = (p1, p2, . . . , pn) in R2 can be pre-400

processed into a data structure of size O(n log2 n) in O(n log2 n) time such that
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given a query interval [i, j] we can report the total number of maximal points of

Pi,j in O(log2 n) time.

3.3. Is pk on Maximal Layer Lγ , where γ = 2 or γ ≥ 3?

Given a sequence of n points P = (p1, p2, . . . , pn) in R2, a query interval405

[i, j] and an integer k with 1 ≤ i ≤ k ≤ j ≤ n, we want to report if point pk is

on maximal layer Lγ , where γ = 2 or γ ≥ 3 of Pi,j = (pi, pi+1, . . . , pj). First we

solve the problem for γ ≥ 3 and then show that the result for γ = 2 follows.

pk

pl

pm

1st layer above pk

2nd layer above pk

Figure 6: Point pk on some maximal layer ≥ 3 iff pl ∈ NE(pk) and pm ∈ NE(pl).

Lemma 5. Recall the definitions of α and β from Section 3.1. Let 1 ≤ i ≤ k ≤
j ≤ n. The point pk is on layer Lγ , where γ ≥ 3 of Pi,j = (pi, pi+1, . . . , pj) if410

and only if at least one of the following is true.

1. There exists some l such that l ≥ i, pl ∈ NE(pk), and α(l) ≤ j
2. There exists some l such that l ≤ j, pl ∈ NE(pk), and β(l) ≥ i.

Proof 1. The ‘if ’ part is obvious from the definitions of α(l) and β(l), and by

Lemma 2. To prove the converse, we assume pk to be a point on some maximal415

layer Lγ , where γ ≥ 3, of points in Pi,j. Then there must exist some l and m

such that i ≤ l ≤ j, i ≤ m ≤ j, pl ∈ NE(pk) and pm ∈ NE(pl) (see Figure 6).

Now, point pm can come at one of two positions with respect to pl.

Case 1: Suppose pm comes after pl, i.e., m > l. Since α(l) ≤ m by the

definition of α(l), we obtain α(l) ≤ m ≤ j.420

Case 2: Suppose pm comes before pl, i.e., m < l. By the similar argument

since β(l) ≥ m by the definition of β(l), we obtain β(l) ≥ m ≥ j. �
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We map each point pl = (pl,x, pl,y) ∈ P , where 1 ≤ l ≤ n, to a point in R4 as

follows. For part (1) of Lemma 5, we define a function f(l) = (pl,x, pl,y, l, α(l)) ∈
R4. We set S = {f(l) : 1 ≤ l ≤ n}. Similarly, for part (2) of Lemma 5, we425

define a function g(l) = (pl,x, pl,y, l, β(l)) ∈ R4. We set T = {g(l) : 1 ≤ l ≤ n}.
For each 1 ≤ l ≤ n, α(l) and β(l) can be computed in O(n log n) time. Now

we have two sets S and T each having n points in R4. We store S and T using

two 4-dimensional range trees. A standard 2-dimensional range tree requires

O(n log n) space and can be built in O(n log n) time. For each additional level430

the required time and space increase by a logarithmic factor. Therefore our 4-

dimensional range tree can be built using O(n log3 n) space in O(n log3 n) time.

Now to answer the query whether some point pk is on layer ≥ 3 in Pi,j , we

define two functions to map our original query (i, j, k) to equivalent queries in

R4 as follows. For 1 ≤ i ≤ k ≤ j ≤ n, let F (i, j, k) be a function such that435

F (i, j, k) = [pk,x,∞)× [pk,y,∞)× [i,∞)× (−∞, j]. Similarly, let G(i, j, k) be a

function such that G(i, j, k) = [pk,x,∞)× [pk,y,∞)× (−∞, j]× [i,∞). It gives

us the following lemma.

Lemma 6.

1. There exists some l such that l ≥ i, pl ∈ NE(pk), and α(l) ≤ j if and440

only if F (i, j, k) ∩ S 6= ∅.
2. There exists some l such that l ≤ j, pl ∈ NE(pk), and β(l) ≥ i if and only

if G(i, j, k) ∩ T 6= ∅.

Combining Lemma 5 and Lemma 6, the query of the form ‘Given 1 ≤ i ≤
k ≤ j ≤ n, decide if pk is on maximal layer γ ≥ 3 of Pi,j ’ becomes an equivalent445

query of the form ‘Given a set of points in R4, count the number of points in the

range of 4-dimensional quadrants’. This new query can be answered by querying

the data structures on the point sets S and T using 4-dimensional quadrants

defined by F (i, j, k) and G(i, j, k), respectively. If at least one of these queries

returns some point (i.e., the range count is non-zero) then pk is on layer γ ≥ 3.450

Each query takes O(log3 n) time. The following theorem summarizes the results.
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Theorem 5. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R2. P

can be preprocessed into a data structure of size O(n log3 n) in O(n log3 n) time

such that given a query interval [i, j] and k, where i ≤ k ≤ j, we can answer

whether pk is on some maximal layer Lγ , where γ ≥ 3, of Pi,j = (pi, pi+1, . . . , pj)455

in O(log3 n) time.

Corollary 9 follows from the results of Theorem 3 and Theorem 5.

Corollary 9. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R2. P

can be preprocessed into a data structure of size O(n log3 n) in O(n log3 n) time

such that given a query interval [i, j] and k, where i ≤ k ≤ j, we can answer460

whether pk is on the second maximal layer L2 of Pi,j = (pi, pi+1, . . . , pj) in

O(log3 n) time.

3.4. Report k-dominated Points

In this section we shift our interest to reporting points that are dominated by

at least a fixed number of points in the query interval. Note that this problem is465

different from reporting the maximal layer that a point is on. More specifically

a point p can be dominated by k points, where k ≥ 1 is an integer, and still

p can be on some maximal layer Lφ, where φ ≤ k + 1. See Figure 7 for an

example.

(a)

pl

(b)

pl

(c)

pl

Figure 7: Suppose k=3, then pl is a k-dominated point in all examples. However, the maximal

layer point pl is on L4 in (a), on L2 in (b), and on L3 in (c).

The problem statement that we investigate here is as follows. Given a se-470

quence of n points P = (p1, p2, . . . , pn) in R2, and a fixed integer k ≥ 1, we
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want to report all points in Pi,j that are dominated by at least k points of Pi,j .

We call these points k-dominated points.

For any l with 1 ≤ l ≤ n, we define the following. Let pl1 , pl2 , . . . , plk be

the first k points that dominate pl, where l < l1 < l2 < . . . < lk. Similarly, let475

pl′k , . . . , pl′2 , pl′1 be the last k points that dominate pl, where l′k < l′k−1 < . . . <

l′1 < l (see Figure 8). Then each interval (l′k−a, la) with 0 ≤ a ≤ k represents k

points that dominate point pl. Here l′0 = l0 = l. There exist at most k+ 1 such

intervals for each point in P . We obtain the following lemma.

Lemma 7. Suppose 1 ≤ i < j ≤ n, and k is a fixed integer. A point pl ∈ Pi,j480

is dominated by at least k points in Pi,j if and only if there exists some a with

0 ≤ a ≤ k, such that i ≤ l′k−a and la ≤ j.

l

ji

1 nl′1l′k l′k−1 · · · lkl1 lk−1

Last k points ∈ NE(pl) First k points ∈ NE(pl)

· · · · · ·

· · ·

and < l and > l

Figure 8: The highlighted interval (l′k−1, l1) satisfies the query interval [i, j] for k-dominated

points.

For each 1 ≤ l ≤ n, we map the point pl to at most k+1 points (l, la, l
′
k−a) ∈

R3, where 0 ≤ a ≤ k. This gives us a set of at most (k + 1)n points in total.

We can find the points pl1 , pl2 , . . . , plk and pl′k , . . . , pl′2 , pl′1 for each pl by485

extending the data structure from Section 3.1 (see Algorithm 1) as follows.

Each point pl now has two additional arrays Bl[1. . k] and Al[1. . k] of size k that

store k points that dominate pl and appear, respectively, before and after time l.

To achieve this, we replace line 6 of Algorithm 1 by lines 9 – 11 in Algorithm 2.

Moreover, we do not delete any points from T (line 7 of Algorithm 1 is omitted).490

Starting with i = 1 we insert point pi to T and for all points pl that are
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dominated by pi we store pi in array Al if it is not full already. Next we repeat

inserting points to T in the reverse order (i.e., going from pn to p1) and store the

first k points that dominate pl in array Bl. This process takes O(nk + n log n)

time and O(nk) space.495

Algorithm 2: SetArrayA(P )

Input : A sequence of n points P = (p1, p2, . . . , pn) ∈ R2.

1 Initialize an empty PST T .

2 for i = 1 to n do

3 Initialize an empty array Ai[1..k].

4 Set SizeA[i] = 0.

5 for i = 1 to n do

6 Si = T .Query((−∞, pi,x]× (−∞, pi,y]).

7 foreach pl ∈ Si do

8 if SizeA[l] < k then

9 Increase SizeA[l] by 1.

10 Al[SizeA].Store(i).

11 T .Insert(pi).

We build a range tree on the first coordinate of the (k+1)n points (l, la, l
′
k−a).

For each canonical node we add a PST that is built on the last two coordinates

of the points stored in that node. This takes O(kn log2 n) time and O(kn log n)

space in total. We map our query interval q = [i, j] to q′ = [i, j] × (−∞, j] ×
[i,+∞). The query takes O(log2 n+kw) time, where w is the output size. If we500

query our data structure with q′, each point pl will be reported at most k + 1

times. To report each point exactly once, we build an array R[1. . n] initially

storing 0 in each R[l], with 1 ≤ l ≤ n. Each time a point pl is reported during

query, we first check the value stored in R[l]. If R[l] contains 0 then pl is seen

for the first time; we report pl and set R[l] to 1. If R[l] contains 1 then pl has505

already been reported before and we do not report it this time. Reset R[1− n]
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to 0 in O(w) time. The entire query takes O(log2 n+ kw) time, where w is the

output size.

Theorem 6. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R2 and

k is a fixed integer. Then P can be preprocessed into a data structure of size510

O(kn log n) in O(kn log2 n) time such that given a query interval [i, j] we can

report all k-dominated points in Pi,j in O(log2 n + kw) time, where w is the

output size.

3.5. Report k-Dominant Points

Let a k-dominant point be a maximal point in a query interval that dominates515

at least k other points in the same interval. In this section we solve the following

problem. Given a sequence of n points P = (p1, p2, . . . , pn) in R2, and a fixed

constant k, we want to report all k-dominant points in Pi,j in the query interval

[i, j]. The preprocessing technique for this problem is similar to that of k-

dominated points. We highlight the key differences here. For any l with 1 ≤ l ≤520

n, let pl1 , pl2 , . . . , plk be the first k points that are dominated by the point pl,

where l < l1 < . . . < lk. Similarly, let pl′k , . . . , pl′2 , pl′1 be the last k points that

are dominated by pl, where l′k < l′k−1 < . . . < l′1 < l (see Figure 9). As shown

before, where each interval (l′k−a, la) with 0 ≤ a ≤ k represents k points that

are dominated by point pl and l′0 = l0 = l. Now we obtain the following lemma.525

Lemma 8. Suppose 1 ≤ i < j ≤ n, and k is a fixed integer. A point pl ∈ Pi,j
dominates at least k points in Pi,j if and only if there exists some a with 0 ≤
a ≤ k, such that i ≤ l ≤ j, i ≤ l′k−a and la ≤ j.

Recall that α(k) (similarly, β(k)) is the point with the smallest index greater

than (similarly, the highest index smaller than) pk that dominates pk. We use530

the mapping technique as follows. For each 1 ≤ l ≤ n, we map point pl to at

most k+ 1 points (l, α(l), β(l), la, l
′
k−a) ∈ R5, where 0 ≤ a ≤ k. This again gives

us a set of at most (k + 1)n points. From Lemma 2 and Lemma 8 we obtain

the following.
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l

ji

β(l)

∈ NE(pl)

α(l)

∈ NE(pl)

1 nl′1l′k l′k−1 · · · lkl1 lk−1

Last K points ∈ SW (pl) First K points ∈ SW (pl)

· · · · · ·

· · ·

and < l and > l

Figure 9: Proof of Lemma 9. For an example, the highlighted interval (l′k−1, l1) satisfies the

query interval [i, j].

Lemma 9. Suppose 1 ≤ i ≤ l ≤ j ≤ n and k is a fixed integer. The point pl535

is a maximal point in Pi,j that dominates at least k points in Pi,j if and only if

there are at least k points (l, α(l), β(l), la, l
′
k−a) ∈ R5, α(l) > j and β(l) < i.

We modify the query q in line 6 of Algorithm 2 by q′ = [pi,x,+∞)×[pi,y,+∞)

to find the k points that are dominated by each point pi. As before, this process

takes O(nk + n log n) time and O(nk) space. We build a 3-dimensional range540

tree for the first three coordinates of the (k + 1)n points (l, α(l), β(l), la, l
′
k−a).

At the last level, for each canonical node we add a PST that is built on the last

two coordinates of the points stored in that node. It takes O(kn log4 n) time

and O(kn log3 n) space in total. We next map our query interval q = [i, j] to

q′ = [i, j] × [j + 1,∞) × (−∞, i − 1] × (−∞, j] × [i,∞)). To report each point545

exactly once we use the technique that we applied in Section 3.4. Each query

takes O(log4 n+ kw) time, where w is the output size.

Theorem 7. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R2 and

k is a fixed integer. Then P can be preprocessed into a data structure of size

O(kn log3 n) in O(kn log4 n) time such that given a query interval [i, j] we can550

report all k-dominant points in Pi,j in O(log4 n + kw) time, where w is the

output size.
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3.6. Generalization to Higher Dimensions

In this section, we show how to generalize our results to any dimension d ≥ 2

to solve all window query problems for points on maximal layers.555

Definition 3. The maximal layer L1 of a set of points in Rd is defined to be

the maximal points in the set under the dominance relation where a point p is

said to be dominated by a point p′ if p[k] ≤ p′[k] for 1 ≤ k ≤ d and p 6= p′.

Recall that we presented a data structure for computing alpha- and beta-values

of for points in Rd in Section 3.1. Note that in all problems presented in this560

section, except for the problem that reports whether point pk is on some maximal

layer L3 or more, we follow a mapping technique where a point pk in R2 is

mapped to a point in higher dimensions using the timestamp k of pk, α(k),

β(k) and possibly other points in R2 that satisfy some query property. So the

main data structures to answer all these problems remain the same in higher565

dimensions as well. However, the time and space required to preprocess α(k)

and β(k) for all pk ∈ Rd dominate the total preprocessing time and space

requirement for these data structures. So using Theorem 2 we directly obtain

the following results for the general case (for a fixed d ≥ 2).

Theorem 8. A sequence of n points P = (p1, p2, . . . , pn) in Rd, where d ≥ 3,570

can be preprocessed into a data structure of size O(n logd−2 n) in time O(n logd−1 n)

such that given a query interval [i, j] and a point pk with i ≤ k ≤ j, we can

report whether pk is on the maximal layer L1 of points Pi,j in time O(1).

Theorem 9. A sequence of n points P = (p1, p2, . . . , pn) in Rd, where d ≥ 4,

can be preprocessed into a data structure of size O(n logd−2 n) in time O(n logd−1 n)575

such that given a query interval [i, j] we can report the total number of max-

imal points of Pi,j in time O(log2 n). For 2 ≤ d ≤ 3, O(n log2 n) space and

O(n log2 n) time are required for preprocessing.

Theorem 10. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in Rd and

k is a fixed integer. When d > 3, P can be preprocessed into a data structure580
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of size O(kn logd−2 n) in O(kn logd−1 n) time such that given a query interval

[i, j] we can report all k-dominated points in Pi,j in O(log2 n+ kw) time, where

w is the output size. For 2 ≤ d ≤ 3, O(kn log n) space and O(kn log2 n) time

are required for preprocessing.

Theorem 11. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in Rd and585

k is a fixed integer. When d > 5, P can be preprocessed into a data structure of

size O(kn logd−2 n) in O(n logd−1 n) time such that given a query interval [i, j]

we can report all maximal points of Pi,j that dominate at least k points in Pi,j

in O(log4 n+kw) time, where w is the output size. For 2 ≤ d ≤ 5, O(kn log3 n)

space and O(kn log4 n) time are required for preprocessing.590

Now we discuss how to report whether point pk is on some maximal layer L3

or more in Rd. We modify the functions f(l) and g(l) to map each point pl =

(pl,x1, pl,x2, · · · , pl,xd) ∈ P , where 1 ≤ l ≤ n, to a point in Rd+2 as follows. We

redefine the functions as f(l) = (pl,x1, pl,x2, · · · , pl,xd, l, l′) ∈ Rd+2 and g(l) =

(pl,x1, pl,x2, · · · , pl,xd, l, l′′) ∈ Rd+2. Our range tree data structures that store595

these sets of points now have d+2 dimensions. To query accordingly, we redefine

our query functions as F (i, j, k) = [pk,x1,∞) × [pk,x2,∞) × · · · × [pk,xd,∞) ×
[i,∞) × (−∞, j], and G(i, j, k) = [pk,x1,∞) × [pk,x2,∞) × · · · × [pk,xd,∞) ×
(−∞, j]× [i,∞). The corresponding result is the following.

Theorem 12. Suppose P = (p1, p2, · · · , pn) is a sequence of n points in Rd,600

where d ≥ 3. Then P can be preprocessed into a data structure of size O(n logd+1 n)

in O(n logd+1 n) time such that given a query interval [i, j] and an integer k

with i ≤ k ≤ j, we can decide whether pk is on some maximal layer Lγ , where

γ = 2,≥ 3, of the point set Pi,j = (pi, pi+1, · · · , pj) in O(logd+1 n) time.

4. Window-aggregate Queries using Coresets605

Let µ be a fixed aggregate function that takes a set of points P in Rd and

assigns a real number µ(P ) ≥ 0 to it. Examples of µ(P ) can be the diameter,

width, radius of the minimum enclosing ball, volume of the smallest bounding
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box, and the cost of clustering (e.g., k-center, k-rectilinear) of points in P . In

this section we present results for answering window-aggregate queries for some610

standard geometric problems on a sequence P = (p1, p2, . . . , pn) of n points in

Rd. More specifically, given a query window [i, j] with 1 ≤ i < j ≤ n we want

to find µ(Pi,j).

Although the examples of function µ(·) mentioned above are all well-studied

geometric problems in general, exact solutions to these problems are expensive615

even for lower dimensions. See [15] for known exact and approximate results of

these problems. As a result, faster techniques are explored to find approximate

solutions to these problems that are (1 + ε) factor within the optimal solutions,

where ε > 0 is an input parameter. Several studies [16, 9, 17, 15] showed that

many of these geometric problems can be linearly approximated by computing620

and using constant-size coresets (see Definition 4).

Definition 4. Let P be a set of points in Rd and let ε > 0 be a real number.

A subset P ′ ⊆ P is called an ε-coreset of P with respect to µ if µ(P ′) ≥ (1− ε) ·
µ(P ) [9].

More specifically, Agarwal et al. [9] showed that coresets for some of these625

problems can be computed based on the coresets of the extent measure of the

point set. The extent of a point set P along a given direction is the width of

the minimum slab that is orthogonal to the direction and that encloses P .

Definition 5. The extent measure of a point set P with respect to a point

x ∈ Rd is defined as w(P, x) = maxp,q∈P (p− q) · x.630

The coreset based on the extent measure is the subset S of P such that the

extent of S is at least (1 − ε) times the extent of P along every direction [9].

These coresets resemble the approximate convex hulls of the point set. As a

result, problems that depend on the extent measure or the convex hulls such

as width, minimum-radius enclosing circle and minimum-volume bounding box635

etc. can be approximated using these coresets. Let fd(ε) be the smallest integer

such that for any set P of points in Rd and any real number ε > 0 an ε-coreset
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C(P, ε) has size at most fd(ε) (note that the size of the coreset depends on d

but not on the size of P ). We restate Lemma 23.3 from [18] here.

Lemma 10. [18, Lemma 23.3]) Consider P ′1 ⊆ P1 ⊆ Rd and P ′2 ⊆ P2 ⊆ Rd,640

where P ′1 (respectively P ′2) is an ε-coreset of P1 (respectively P2). Then P ′1 ∪P ′2
is an ε-coreset for P1 ∪ P2.

Following this lemma, all coresets that can be computed based on the extent

measures of a point set are called decomposable coresets. We also define the

decomposable coreset function as follows.645

Definition 6. The function C is a decomposable coreset function if the fol-

lowing holds for any finite set P of points in Rd, any ε > 0, and any partition

of P into two sets P1 and P2: Given only the coresets C(P1, ε) and C(P2, ε) of

P1 and P2, respectively, we can compute the ε-coreset C(P, ε) of P in O(fd(ε))

time [19].650

Some approximation results using coresets are also available where the core-

sets of the points do not depend on the coresets of the extent or the convex

hull of the points, e.g., `-center clustering problem, where ` ≥ 2 is an input

parameter [16].

In the following sections we present techniques that, given a query interval655

[i, j], with 1 ≤ i < j ≤ n, can efficiently find an approximation for µ(Pi,j) using

coresets.

4.1. Geometric Problems using Decomposable Coresets

In this section we want to compute µ(Pi,j) for a query interval [i, j] using

decomposable coresets that are available for computing µ. We follow a similar660

technique used by Nekrich and Smid [19] for computing range-aggregate queries.

We divide the sequence of points in P in Rd into a sequence of n/fd(ε) blocks

S = (S1, S2, . . . Sn/fd(ε)) such that each block Sk contains fd(ε) points of P , and

the overall sequence of points in blocks in S from left to right gives the exact

sequence of P . We build a range tree T on points in blocks of S from left to665
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right such that the k-th leaf of T contains the fd(ε) points belonging to block

Sk, for 1 ≤ k ≤ n/fd(ε). Each leaf node contains the coreset of fd(ε) points. As

we move to the upper levels of T , coresets of the child nodes can be combined to

compute the coreset of size O(log(n/fd(ε)) · fd(ε)) for each canonical node v of

T . However, we can reduce the size of each coreset to O(fd(ε)) as follows. Recall670

that these coresets are based on the extent measures of some subsets of points.

We assume that there is a set of O(1/εd−1) directions in Rd such that the angle

between any two directions is O(ε). So the coreset stored at each canonical node

contains the farthest points in every O(1/εd−1) directions. Then the size of the

coreset stored at each canonical node is fd(ε) = O(1/εd−1). When d = 2, we675

obtain f2(ε) = 2π/ε. During a query, the coreset of each canonical node can be

computed by comparing the O(fd(ε)) points of its child nodes in O(fd(ε)) time.

The total number of canonical nodes in T is O(n/fd(ε)). Therefore, the total

space required for T is O(n/fd(ε) · log(n/fd(ε)) · fd(ε)) = O(n log n).

For each query q = [i, j], let the leaf nodes Sx and Sy of T contain the points680

pi and pj , respectively. Each of Sx and Sy contains at most fd(ε) points. Then

coresets for the rest of the points in pi+1, . . . , pj−1 can be found by combining

the coresets of at most O(log(n/fd(ε)) canonical nodes of T . Therefore, the

coreset C(Pi,j , ε) of size fd(ε) can be computed in O(log(n/fd(ε)) · fd(ε)) =

O(fd(ε) log n) time.685

Theorem 13. Let P = (p1, p2, . . . , pn) be a sequence of n points in Rd, where

d is a fixed dimension. P can be preprocessed into a data structure of size

O(n log n) such that for a query interval [i, j] with 1 ≤ i < j ≤ n, we can com-

pute a (1 + ε)-coreset of size fd(ε) in time O(fd(ε) log n) for geometric problems

that admit some decomposable coresets.690

Applications: Theorem 13 can be used to compute µ(Pi,j) for any queried se-

quence of points if µ(·) admits a decomposable coreset of size fd(ε). In partic-

ular, suppose we have a function µ that can be computed in O(nλ) time and µ

admits a coreset C(P, ε) of size fd(ε) such that µ(P ′) ≥ (1 − ε)µ(P ). Then by

Theorem 13 we compute C(Pi,j , ε) of size fd(ε) and run an exact algorithm for695
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computing µ(C(Pi,j , ε)). For example, since the exact diameter of a point set

can be computed in quadratic time (i.e., λ = 2) in any fixed dimension, given a

query interval [i, j] a (1 + ε)-approximation to the diameter problem of Pi,j can

be computed in O((f2(ε)2 + f − 2(ε) log n) time. Table 3 shows running times

for computing (1 + ε)-approximations to µ(·) for some well-known geometric700

problems, which we briefly discuss below.

Diameter : the maximum distance over all pairs of points in P . In d = 2 and

3, an O(n log n) time algorithm is available (randomized for d = 3 [20]). For

d > 4, it can be trivially solved in quadratic time. Width: the minimum width

over all slabs that enclose P , where a slab of width w refers to a region between705

two parallel hyperplanes of distance w. In d = 3, an O(n2) time algorithm is

available [21]. Smallest enclosing disc: the disc with the minimum radius that

contains all the points in P . An expected linear time algorithm is available [22].

Smallest enclosing cylinder : the minimum radius over all cylinders that enclose

P , where a cylinder of radius z refers to the region of all points of distance z710

from a line. In d = 3, for a small constant δ > 0, a O(n3+δ) time algorithm is

known [23]; Minimum-width annulus: the minimum width over any all annuli

that enclose P , where an annulus (also called a spherical shell) of width |z−y| is
a region between two concentric spheres of radii y and z. For d = 2, O(n3/2+δ)

time randomized algorithms are available [24].715

4.2. `-center Clustering using Coresets

Let P be a sequence of n points (p1, p2, . . . , pn) in R2. The geometric `-

center clustering problem partitions P into ` subsets such that a certain cost

function of the clustering is minimized. We define windowed geometric `-center

clustering problem as follows. Given a query interval q = [i, j], with 1 ≤ i <720

j ≤ n, and an integer ` ≥ 2, report the cost of the `-clustering of the points in

Pi,j = (pi, . . . , pj). Suppose C = {c1, c2, . . . , c`} is the `-center clustering of Pi,j .

We consider the following cost functions Φ(C) of an `-center clustering; (i) the

maximum radius of the minimum enclosing balls of the clusters: min Φmax(C) =

maxc`∈C radius(c`), and (ii) the minimum summation of the radius of all balls725
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Table 3: Window-aggregate query time for (1+ε)-approximation for some geometric problems.

Here n is the total number of input points, fd(ε) is the size of the coreset of the queried points

in dimension d ≥ 2, and δ > 0 is a small constant.

Problems Query time

Diameter O(fd(ε)
2 + fd(ε) log n)

Width (in R3) O(f3(ε)2 + f3(ε) log n)

Volume of smallest bounding box (in R3) O(f3(ε)3 + f3(ε) log n)

Smallest enclosing disc O(fd(ε) log n)

Smallest enclosing cylinder (in R3) O(f3(ε)3+δ + f3(ε) log n)

Minimum-width annulus (in R2) O(f2(ε)3/2+δ + f2(ε) log n)

of the clusters: min Φsum(C) =
∑
c`∈C radius(c`).

Abrahamsen et al. [16] presented a coreset-based algorithm that computes

a (1 + ε)-approximation to the range-clustering query for `-center clustering by

using an ε-coreset of the input points. To be more specific, given a set P of n

points in Rd, for any query range Q, a fixed integer ` ≥ 2 and a parameter ε > 0,730

they report an ε-coreset P ′ of P ∩ Q. Then any standard clustering algorithm

can generate the cost of an `-clustering C for the points in P ∩Q using points

from P ′ such that Φ(C) ≤ (1 + ε) ·Φ(Copt), where Φ is the cost of the clustering

and Copt is an optimal clustering for P ∩ Q. For the sake of completeness, we

first briefly state their algorithm that returns an ε-coreset P ′ of PQ = P ∩Q [16]735

of size O(`(f(`)/(cε))d) and then we show how this data structure can be used

to compute coresets for `-center clustering in the window query setting.

Algorithm A from [16] : Build a compressed quad-tree TP on the point set

P . Given a query rectangle Q, search TP to find the set of canonical squares B

that covers PQ. All the larger squares in B are refined into a total of at least740

`22d smaller squares. Let LB be the size of the largest square after the refine-

ment; LB is a lower bound on the optimal value of the `-clustering of PQ. Set

a parameter r = ε · LB. Repeatedly refine B until the size of each square is at
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most r/
√
d. Let S be the set of all smaller squares after the second refinement

step. For each square S ∈ S, pick a point in PQ ∩ S. The collection of these745

points is the coreset P ′ of PQ.

We restate Lemmas 5 and 6 of Abrahamsen et al. [16] in terms of d = 2.

Lemma 11. [16, Lemma 5] The value LB computed by Algorithm A is a correct

lower bound on Opt`(PQ), and the set RQ is a weak r-packing for r = ε·LB/f2(`)750

of size O(`(f2(`)/(cε))2).

Lemma 12. [16, Lemma 6] Algorithm A runs in O(`(f2(`)/(cε))2+`((f2(`)/(cε)) log n))

time.

Window query data structure: Recall that our input is a sequence P = (p1, p2, . . . , pn)

of n points in R2. We build a range tree T on the points of P from left to right755

according to their index in the sequence. Each of the canonical nodes v of T

covers a subsequence of the points Pq,r = (pq, pq+1, . . . , pr), with 1 ≤ q < r ≤ n,

in the subtree rooted at v. Algorithm A for computing coresets from a quad

tree can be applied to the clustering problem in the window setting as follows.

At each canonical node v of T we store the quad tree that covers Pq,r, the760

points stored in the subtree rooted at v. Given a query interval [i, j] we can find

O(log n) canonical nodes containing O(log n) quad trees that cover the queried

subsequence of points Pi,j . If these O(log n) quad trees can quickly be combined

into a single quadtree such that it covers all points in Pi,j , then a single coreset

of size O(`(f2(`)/(cε))2) for Pi,j can be computed according to Algorithm A. We765

apply the technique of Bannister et al. [2] to construct a compressed quad-tree

for the queried subset of points in time linear in the width of the query window

W = j − i+ 1. In each of the canonical nodes v of T , we additionally store two

structures; (i) the Morton-order (or the Z-order) and (ii) a skip-quadtree over

the points in the subtree of v. The Morton-order is a mapping of the locations770

of a multidimensional point set to a linear list of numbers [25]. A skip-quadtree

is a linear-size variant of the compressed quadtree that is built on a structure

similar to the skip lists [26].
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During any query q = [i, j], we find two overlapping canonical subsets each

of width less than 2W and merge the Z-orders stored in these subsets into one775

list in O(W) time, where W = j − i + 1 (by Lemma 13 in [2]). According to

Chan [27], a compressed quad tree can be computed from the final Z-order in

O(W) time. Now we apply Algorithm A to compute a coreset for points in Pi,j

for `-center clustering. Now Lemmas 11 and 12 yield the following result.

Theorem 14. Let P be a sequence of n points in R2. Then P can be prepro-780

cessed into a data structure of size O(n log n) such that given a query window

[i, j] and two parameters ` ≥ 2 and ε > 0, a coreset of size O(`(f2(`)/(cε))2) for

the `-center clustering can be computed in O(`((f2(`)/(cε)) log n)+`(f2(`)/(cε))2+

W) time, where W is the width of the query window and c is a positive constant.

Applications: Given a query window of width W = j− i+1, with 1 ≤ i < j ≤ n,785

we can compute a (1 + ε)-approximation to the cost of the `-center clustering

of points in Pi,j within the following bounds (by Corollary 8 in [16]).

• Euclidean `-center clustering with ` = 2: the cost is measured by the

maximum Euclidean diameter of the cluster. Queries can be answered in

O((1/ε) log n+ (1/ε2) log2(1/ε) + W) expected time.790

• Rectilinear `-center clustering with ` = 2, 3: the cost is measured by half

of the maximum side length of a minimum enclosing axis-aligned cube of

the cluster (in L∞-metric). Queries can be answered in O((1/ε) log n +

1/ε2 + W) time.

• Rectilinear `-center clustering with ` = 4, 5: queries can be answered in795

O((1/ε) log n+ (1/ε2) polylog(1/ε) + W) time.

5. Conclusion

In this paper, we present data structures to solve different types of win-

dow queries using geometric objects. Our window data structures can answer

windowed intersection decision queries for line segments, triangles and convex800
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c-gons in plane. We also present solutions for windowed queries for counting

maximal points, and reporting whether a given point is on the maximal layers

Lγ (γ = 1, 2,≥ 3), all k-dominated points and all k-dominant points in Rd,

where d ≥ 2. Finally we show how to approximate window queries by comput-

ing (1 + ε)-approximations to various geometric problems such as the diameter,805

width, volume of the smallest bounding box, radius of the smallest enclosing

disc or cylinder, minimum-width annulus and `-center clustering (` ≥ 2) using

coresets.

Remark: The query time of the windowed intersection decision problem can

be improved so that given a query interval [i, j], with 1 ≤ i ≤ j ≤ n, a data810

structure of size O(n) can answer a query in O(1) time as follows. Let B be an

array of size n. For each B[α], with 1 ≤ α ≤ n, we store the minimum index

y such that any two objects intersect within the time interval [α, y]. Note that

during the preprocessing stage we find n valid pairs (α, β) such that A[β] is the

first object that intersects A[α] and β > α. We store the set U of these n points815

(α, β) in an orthogonal range successor data structure of size n + o(n) such

that for a query region Q = [α,+∞) × [α,+∞) it reports the point p = (x, y)

such that p ∈ U ∩ Q and y is minimum β value among all points in U ∩ Q in

O(log n) time [28]. We set B[α] = y. For all α = 1, . . . , n, we can find B[α] in

O(n log n) time which is upperbounded by the original preprocessing time (see,820

for example, Corollary 5). For a given query interval q = [i, j], if j ≥ B[i] we

report that some objects intersect in q, otherwise all objects in q are disjoint.

The improved result is summarized in the following theorem.

Theorem 15. Given a sequence S of n geometric objects, we can preprocess S

into a data structure of size O(n) in time O(P (n) log n+ n ·Q(n) log n) so that825

it can answer windowed intersection decision queries in O(1) time. The space

used during preprocessing is O(M(n) log n).
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