Distance-preserving approximations of
polygonal paths

Joachim Gudmundsson? Giri Narasimhan? Michiel Smid ¢!

& National ICT Australia Ltd, Australia.
Email: joachim.gudmundsson@nicta.com.au

bSchool of Computer Science, Florida International University, Miami, FL 33199,
USA. Email: giri@cs.fiu.edu

¢School of Computer Science, Carleton University, Ottawa, Ontario, Canada K15
5B6. Email: michiel@scs.carleton.ca

2

Abstract

Given a polygonal path P with vertices pi,pa,...,pn € R% and a real number
t > 1, a path Q = (pi,, Piy, - - -, Pi),) is a t-distance-preserving approximation of P if
1 =11 <ip <...< 1 =n and each straight-line edge (pi].,pin) of Q approximates
the distance between p;; and p;;,, along the path P within a factor of ¢. We present
exact and approximation algorithms that compute such a path @ that minimizes k
(when given ¢) or t (when given k). We also present some experimental results.

1 Introduction

Let P be a polygonal path through the sequence of points pi, ps, ..., pn € R%.
We consider the problem of approximating P by a “simpler” polygonal path
@. Imai and Iri [14-16] introduced two different versions of this problem. In
the first one, we are given an integer k£ and want to compute a polygonal path
() that has k vertices and approximates P in the best possible way according
to some measure that compares P and (). In the second version, we are given
a tolerance € > 0 and want to compute a polygonal path () that approximates
P within € and has the fewest vertices. Both versions have been considered
for different measures that are based on variations of the notion of minimum
distance between P and (). The problem of computing a simplification of a

L This author was supported by NSERC.
2 NICTA is funded through the Australian Government’s Backing Australia’s Abil-
ity initiative, in part through the Australian Research Council.

Preprint submitted to Elsevier Science 8 May 2006

given polygonal path has been studied extensively in two and three dimen-
sions. Imai and Iri [14-16] formulated the problem as a graph problem. They
constructed an unweighted directed acyclic graph and then used breadth-first
search to compute a shortest path in this graph. The same approach has been
used by most of the algorithms devoted to this problem [2,4,6,7], including
ours. A widely used heuristic for path-simplification is the Douglas-Peucker
algorithm [10]. If the path is given in the plane then it can be implemented to
run in O(nlog*n) time [13].

Numerous different criteria have been proposed for simplifying polygonal paths.
In [2,8,14,16,17] the so-called tolerance zone criterion was used. Other mea-
surements are the infinite beam criterion [7,11,18], the uniform measure crite-
rion [1,12] and the area preserving criterion [4].

These problems have many applications in map simplification. In this paper,
we consider distance-preserving approximations of polygonal paths. Distance-
preserving simplifications are particularly meaningful for a path representing
a meandering river or a winding road; the approximations simplify such paths
without substantially distorting the length and distance information. Clearly
there is a trade-off between how simple @) is made and how closely distances
in @) reflect those in P. We now define our novel concept more precisely.

We denote the Euclidean distance between any two points p and ¢ in R? by
Ipg|. For any two vertices p; and p; of P, let (p;,p;) denote the Euclidean
distance between p; and p; along P, i.c., 3(ps, p;) = S0=; [pepes-

Let t > 1 be a real number. We say that a path Q = (pi,, Py, --.,Di,) IS &
t-distance-preserving approzimation of P if

(1) 1=1d1 <ig<...<ip=nmn,and
(2) 0(pi;, pijyr) < tpi,piy, | for all j with 1 < j < k.

Observe that, by the triangle inequality, we have |p;pi,.,| < 0(pi;,Pi;s,)-
Therefore, the straight-line edge (p;;, ps,,,) approximates the distance between
pi; and p;,,, along the path P within a factor of £. The value of ¢ is known as
the dilation of the path.

The following two problems will be considered in this paper.

Minimum Vertex Path Simplification (MVPS)

Given a polygonal path P with n vertices and a real number ¢ > 1, compute
a t-distance-preserving approximation of P having the minimum number of
vertices.

Minimum Dilation Path Simplification (MDPS)

Given a polygonal path P with n vertices and an integer k with 2 < k < n,
compute the minimum value of ¢ for which a t-distance-preserving approxima-
tion of P having at most k vertices exists.

This paper is organized as follows. We start in Section 2 by giving simple
algorithms that solve MVPS and MDPS in O(n?) and O(n?logn) time, re-
spectively. In the rest of the paper, we consider heuristics for both problems.

In Section 3, we introduce a heuristic algorithm for MVPS that uses Callahan
and Kosaraju’s well-separated pair decomposition [5]. We use this decompo-
sition to define a directed graph having O(n?) edges that can be represented
implicitly in O(n) space. This graph has the property that a simple short-
est path computation (implemented using breadth-first search) gives an “ap-
proximation” to MVPS. We show how to perform the breadth-first search
in the graph in linear time without explicitly constructing the graph. This
technique has later been used for other applications, see Benkert et al. [3].
The main result in Section 3 is the following. Given real numbers ¢ > 1 and
0 < e < 1/3, let k be the minimum number of vertices on any t-distance-
preserving approximation of P. In O(nlogn+ (t/€)n) time, we can compute a
((1+€)t)-distance-preserving approximation @) of P, having at most x vertices.
In other words, our heuristic may result in an approximation () of P that is
distance-preserving for a slightly larger value of ¢ than desired. If, however,
d(p,q)/|pg| < tor d(p,q)/|lpgl > (1 + €)t for all distinct vertices p and ¢ of
P, then @ is a t-distance-preserving approximation of P having x vertices. In
other words, if no value d(p, q)/|pq| is too close to ¢, then our heuristic solves
MVPS exactly. Figure 1 illustrates two t-distance-preserving approximations,
using ¢t = 1.05 and t = 1.2, of an input path containing 430 points.

Note that the running times are not dependent on the dimension of the Eu-
clidean space (As long as the distance between two points can be calculated
in constant time the running times are as stated above).

In Section 4, we give an approximation algorithm for MDPS. That is, we use
the result of Section 3 and the well-separated pair decomposition to design a
simple binary search algorithm that computes, in O((t*/€)nlogn) time, a real
number ¢ such that t < t* < (1+¢€)t, where ¢t* is the exact solution for MDPS.

In Section 5, we present some experimental results.

Fig. 1. The topmost figure is the original path with 430 points, in the middle and
at the bottom we have two simplifications containing 126 and 22 points obtained
from the heuristic using € = 0.05, and ¢ = 1.05 and t = 1.2, respectively.

2 Simple exact algorithms

Consider again the polygonal path P = (p1,p2,...,pn), and let t > 1 be a
real number. For any two indices ¢ and j with 1 <14 < j < n, we say that the
ordered pair (p;, p;) is t-distance-preserving if d(p;, p;) < t|pip;l.

Consider the directed graph G, with vertex set {p1, pa, ..., p,} and edge set the
set of all t-distance-preserving pairs of vertices. It is clear that any t-distance-
preserving approximation of P having k vertices corresponds to a path in G
from p; to p, having k — 1 edges, and vice versa. (Observe that (p;, pi+1) is
an edge in G; for each ¢ with 1 < ¢ < n. Therefore, there exists a path in G,
from p; to p,.) It follows that MVPS can be solved by constructing the graph
G and computing a shortest path from p; to p,. The latter can be done by
performing a breadth-first search in G; using p; as the source vertex. Hence,
MVPS can be solved in a time that is proportional to the sum of the number
of vertices and edges in G;. Since the latter is O(n?), we obtain a time bound

of O(n?).

Theorem 1 Given a polygonal path P in R with n vertices and a real number
t > 1, at-distance-preserving approzimation of P having the minimum number
of vertices can be computed in O(n?) time.

We now show that Theorem 1 can be used to solve MDPS. Consider again the
graph G, defined above. Let x; be the minimum number of vertices on any
t-distance-preserving approximation of P. If ¢ and ¢’ are real numbers with
t' >t >1, then ky < K, because Gy is a subgraph of Gy. MDPS asks for the

smallest real number ¢ > 1 such that x; < k. We denote this value of ¢ by t*.

For any two indices i and j with 1 <i < j <n, let ¢}, := 6(ps, p;)/|pip;|- The
family (Gi);>1 consists of the (g) graphs Gy witht € C:={t;; : 1 <i < j <
n}. Moreover, t* € C. Therefore, if we sort the elements of C' and perform a

binary search in the sorted set {r; : t € C'}, we obtain a solution for MDPS.
Using Theorem 1, it follows that the running time is O(n?logn).

Theorem 2 Given a polygonal path P in RY with n vertices and an inte-
ger k with 2 < k < n, the minimum value of t for which a t-distance-
preserving approximation of P having at most k vertices exists can be computed
in O(n?*logn) time.

3 A heuristic based on well-separated pairs

In this section, we introduce a heuristic approach for solving MVPS that
uses the well-separated pair decomposition of Callahan and Kosaraju [5]. We
briefly recall this decomposition in Section 3.1. In this paper, we only need
this decomposition for one-dimensional point sets. Therefore, in Section 3.2,
we give a simple algorithm that computes this decomposition. In Section 3.3,
we describe the idea of our heuristic algorithm, analyze its output, and give a
condition under which it solves MVPS exactly. In Section 3.4, we show how
the heuristic can be implemented such that it runs in O(nlogn) time.

3.1 Well-separated pairs

We describe the notion of well-separated pairs for point sets in d-dimensional
space, where d > 1 is a constant.

Definition 1 Let s > 0 be a real number, and let A and B be two finite sets
of points in RY. We say that A and B are well-separated with respect to s, if
there are two disjoint balls C'y and Cpg, having the same radius, such that C
contains A, Cpg contains B, and the distance between C'y and Cpg is at least
equal to s times the radius of C4.

We will refer to s as the separation ratio. The following lemma follows easily
from Definition 1.

Lemma 1 Let A and B be two sets of points that are well-separated with
respect to s, let x and x' be points of A, and let y and y' be points of B. Then

(1) |za'| < (2/s)|2"y|, and

(2) |oy'| < (1 +4/s)|yl.

Definition 2 ([5]) Let S be a set of points in R, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S (with respect to
s) is a sequence {A;, Bi}, 1 < i <'m, of pairs of non-empty subsets of S, such
that

(1) Ai,NnB; =0 foralli=1,2,...,m,

(2) for each unordered pair {p,q} of distinct points of S, there is exactly one
pair {A;, B;} in the sequence, such that
(a) p€ A; and q € B;, or
(b) p € B; and q € A;,

(3) A; and B; are well-separated with respect to s, for alli=1,2,... m.

The integer m is called the size of the WSPD.

Callahan and Kosaraju showed that a WSPD of size m = O(n) can be com-
puted in O(nlogn) time. Their algorithm uses a binary tree T, called the fair
split tree. We briefly describe the main ideas behind their work because they
are useful when we describe our results. They start by computing the bound-
ing box of S, which is successively split by (d — 1)-dimensional hyperplanes,
each of which is orthogonal to one of the axes. If a box is split, then each of the
two resulting boxes contains at least one point of S. If a box contains exactly
one point, the box is not split any further. The fair split tree T stores the
points of S at its leaves; one leaf per point. Each node u stores the bounding
box of all points in its subtree, and is associated with a subset of S, denoted

by S,.

Callahan and Kosaraju showed that the fair split tree 7' can be computed in
O(nlogn) time, and that, given T, how a WSPD of size m = O(s%n) can be
computed in O(s%n) time. In this WSPD, each pair {A;, B;} is represented
by two nodes u; and v; of T. That is, A; is the set of all points stored at the
leaves of the subtree rooted at u;, and B; is the set of all points stored at the
leaves of the subtree rooted at v;.

Theorem 3 ([5]) Let S be a set of n points in R, and let s > 0 be a real
number. A WSPD for S (with respect to s) having size O(s%n) can be computed
in O(nlogn + sn) time.

3.2 Computing the WSPD for one-dimensional sets

The algorithm of Callahan and Kosaraju for computing the split tree of a point
set in R? is quite involved. As mentioned already, we only need to compute a
split tree and the corresponding WSPD for the case when d = 1. It turns out

Algorithm compute _split_tree(i, j)
ifi=j
then create a node u;
store with u the interval [i, i];
return u
else z := (S[i| + S[j])/2;
k := index such that S[k] < z < S[k + 1];
v 1= compute_split_tree(i, k);
w := compute_split_tree(k + 1, j);
create a node u;
store with u the interval [i, j];
make v the left child of wu;
make w the right child of u;
return u

endif
Fig. 2. Computing the split tree.

that for this case, there is a simple algorithm that computes the split tree.

Let S be a set of n real numbers. We assume that these numbers are stored
in sorted order in an array S[1...n]. In Figure 2, an algorithm, denoted by
compute_split _tree(i, j), is given that computes the split tree for the subarray
Sli...j] and that returns the root of this tree. The split tree T' for the entire
set S is obtained by calling compute_split_tree(1,n).

Since T is a binary tree with n leaves, and since for each internal node, a
binary search has to be made in order to locate the real number z, algorithm
compute_split_tree(1,n) takes O(nlogn) time.

We now show how the split tree can be used to compute a WSPD for S
with respect to a given separation ratio s > 0. (The algorithm we describe
is the same as the one given in [5], where further details on correctness and
complexity can be found. We present it here for completeness.) Let v and w
be two nodes of T' such that their subtrees are disjoint. Let [i, j] and [k, ¢] be
the intervals that are stored with v and w, respectively, and let

R = max(S[j] — S[i], S[¢] — S[k)).

Then the two sets S, and S, that are stored in the subarrays S[i...j] and
Slk ...], respectively, are well-separated with respect to s, if and only if

Skl — S[j] > s R.

The algorithm that computes a WSPD for S, denoted by compute_wspd(T, s),
is given in Figure 3. Callahan and Kosaraju [5] prove that this algorithm
outputs a WSPD of size O(sn), in O(sn) time.

Algorithm compute_wspd (T, s)
for each internal node u of T’
do v := left child of u;
w := right child of w;
find_pairs(v,w)
endfor

Algorithm find_pairs(v,w)
if S, and S,, are not well-separated with respect to s
then let [z, j] be the interval that is stored with v;
let [k, £] be the interval that is stored with w;
if S[j] — Sli] < S[¢] — S[k]
then w, := left child of w;
wsy := right child of w;
find_pairs(v,w);
find_pairs(v, ws)
else v; := left child of v;
vy := right child of v;
find_pairs(vy, w);
find_pairs(ve, w)
endif
endif

Fig. 3. Constructing the WSPD from the split tree.

3.8 The idea of the heuristic

Consider the polygonal path P = (pi,ps,...,p,) in RY We embed P into
one-dimensional space by “flattening” it out, in the following way. For each
i with 1 < i < n, let ; be the real number given by x; = §(p1,p;), and let
S = {x1,x9,..., T}

Let s > 0 be a given separation ratio, and consider the split tree 7" and the
corresponding WSPD {A4;, B;}, 1 < i < m, for S, that are computed by the
algorithms given in Section 3.2. We may assume without loss of generality
that any element in A; is smaller than any element in B;.

The following lemma shows that, for large values of s, all pairs (p, q) of vertices
of P such that §(p1,p) € A; and d(p1,q) € B; are distance-preserving for
approximately the same value of t.

Lemma 2 Letp, p/, q, and ¢’ be vertices of P, and let i be an index such that
z:=0(p1,p) € Ai, ' :=0(p1,p') € Ai, y:=3(p1,q) € By, and y' :==6(p1, ') €
B;. Let t > 1 be a real number such that t < s?/(4s + 16). If the pair (p,q) is

t-distance-preserving, then the pair (p',q') is t'-distance-preserving, where

(14+4/s)t

A Ty sTYA

Proof. First observe that, by the condition on ¢, the denominator in ¢ is
positive. By applying Lemma 1 and the triangle inequality, we obtain

o(p',q') = |z"y|

<(1+4/s)|zy|

=(1+4/s)-4d(p,q)

<(1+4/s)tpq|
<(144/s)t-(Ipp'| + p'd'| +1dql)
<(1+4/s)t-(0(p,p') + 1P| +0(q',q))

=1 +4/s)t- (lz2'| + |p'd| + [v'yl)

<A +4/s)t-((2/9)|2"y |+ 10'd| + (2/5)|2'y])
=(1+4/s)t-((4/5)0(p',q) +IP'd|)

= (1 +4/s)t/s)-0(p',q) + (1 +4/s)tlp'q|.

Rearranging terms yields §(p, ¢') < t'|p'¢|. O

Let t > 1 and 0 < € < 1/3 be real numbers, and let the separation ratio s be
given by

124+ 24(1+¢/3)t

; .

(1)
Lemma 3 Let p, p/, q, and ¢’ be as in Lemma 2.

(1) If the pair (p,q) is t-distance-preserving, then the pair (p',q') is ((1 +
€/3)t)-distance-preserving.

(2) If the pair (p,q) is ((1 4 €/3)t)-distance-preserving, then the pair (p',q’)
is ((1 + €)t)-distance-preserving.

Proof. First observe that 4st+16t < s%. Assume (p, q) is t-distance-preserving.
Then (p/,¢') is t'-distance-preserving, where ¢’ is given in Lemma 2. Since
s >4, we have t’ < (1+4/s)t/(1—8t/s) = (1+ €/3)t, where the last equality
follows from our choice of s. This proves the first claim.

To prove the second claim, assume that (p, ¢) is ((1+¢/3)t)-distance-preserving.
By Lemma 2, (p/,¢’) is t"-distance-preserving, where

(1+4/s)(1 +¢/3)t

= s 490 1 3)i)s

Since 0 < € < 1/3, we have s > 4(1 + ¢/3)/(1 — €/3), which is equivalent
to (1+4/s)(14¢/3) < 2. Therefore, t" < (1+4/s)(1+¢/3)t/(1 —8t/s) =
(1+¢€/3)% < (1+e)t. O

For each ¢ with 1 < i < m, let a; and b; be fixed elements of A; and B;,
respectively, and let f; and g; be the vertices of P such that a; = §(py, f;) and
b; = 8(p1, g;). We say that the ordered pair (A;, B;) is (t, €)-distance-preserving
if the pair (f;, ¢;) is ((1 + €/3)t)-distance-preserving.

Next we define a directed graph H. For every t-distance preserving approxi-
mation of P there is a corresponding path in H. Then, in section 3.4, we show
how to find a path in H without explicitly constructing H. The vertices of H
are the 2m sets A; and B;, 1 < i < m. The edges of H are defined as follows.

(1) For any 7 with 1 < i < m, (A;, B;) is an edge in H if (A;, B;) is (t,¢€)-
distance-preserving and z,, € B;.

(2) For any ¢ and j with 1 <i<mand 1 <j <m, (A4;, A;) is an edge in H
if (A;, B;) is (¢, €)-distance-preserving and A; N B; # 0.

Let @ = (¢1, 92, - - -, qx) be an arbitrary ¢-distance-preserving approximation of
the polygonal path P. We will show that) corresponds to a simple path in H
from some set A; that contains x; to some set B; that contains x,,. Moreover,
this path in H consists of k vertices.

For each i with 1 < ¢ < k, let y; be the element of S such that y; = d(p1, ¢;).
Recall that ¢; = p; and, therefore, y; = z;. Let ¢; be the index such that
y1 € A;; and yo € B;,. The path in H corresponding to @) has A;, as its first
vertex.

Let ¢ be such that 1 < ¢ < k — 2 and assume we have already converted
(¢1,42,---.,qe) into a path (A4;,, Ay, ..., A;,) in H, where y, € A;, and yp41 €
B;,. Let ig1 be the index such that y,, € A;,,, and ye0 € Bj,,,. Since
(qr, qe+1) is t-distance-preserving, and since y, € A;, and yp1 € B;,, it follows
from Lemma 3 that the pair (A;,, B;,) is (¢, €)-distance-preserving. Moreover,
A, N B;, # 0, because yp41 is in the intersection. Therefore, (A;,, 4;,,,) is an
edge in H, i.e., we have converted (¢, go, - . ., qo+1) into a path (A4;,, Ay, ..., A
in H, where yp11 € A;,,, and yp42 € B

iz+1)

eyl Gogr

Next we continue extending this path until we have converted (q1, ¢, .. ., qx—1)
into a path (A;, Ay, ..., A;,_,) in H, where y,_1 € A;,_, and y € B;,_,. Ob-
serve that x, = 0(p1,qx) = yr € Bi,_,. Also, since (qx_1,q) is t-distance-
preserving, it follows from Lemma 3 that the pair (A; _,,B;,_,) is (¢, ¢€)-
distance-preserving. Therefore, (A4;, |, B;,_,) is an edge in H. We have thus
shown that any ¢-distance-preserving approximation @ = (¢, . .., g) of P cor-
responds to a simple path (A4;,, A, ..., A B, ,) in H, where A;, contains

Z‘k,17

10

z1 and B contains x,,.

ig—1
What about the converse? Let (A4;,, A . Ai,_,, Bi,_,) be a path in H such
that x; € A;, and z,, € B;, _,. We will convert this path into a polygonal path
Q@ from p; to p,. Let ¢4 := p1, y1 := 71, and let) be the path consisting
of the single vertex ¢;. Let ¢ be an integer such that 1 < ¢ < k — 2, and
assume we have already converted (A;,, A;,,...,A;,) into a polygonal path
Q = (q1,92,--.,q) such that y; € Ay, and y; := d(p1,q;) € A; N B;;_, for
each j with 2 < j < (. Consider the edge (4;,, 4;,,,) in H. We know that
Ai, N By, # (). Let yp41 be an arbitrary element of Aj,., N By, and let goq be
the vertex of P for which yp11 = 0(p1, qer1). We extend @ by the vertex qp.

iy

We continue adding vertices to) until we have converted (A;,, Ai,, ..., Ai,_,)
into a polygonal path @ = (q1,¢2,...,qx—1) such that y; € A, and y; =
d(p1,q;5) € Ai; N By,_, for each j with 2 < j < k — 1. Consider the last edge
(Ai,_,, Bi,_,) of the path in H. We know that z,, € B;, . Let ¢; := p, and
Y = Tpn. Then yp, = d(p1,qx) € Bi,_,. We add the vertex ¢ to @, which
completes the polygonal path between p; and p,.

In conclusion, we have converted the path (A;, A A, Bi,_,) in H,
where x; € A;, and z,, € B;,_,, into a polygonal path @ = (q1, s, - . ., qx) such
that

(1) y1 =21 =0(p1,q1) € Ay,
(2) y; = 6(p1,q;) € Ai, N By, , for all j with 2 < j <k — 1, and
(3) Yp = Tp = 5(p17Qk) € Bik—l'

i27"

—_

Unfortunately, () need not be a t-distance-preserving approximation of P. We
claim, however, that @ is a ((1+ €)t)-distance-preserving approximation of P.
To prove this, we let 5 be an arbitrary index with 1 < 7 < k— 1. Observe that
y; € Ai; and y;41 € By, Since the pair (A, By;) is (1, €)-distance-preserving, it
follows from Lemma 3 that the pair (g;, ¢j+1) is ((1 + €)t)-distance-preserving.

Let us summarize what we have achieved.

Theorem 4 Let P = (p1,pa,...,pn) be a polygonal path in R?, let t > 1 and
0 < e < 1/3 be real numbers, let x1 = §(p1,p1) and x, = §(p1,pn), and let H
be the graph as defined above, where the separation ratio is given by (1).

(1) Any t-distance-preserving approzimation of P consisting of k vertices cor-
responds to a k-vertex path in H from some set containing xi to some
set containing T.,.

(2) Any k-vertex path in H from some set containing xy to some set contain-
ing x, corresponds to a ((1+ €)t)-distance-preserving approximation of P
consisting of k vertices.

(3) Let k be the minimum number of vertices on any t-distance-preserving

11

approximation of P, and let R be a shortest path in H between any
set containing xr1 and any set containing x,. Then R corresponds to a
(14 €)t)-distance-preserving approximation of P consisting of at most
vertices.

(4) If for every two distinct vertices p and q of P, §(p,q)/|pq| <t ord(p,q)/|pq| >
(1 + e)t, then R corresponds to a t-distance-preserving approximation of
P consisting of k vertices.

Proof. We have proved already the first two claims. To prove the third claim,
let () be a t-distance-preserving approximation of P having k vertices. By
the first claim,) corresponds to a path in H from some set containing x;
to some set containing x, that consists of x vertices. Hence, R contains at
most x vertices, and the third claim follows from the second claim. The fourth
claim follows from the fact that every pair (p,q) of distinct vertices of P is
t-distance-preserving if and only if it is ((1 4 €)¢)-distance-preserving. 0

3.4 Implementing the heuristic

The results in Section 3.3 imply that we can solve MVPS heuristically by
computing a shortest path in the graph H between any set A; that contains
x1 and any set B; that contains z,. Such a shortest path can be found by
a breadth-first search computation. The problem is that the graph H can
have up to ©(n?) edges. We will show, however, that we can run (a partial)
breadth-first search without explicitly constructing the entire graph H. The
main idea is to use the fact that the vertices of H correspond to nodes of the
split tree T

Let i and j be two indices such that (A;, A;) is an edge in the graph H. Then,
by definition, A; N B; # (). Since A; and B; are represented by nodes of the
split tree, it follows that either A; C B; (in which case the node representing
A, is in the subtree of the node representing B;) or B; C A, (in which case
the node representing B; is in the subtree of the node representing A;).

We are now ready to present the algorithm. The input is the polygonal path

P = (p1,p2,...,pn) and real numbers ¢ > 1 and 0 < € < 1/3. The output will
be a ((1 + €)t)-distance-preserving approximation of P.

3.4.1 Preprocessing

Step 1: Compute the set S = {z1,29,...,2,} of real numbers, where z; =
d(pi.pi), 1 <i<n.

12

Step 2: Compute the split tree 7" and the corresponding WSPD {A;, B;},
1 < i < m, for S with separation ratio s = (12 + 24(1 + €/3)t)/e. Assume
without loss of generality that, for each ¢ with 1 < ¢ < m, any element in A;
is smaller than any element in B;.

Step 3: For each i with 1 <i < m, let a; and b; be arbitrary elements in A;
and B;, respectively. Let f; and g; be the vertices of P such that a; = d(p, f;)
and b; = 6(p1, ;). If (fi, 9:) is ((1 + €/3)t)-distance-preserving, then keep the
pair {A;, B;}; otherwise discard this pair.

For simplicity, we again denote the remaining well-separated pairs by {A;, B;},
1<t <m.

It follows from Theorem 3 that m = O(sn) = O((t/e)n) and that the prepro-
cessing stage takes time O(nlogn + sn) = O(nlogn + (t/e)n).

For each ¢ with 1 <7 < m, we denote by u; and v; the nodes of the split tree
T that represent the sets A; and B;, respectively. We designate the nodes u;
as A-nodes.

We will identify each set A; with the corresponding node u; and each set B;
with the corresponding node v;. Hence, the graph H in which we perform the
breadth-first search will have the nodes of the split tree as its vertices. Observe
that for a node w of T, there may be several indices ¢ and several indices j
such that u; = w and v; = w, thus w stores a list of all such i’s and j’s.

3.4.2 The implicit breadth-first search algorithm

Our algorithm will be a modified version of the breadth-first search algorithm
as described in Cormen et al. [9]. It computes a breadth-first forest consisting
of breadth-first trees rooted at the A-nodes u; for which x; € A;. The breadth-
first search terminates as soon as an A-node u; is reached such that z,, € B;.

For each node w of the split tree, the algorithm maintains three variables:

e color(w), whose value is either white, gray, or black,

e dist(w), whose value is the distance in H from any set A; containing z; to
the set corresponding to w, as computed by the algorithm, and

e 7(w), whose value is the predecessor of w in the breadth-first forest.

Step 1: For each node w of the split tree, set color(w) := white, dist(w) := oo,
and m(w) := nil.

Step 2: Initialize an empty queue (). Starting at the leaf of T" storing x, walk

13

up the tree to the root. For each node w encountered, set color(w) := gray
and, if w is an A-node, set dist(w) := 0, and add w to the end of Q.

Step 3: Let w be the first element of Q). Delete w from @) and set color(w) :=
black. For each index ¢ such that u; = w, do the following.

If z,, € B;, then set dist(v;) := dist(w) + 1, m(v;) := w, z := v;, and go to
Step 4.
If x,, ¢ B; and color(v;) = white, then perform Steps 3.1 and 3.2.

Step 3.1: Starting at node v;, walk up the split tree until the first non-white
node is reached. For each white node w’ encountered, set color(w'’) := gray
and, if w’ is an A-node, set dist(w') := dist(w) + 1, m(w') := w, and add w’
to the end of Q.

Step 3.2: Visit all nodes in the subtree of v;. For each node w’ in this sub-
tree, set color(w') := gray and, if w’ is an A-node, set dist(w') := dist(w)+1,
m(w') :=w, and add w’ to the end of Q.

After all indices ¢ with u; = w have been processed, go to Step 3.

Step 4: Compute the path (z,7(2),7%(z2),..., 7" 1(2)) of nodes in T, where
k= dist(z) + 1.

Step 5: Use the algorithm of Section 3.3 to convert the path obtained in
Step 4 into a polygonal path.

Observe that, if w’ is the first non-white node reached in Step 3.1, all nodes on
the path from w’ to the root of the split tree are non-white. Also, if color(v;) =
white, then all nodes in the subtree of v; (these are visited in Step 3.2) are
white. Using these observations, an analysis similar to the one in Cormen
et al. [9] shows that the path obtained in Step 4 is a shortest path in H
between any set A; containing x; and any set B; containing x,. Hence, by
Theorem 4, the polygonal path obtained in Step 5 is a ((1 + €)t)-distance-
preserving approximation of the input path P.

To estimate the running time of the algorithm, first observe that both Steps 1
and 2 take O(n) time. Steps 4 and 5 both take O(n) time, because the path
reported consists of at most n nodes. It remains to analyze Step 3. The total
time for Step 3 is proportional to the sum of m and the total time for walking
through the split tree T"in Steps 3.1 and 3.2. It follows from the algorithm that
each edge of T is traversed at most once. Therefore, Step 3 takes O(m+n) time.
We have shown that the total running time of the algorithm is O(m + n) =
O(sn) = O((t/e)n).

Theorem 5 Let P = (p1,pa,...,pn) be a polygonal path in R, let t > 1 and

14

0 < € < 1/3 be real numbers, and let k be the minimum number of vertices on
any t-distance-preserving approximation of P.

(1) In O(nlogn+(t/e)n) time, we can compute a ((1+¢€)t)-distance-preserving
approzimation) of P, having at most k vertices.

(2) If 6(p,q)/|pq| <t or d(p,q)/lpq| > (1 + €)t for all distinct vertices p and
q of P, then Q) is a t-distance-preserving approximation of P having k
vertices.

4 An approximation algorithm for MDPS

Recall that, for any real number ¢ > 1, we denote by x; the minimum number
of vertices on any t-distance-preserving approximation of the polygonal path
P = (p1,p2,-..,pn)- Let k be a fixed integer with 2 < k < n, and let

t* :=min{t > 1: r; < k}.

In this section, we present an algorithm that computes an approximation to
t*. Our algorithm will perform a binary search, which is possible because of
the following lemma.

Lemma 4 Lett > 1 and 0 < € < 1/3 be real numbers, let Q(t,€) be the output
of the algorithm of Theorem 5, and let k" be the number of vertices of Q(t,€).

(1) If k' <k, then t* < (1 + e€)t.
(2) If k' > k, then t* > t.

Proof. First assume that &’ < k. Since Q(t, €) is a ((1+¢€)t)-distance-preserving
approximation of P, we have k(14 < k. Hence, we have x(i4¢¢ < k, which
implies that t* < (1 + €)t.

To prove the second claim, assume that &’ > k. By Theorem 5, we have &' < ;.
Hence, we have k < k4, which implies that ¢ < ¢*. O

Throughout the rest of this section, we fix a positive real number e with
0<e<1/3.

4.1 Computing a first approximation to t*

We run a standard doubling algorithm to compute a real number 7 that ap-
proximates t* within a factor of two. To be more precise, starting with ¢ = 2,

15

we do the following. Run the algorithm of Theorem 5 and let k&’ be the number
of vertices in the output @ of this algorithm. If &’ > k, then repeat with ¢
replaced by 2t. If £/ < k, then terminate, set 7 := ¢, and return the value of
7. It follows from Lemma 4 that

T/2 <t" < (1+€)T. (2)

Observe that the algorithm of Theorem 5 computes, among other things, a
split tree T" and a WSPD with a separation ratio s that depends on ¢ and e.
Moreover, observe that T' does not depend on s. Hence, it suffices to compute
the split tree only once. Therefore, it follows from Theorem 5 that, when given
T, the time to compute 7 is

O (%(2’/e)n) =O0((t/e)n) = O((t"/e)n).

i=1
4.2 Using binary search to compute a better approrimation

Let S = {1, x9,...,2,}, where x; = §(p1,p;), 1 < i < n, and let {A;, B;},
1 <7 < m, be the WSPD of S with separation ratio

4+8(1+4€)3r
§ = —F.
€

For each ¢ with 1 < ¢ < m, let a; and b; be arbitrary elements of A; and B;,
respectively, let f; and g; be the vertices of P such that a; = d(py, f;) and
b; = 0(p1,g:), and let t; :== d(fi, 9:)/|figi|- The following lemma states that, in
order to approximate t*, it suffices to search among the values t;, 1 <17 < m.

Lemma 5 There exists an index 7 with 1 < 5 < m, such that

ti/(14+¢€) <t < (1+e€)ty.

Proof. We have seen in Section 2 that there exist two distinct vertices p and
q of P such that t* = §(p,q)/|pq|. Let j be the index such that §(p;,p) € A;
and 0(p1,q) € B;.

Since the pair (p, q) is t*-distance-preserving, and since 4st* + 16t* < s%, we
know from Lemma 2 that the pair (f;, g;) is t’-distance-preserving, where

;o (1+4/s)t*
o 1—4(1+4/s)tr/s

16

Since s > 4, we have ¢’ < (1 4+ 4/s)t*/(1 — 8t*/s). By our choice of s and
by (2), we have s > (4 + 8(1 + €)t*)/e. The latter inequality is equivalent to
(14+4/s)t"/(1 —8t*/s) < (1 + e)t*. This proves that t; = §(f;, 95)/|f;9;] <
< (1+e)t"

To prove the second inequality in the lemma, we use the same approach.
Using the inequality ¢; < (1 + €)t*, it follows that 4st; + 16t; < s*. Therefore,
since (fj, g;) is t;-distance-preserving, we know from Lemma 2 that (p,q) is
t"-distance-preserving, where

(1+4/s)t;

¢ = .
1—4(14+4/s)tj/s

Since s > 4, we have t” < (1+4/s)t;/(1—8t;/s). Since t; < (14€)t* < (1+4€)?r,
we have s > (4 4 8(1 + €)t;)/e. This implies that t* = 0(p,q)/|pq| < ¢’ <
(1+e)t;. 0

We proceed as follows. Define tg := 1, sort the values t;, 0 < i < m, remove
duplicates, and discard those values that are larger than (1+ ¢)?r. Recall that
7 is a real number that approximates t* within a factor of two. For simplicity,
we denote the remaining sorted sequence by

l=ty<t <ty <...<ty,<(l+e?m (3)

We perform a binary search in this sorted sequence, maintaining the following
invariant.

Invariant: ¢ and r are integers such that 0 < ¢ <r < mandt, < t* < (1+4€)t,.

Initially, we set £ := 0 and r := m. To prove that at this moment, the invariant
holds, consider the index j in Lemma 5. Observe that since ¢; < (1+e)t* <
(14 €)?7, the value ¢; occurs in the sorted sequence (3). Therefore, t, =1 <
t* < (1+et; < (1+e),.

Assume that ¢ < r — 1. Then we use Lemma 4, with ¢t = ¢, where h =
(€ +17)/2], to decide if t* < (1 + €)t, or t* > t;. In the first case, we set
r := h, whereas in the second case, we set £ := h. Observe that, in both cases,
the invariant is correctly maintained.

We continue making these binary search steps until £ = r —1. At this moment,
we have tp < t* < (1 + €)ty1. We now use Lemma 4, with ¢t = (1 + €)ty, to
decide if t* < (1 + €)%ty or t* > (1 + €)t,. In the first case, we return the value
tg, which satisfies t, < t* < (1 + €)?t,. Assume that t* > (1 + €)t,. We claim
that t* > tgy1/(1+€). This will imply that ¢,,1/(14¢€) < t* < (14 €)1 and,
therefore, we return the value ty,1/(1+ €). To prove the claim, consider again

17

the index j in Lemma 5. We have t; > t*/(1 +€) > t, and thus ¢; > tp4q. It
follows that t* > t;/(14+€) > tey1/(1 +€).

We have shown that the algorithm returns a value ¢ such that t < t* < (1+€)?¢.

We analyze the total running time of the entire algorithm. As mentioned
already, it suffices to compute the split tree once, which takes O(nlogn)
time. As we have seen in Section 4.1, computing the value 7 takes O((t*/e)n)
time. Computing the initial WSPD that we need to compute the values ¢;,
1 < i < m, takes time O(sn) = O((7/e)n) = O((t*/e)n). Sorting the val-
ues t; takes O(mlogm) time. Since m = O(sn) = O((t*/e)n) and m < n?
this sorting step takes O((t*/e)nlogn) time. Finally, the binary search makes
O(logm) = O(logn) iterations. By Theorem 5, and since ¢, < (1 + €)?7 =
O(t*), each iteration takes O((t*/e)n) time. Hence, the entire algorithm takes
O((t*/e)nlogn) time.

If we run the entire algorithm with e replaced by €/3, then we obtain a value ¢
such that t < * < (1+¢/3)* < (1+ €)t. We have proved the following result.

Theorem 6 Let P = (py,pa,...,pn) be a polygonal path in RY, let k be an
integer with 2 < k < n, let t* be the minimum wvalue of t for which a t-
distance-preserving approxzimation of P having at most k vertices exists, and
let 0 < e < 1. In O((t"/e)nlogn) time, we can compute a real number t such
that t < t* < (1 + e)t.

5 Experimental results

In this section, we will briefly discuss some experimental results that we ob-
tained by implementing the algorithms for the MVPS-problem presented in
Sections 2 and 3. The experiments were done by running the programs on
paths containing between 100 and 50,000 points. The shorter paths are from
the Spanish railroad network and the longer paths (more than 3,000 points)
were constructed by joining several shorter paths.

The algorithms were implemented in Borland C++ version 5.5. The experi-
ments were performed on an Intel(R) Pentium(R) 4-M CPU 1.80 GHz with
512 MB of RAM.

The exact algorithm: First we consider the results obtained by running
the exact algorithm on the input paths with different values of t. The most
striking result is that the running times and numbers of edges seem to be
independent of ¢. The running time of the algorithm was between 96 and 98

18

4,000 points 20,000 points 50,000 points

dilation € Time | #edges | Time | #edges | Time | #edges
(sec) | x10% | (sec) | x10% | (sec) | x106

Exact 1.01 - 3.8 7.8 97 196 614 1240
Exact 1.05 - 4.1 7.8 97 196 612 1240
Exact 1.1 - 3.8 7.7 98 196 617 1240
Exact 1.2 - 3.7 7.7 96 196 609 1240

Heuristic 1.01 0.01| 7.8 6.1 18.8 16.1 41.8 35.0
Heuristic 1.01 0.06 | 3.1 2.7 6.9 5.9 16.3 14.1
Heuristic 1.01 0.20 | 1.2 1.0 3.2 2.5 7.3 6.0

Heuristic 1.05 0.01| 7.7 6.2 19.2 16.3 42.4 35.7
Heuristic 1.05 0.06 | 3.1 2.8 7.1 6.0 17.1 14.3
Heuristic 1.05 0.20 | 1.2 1.0 3.1 2.5 7.6 6.1

Heuristic 1.1 0.01] 7.9 6.2 19.7 16.6 43.4 36.0
Heuristic 1.1 0.05 | 3.2 2.8 7.2 6.2 17.1 14.6
Heuristic 1.1 0.20 | 1.2 1.0 3.3 2.6 8.1 6.3

Heuristic 1.2 0.01 | 8.2 6.3 20.6 17.2 45.8 37.5
Heuristic 1.2 0.05 | 34 2.9 7.8 6.4 18.4 15.1
Heuristic 1.2 020 14 1.0 4.5 2.7 10.0 6.5

Table 1
The times indicated are in seconds and the number of edges indicated are in millions.

seconds for an input path containing 20,000 points for different values of ¢, as
shown in Table 1. Even though one might expect that the algorithm would
not be heavily dependent on ¢, it is surprising that the difference is so small.
The probable explanation is that the time to perform a breadth-first search
depends on the length of the optimal solution (the depth of the search tree)
and the number of ¢-distance preserving edges (affecting the width of the tree).
If ¢ is large, the number of t-distance preserving edges is large and hence the
width of the search tree is large, whereas if ¢ is small, the optimal solution is
long and hence the search tree is deep (but not very wide). This explanation is
also supported when one looks at the number of edges considered by the exact

algorithm. The number is, for all instances, very close to the @ upper
bound.

19

#Points 6,000 | 12,000 | 20,000 | 50,000
Exact (dilation=1.1) 9s 37s 98 617
Heuristic (e = 0.01) 16 16 20 43
Heuristic (e = 0.05) 6 6 7 17
Heuristic (e = 0.1) 3 4 5 12
Heuristic (e = 0.2) 2 2 3 8

Table 2
The table shows the running times in seconds of four experiments using ¢t = 1.1

The heuristic: Just as for the exact algorithm, the running time of the
heuristic is not sensitive to ¢, for reasons similar to the ones discussed above.
On the other hand, the running time decreases when € is increasing, since
the number of well-separated pairs decreases. In the tests we performed, the
number of pairs and the running time increased between two and three times
when e was reduced from 0.05 to 0.01 (for instances containing more than
2,000 points), see Table 1.

The well-separated pair decomposition allows us to disregard the majority of
the edges in the breadth-first search, which is the reason why the heuristic is
faster than the exact algorithm. However, this “pruning” step is quite costly.
Comparing the construction of the well-separated pair decomposition with the
breadth-first search shows that the former uses almost 98% of the total running
time. It remains open how this pruning can be performed more efficiently.

Comparing the algorithms: Table 2 shows some of the running times
(in seconds) of four experiments using ¢t = 1.1 and with e ranging from 0.01
to 0.2. It is clear from the table that the exact algorithm quickly becomes
impractical when the size of the input grows. Processing 50,000 points takes
approximately 600 seconds for the exact algorithm while the same number of
points can be processed in less than 43 seconds by the heuristic, see Table 2.
The running-times clearly shows a difference in their asymptotic behavior
which is obviously due to the use of the well-separated pair decomposition
which, as mentioned above, “prunes” the search tree. For example, when the
input path consisted of 50,000 points, the exact algorithm “looked” at almost
1.24 billion edges, while the well-separated pair decomposition removed all but
36 million edges (for € = 0.01) and 6.3 million edges (for ¢ = 0.2). For 20,000
points the numbers were 196 millions versus 16.6 millions and 2.6 millions.
This corroborates the power of using the well-separated pair decomposition
for this kind of problems.

20

6 Concluding remarks

We have considered the problem of approximating a polygonal path P by a
polygonal path @) using a measure that compares the length of any edge (p, q)
of @ by the length of the subpath of P between the vertices p and q. We have
presented both exact algorithms and heuristics for this problem. The heuristic
algorithm involves the novel idea of searching in an implicit auxiliary graph
constructed using the well-separated pair decomposition.

We have seen in Section 2 that the exact problem can be solved in roughly
O(n?) time. We leave open the problem of designing subquadratic algorithms.

The running time of the heuristic algorithm in Section 3 is O(nlogn+(t/€)n).
It would be interesting to obtain a running time that does not depend on t.
Similarly, we leave open the problem of designing a variant of the algorithm
in Section 4 that does not depend on t*.

If the polygonal path P is non-crossing, then the distance-preserving approx-
imation that is computed by any of our algorithms may be crossing. We leave
open the design of efficient algorithms for the versions of MVPS and MDPS in
which a non-crossing distance-preserving approximation has to be computed.

References

[1] P. K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating
polygonal chains. Discrete & Computational Geometry, 23(2):273-291, 2000.

[2] G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink.
Efficiently approximating polygonal paths in three and higher dimensions.
Algorithmica, 33(2):150-167, 2002.

[3] M. Benkert, J. Gudmundsson, H. Haverkort, and A. Wolff. Constructing
interference-minimal networks. In Proceedings 32nd Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM), volume 3831
of Lecture Notes in Computer Science, pages 166—176. Springer-Verlag, 2006.

[4] J. Bose, O. Cheong, S. Cabello, J. Gudmundsson, M. van Kreveld, and
B. Speckmann. Area-preserving approximations of polygonal paths. Journal of
Discrete Algorithms, 2006. To appear.

[5] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional

point sets with applications to k-nearest-neighbors and n-body potential fields.
Journal of the ACM, 42:67-90, 1995.

21

[6] W. S. Chan and F. Chin. Approximation of polygonal curves with minimum
number of line segments or minimum error. International Journal of
Computational Geometry & Applications, 6:59-77, 1996.

[7] D. Z. Chen and O. Daescu. Space-efficient algorithms for approximating
polygonal curves in two-dimensional space. International Journal of
Computational Geometry & Applications, 13:95-111, 2003.

[8] D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, N. Mi, and J. Snoeyink.
Polygonal path simplification with angle constraints. Computational Geometry
— Theory & Applications, 32(3):173-187, 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[10] D. Douglas and T. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. The Canadian
Cartographer, 10(2):112-122, 1973.

[11] D. Eu and G. T. Toussaint. On approximating polygonal curves in two and
three dimensions. CVGIP: Graphical Model and Image Processing, 56(3):231—
246, 1994.

[12] M. T. Goodrich. Efficient piecewise-linear function approximation using the
uniform metric. Discrete & Computational Geometry, 14:445-462, 1995.

[13] J. Hershberger and J. Snoeyink. Cartographic line simplification and
polygon csg formul in o(nlog*n) time. Computational Geometry — Theory &
Applications, 11((3-4)):175-185, 1998.

[14] H. Imai and M. Iri. Computational-geometric methods for polygonal
approximations of a curve. Computer Vision, Graphics and Image Processing,
36:31-41, 1986.

[15] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):159-162, 1986.

[16] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and
algorithms. In G. T. Toussaint, editor, Computational Morphology, pages 71—
86. North-Holland, Amsterdam, Netherlands, 1988.

[17] A. Melkman and J. O’'Rourke. On polygonal chain approximation. In G. T.
Toussaint, editor, Computational Morphology, pages 87-95. North-Holland,
Amsterdam, Netherlands, 1988.

[18] G. T. Toussaint. On the complexity of approximating polygonal curves in
the plane. In Proceedings of the International Symposium on Robotics and
Automation (IASTED), pages 311-318, 1985. Lugano, Switzerland.

22

