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We consider the problem of augmenting an n-vertex graph embedded in a metric space,
by inserting one additional edge in order to minimize the diameter of the resulting graph.

We present exact algorithms for the cases when (i) the input graph is a path, running in
O(n log3 n) time, and (ii) the input graph is a tree, running in O(n2 logn) time. We also

present an algorithm for paths that computes a (1 + ε)-approximation in O(n + 1/ε3)

time.

Keywords: Computational Geometry, Geometric Graphs, Diameter, Approxima-

tion, Parametric Search, Optimization

1. Introduction

Let G = (V,E) be a graph in which each edge has a positive weight. The weight (or

length) of a path is the sum of the weights of the edges on this path. For any two

vertices x and y in V , we denote by δG(x, y) their shortest-path distance, i.e., the

minimum weight of any path in G between x and y. The diameter of G is defined

as max{δG(x, y) | x, y ∈ V }.
Assume that we are also given weights for the non-edges of the graph G. In the

Diameter-Optimal r-Augmentation Problem, doap(r), we have to compute a set F

of r edges in (V ×V )\E for which the diameter of the graph (V,E∪F ) is minimum.

∗A preliminary version of this paper appeared in the Proceedings of the 42nd International Collo-
quium on Automata, Languages, and Programming (ICALP), Part I, Lecture Notes in Computer

Science, Vol. 9134, Springer-Verlag, Berlin, 2015, pp. 678–688. M.S. was supported by NSERC.
J.G. was supported by the ARCs Discovery Projects funding scheme (DP150101134).
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In this paper, we assume that the given graph is a path or a tree on n vertices

that is embedded in a metric space, and the weight of any edge and non-edge is

equal to the distance between its vertices. We consider the case when r = 1; thus,

we want to compute one non-edge which, when added to the graph, results in an

augmented graph of minimum diameter. Surprisingly, no non-trivial results were

known even for the restricted cases of paths and trees.

Throughout the rest of the paper, we assume that (V, | · |) is a metric space,

consisting of a set V of n elements (called points or vertices). The distance between

any two points x and y is denoted by |xy|. Our contributions are as follows:

(1) If G is a path, we solve the problem doap(1) in O(n log3 n) time.

(2) If G is a path, we compute a (1 + ε)-approximation for doap(1) in O(n+ 1/ε3)

time.

(3) If G is a tree, we solve the problem doap(1) in O(n2 log n) time.

Note that the distance between any two vertices of G can be reported in constant

time after spending linear pre-processing time in case that G is a path or after

spending quadratic pre-processing time if G is a tree.

1.1. Related Work

The Diameter-Optimal r-Augmentation Problem for edge-weighted graphs and

many of its variants have been shown to be NP-hard [23], or even W [2]-hard [12, 13].

Because of this, several special classes of graphs have been considered. Chung and

Gary [6] and Alon et al. [1] considered paths and cycles with unit edge weights and

gave upper and lower bounds on the diameter that can be achieved. Ishii [15] gave a

constant factor approximation algorithm (approximating both r and the diameter)

for the case when the input graph is outerplanar. Erdős et al. [10] investigated upper

and lower bounds for the case when the augmented graph must be triangle-free.

The general problem: The Diameter-Optimal Augmentation Problem can be

seen as a bicriteria optimization problem: In addition to the weight, each edge and

non-edge has a cost associated with it. Then the two optimization criteria are (1) the

total cost of the edges (denoted by B) added to the graph and (2) the diameter of

the augmented graph. We say that an algorithm is (α, β)-approximation algorithm

for the doap problem, with α, β ≥ 1, if it computes a set F of non-edges of total

cost at most α · B such that the diameter of G′ = (V,E ∪ F ) is at most β ·DB
opt,

where DB
opt is the diameter of an optimal solution that augments the graph with

edges of total cost at most B.

For the restricted version when all costs and all weights are identi-

cal [3, 5, 9, 16, 17], Bilò et al. [3] showed that, unless P=NP, there does not exist a

(c log n, δ < 1 + 1/DB
opt)-approximation algorithm for doap if DB

opt ≥ 2. For the

case in which DB
opt ≥ 6, they proved that, again unless P=NP, there does not exist

a (c log n, δ < 5
3 −

7−(DB
opt+1) mod 3

3DB
opt

)-approximation algorithm.
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The algorithm by Li et al. [17] constituted a (1, 4+2/DB
opt) approximation. Bilò

et al. [3] improved the analysis of that algorithm and showed that it actually gives a

(1, 2 + 2/DB
opt)-approximation and additinally gave an (O(log n), 1)-approximation

algorithm.

For general costs and weights, Dodis and Khanna [9] gave an O(n logDB
opt, 1)-

approximation algorithm. Their result is based on a multi-commodity flow formu-

lation of the problem. Frati et al. [12] recently considered the doap problem with

arbitrary integer costs and weights. Their main result is a (1, 4)-approximation al-

gorithm with running time O((3BB3 + n+ log(Bn))Bn2).

Oh et al. [21] present an O(n2 log3 n) algorithm to compute the shortcut that

minimizes the diameter of an arbitrarily weighted tree (where the weights have not

necessarily been induced by a metric). They also present an algorithm of the same

runtime to solve the continuous version of the problem.

Geometric graphs: In the geometric setting, when the input is a geometric graph

embedded in the Euclidean plane, there are only few results on graph augmentation

in general. Rutter and Wolff [22] proved that the t-vertex-connectivity and t-edge-

connectivity augmentation problems (that is adding the smallest number of edges,

so that the resulting graph remains planar and is t-connected) are NP-hard on plane

geometric graphs, for t = 2, 3, 4, and 5; the problem is infeasible for t ≥ 6 because

every planar graph has a vertex of degree at most 5. A connected graph is called

t-edge-connected (t-vertex-connected), if it remains connected after removing any

set of up to t − 1 edges (vertices). Currently, there are no known approximation

algorithms for this problem.

The problem of adding one edge to a geometric graph while minimizing the

dilation had been studied Farshi et al. [11] who gave approximation algorithms for

this problem that are faster than the trivial algorithm to compute an exact solution.

The dilation of an embedded weighted graph G is defined as the largest ratio

of the shortest path length between two any vertices of G and their distance in the

embedded space. There were several follow-up papers [18, 26], but there is still no

non-trivial result known for the case when r > 1.

In the continuous version of the diameter-optimal augmentation problem, the

input graph G is embedded in the plane and the edges to be added to G can have

their endpoints anywhere on G, i.e., the endpoints can be in the interior of edges

of G. Moreover, the diameter is considered as the maximum of the shortest-path

distances over all points on G. Yang [27] considered the continuous version of the

problem of adding one edge to a path so as to minimize the continuous diameter. He

presented sufficient and necessary conditions for an augmenting edge to be optimal.

He also presented an approximation algorithm, having an additive error of ε, that

runs in O((n + |P |/ε)2n) time, where |P | denotes the length of the input path P

and ε is at most half of the length of a shortest edge in P . De Carufel et al. [4]

improved the running time to O(n) and also considered the continuous version of
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the problem for cycles that are embedded in the plane. They showed that it is not

possible to decrease the continuous diameter of a cycle by adding one edge to it.

On the other hand, two edges can always be added that decrease the continuous

diameter. De Carufel et al. gave a full characterization of the optimal two edges. If

the input cycle is convex, they find the optimal pairs of edges in O(n) time.

De Carufel et al. [8] extended their result for paths, and showed that, in the

continuous version, an optimal shortcut for a tree with n vertices can be computed

in O(n log n) time.

Recently, our result of the doap(1) for paths from the conference version of

this article [14] was improved by Wang [25] to run in O(n log n) by replacing the

parametric search technique we use. His algorithm first computes and then filters

a candidate set of optimal values for the diameter, and then applies sorted-matrix

searching techniques to solve the optimization problem.

2. Augmenting a Path with One Edge

We are given a path P = (p1, . . . , pn) on n vertices in a metric space and assume

that it is stored in an array P [1, . . . , n]. To simplify notation, we associate a vertex

with its index, that is pk = P [k] is also referred to as k for 1 ≤ k ≤ n. This allows

us to extend the total order of the indices to the vertex set of P . We denote the

start vertex of P by s and the end vertex of P by e.

For 1 ≤ k < l ≤ n, we denote the subpath (pk, . . . , pl) of P by P [k, l], the cycle

we get by adding the edge from pk to pl, denoted by pkpl, to P [k, l] by C[k, l],

and the (unicyclic) graph we get by adding the edge pkpl as a shortcut to P by

P [k, l]; the length of X ∈ {P, P [k, l], C[k, l]} is denoted by |X|. We will consider the

functions pk,l := δP [k,l] and ck,l := δC[k,l], where δG : V 2 → R+ is the length of the

shortest path between two vertices in G. For 1 ≤ k < l ≤ n, we let

MP (k, l) := max
1≤x<y≤n

pk,l(x, y)

denote the diameter of the graph P [k, l]. From now on, we will omit the subscript

P as all functions implicitly will refer to the input path P .

Our goal is to compute a shortcut pkpl for P that minimizes the diameter of

the resulting unicyclic graph. That is, we want to compute a shortcut such that the

resulting unicyclic graph has a diameter of

m(P ) := min1≤k<l≤nM(k, l).

2.1. Algorithm

In the following, we will describe an algorithm that adds an optimal shortcut to a

path to minimize its diameter.

The algorithm consists of two parts. We first describe a sequential algorithm for

the decision problem. Given P and a threshold parameter λ > 0, decide if m(P ) ≤ λ
(see Lemma 1 a) below). In a second step, we argue that the sequential algorithm
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can be implemented in a parallel fashion (see Lemma 1 b) below), thus enabling us

to use the parametric search paradigm of Megiddo [19, 20].

Lemma 1. Given a path P on n vertices in a metric space and a real parameter

λ > 0, we can decide in

a) O(n log n) time, or in

b) O(log n) parallel time using n processors

whether m(P ) ≤ λ; the algorithms also produce a feasible shortcut if it exists.

Proof. To prove this lemma, observe that

m(P ) ≤ λ if and only if
∨

1≤k<l≤n
(M(k, l) ≤ λ) .

The algorithm checks, for each 1 ≤ k < n, whether there is some k < l ≤ n such

that M(k, l) ≤ λ. If one such index k is found, we know that m(P ) ≤ λ; otherwise

m(P ) > λ. Clearly this approach also produces a feasible shortcut if it exists.

We decompose the function M(k, l) into four monotone (in the second param-

eter) parts, see Figure 1. This will facilitate our search for a feasible shortcut and

enable us to do (essentially) binary search: For 1 ≤ k < l ≤ n, we let

S(k, l) := max
k≤x≤l

pk,l(s, x), E(k, l) := max
k≤x≤l

pk,l(x, e),

U(k, l) := pk,l(s, e), O(k, l) := max
k≤x<y≤l

ck,l(x, y).

Then we have M(k, l) = max{S(k, l), E(k, l), U(k, l), O(k, l)}. The triangle inequal-

ity implies that

S(k, l) ≤ S(k, l + 1), E(k, l) ≥ E(k, l + 1),

U(k, l) ≥ U(k, l + 1), O(k, l) ≤ O(k, l + 1).

The function U is easy to evaluate once we have the array D[1, . . . , n] of the

prefix-sums of the edge lengths: D[i] :=
∑

1≤j<i |pjpj+1|. These sums can be com-

puted in O(n) time sequentially or in O(log n) time using n processors (see Chap-

ter 30.1.2 in [7]), which in turn allows us to report the path length of any path

connecting two vertices of P in constant time. If in addition to D, the vertices

s′ = max{u | δP (s, u) ≤ λ} and e′ = min{v | δP (v, e) ≤ λ} are computed for a fixed

λ in O(log n) time (via binary search on D), the following decision problems can be

answered in constant time (for fixed k and l):

S(k, l) ≤ λ, E(k, l) ≤ λ, U(k, l) ≤ λ.

U(k, l) can be computed directly using D and S(k, l) ≤ λ (E(k, l) ≤ λ) exactly if

pk,l(s, s
′ + 1) ≤ λ (pk,l(e, e

′ − 1) ≤ λ).

We denote the maximum of these three functions by

N(k, l) = max(S(k, l), E(k, l), U(k, l)).
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Fig. 1: (a) Illustration of the four distances that define the diameter of a short-

cut pkpl: U(k, l) is the length of the shortest path connecting s and e; O(k, l) is

the length of the longest shortest path between any two points in C[k, l]; S(k, l)

(E(k, l)) is the length of the longest shortest path from s (e) to any vertex in

C(k, l). (b) Illustration of the computation of O(k, l).

Now clearly

M(k, l) = max(N(k, l), O(k, l))

and, consequently

M(k, l) ≤ λ if and only if N(k, l) ≤ λ and O(k, l) ≤ λ.
For fixed 1 ≤ k < n, the algorithm will first check whether there is some k < l ≤ n
with N(k, l) ≤ λ. If no such l exists, we can conclude that M(k, l) > λ for all

k < l ≤ n. The monotonicity of S, E, and U implies that, for fixed 1 ≤ k < n, the

set

Nk := {k < l ≤ n | N(k, l) ≤ λ}
is an interval. This interval can be computed (using binary search in P and in D as

described above) in O(log n) time. If Nk = ∅ we can conclude that for the 1 ≤ k < n

under consideration and for all k < l ≤ n, we have that M(k, l) > λ.

If Nk is non-empty, the monotonicity of O implies that it is sufficient to check

for lk = minNk (i.e. the starting point of the interval) whether O(k, lk) ≤ λ:

∃k < l ≤ n : O(k, l) ≤ λ if and only if O(k, lk) ≤ λ.
Note that in this case we know that N(k, lk) ≤ λ.

Deciding the diameter of small cycles: We now describe how to decide for

a given shortcut 1 ≤ k < l ≤ n if O(k, l) ≤ λ, given that we already know that

N(k, l) ≤ λ. To this end, consider the following sets of vertices from C[k, l]: K :=

{k ≤ x ≤ l | δP (k, x) ≤ λ}, L := {k ≤ x ≤ l | δP (x, l) ≤ λ}, T := K ∩ L,

K ′ := K \ L, L′ := L \K.

These sets are intervals and can be computed in O(log n) time by binary search.

Since N(k, l) ≤ λ, we can conclude the following:
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• the set of vertices of C[k, l] is K ∪ L
• ck,l(x, y) ≤ λ for all x, y ∈ K
• ck,l(x, y) ≤ λ for all x, y ∈ L
• ck,l(x, y) ≤ λ for all x ∈ T , y ∈ C[k, l]

Consequently, if ck,l(x, y) > λ for x, y ∈ C[k, l], we can conclude that x ∈ K ′ and

y ∈ L′. In order to establish that O(k, l) ≤ λ, it therefore suffices to verify that∧
x∈K′,y∈L′

ck,l(x, y) ≤ λ.

Note that on P any vertex x of K ′ is at more than λ away from the vertex l, i.e.,

δP (x, l) > λ. For a point x ∈ K ′, let x+ be the point on (a vertex or an edge of) P

that is at distance exactly λ to x (along P ) and that is on the subpath from x to l

(see Figure 1b), i.e., x+ is the unique point on P such that

δP (x+, l) < δP (x, l) and δP (x, x+) = λ.

The next (in the direction of l) vertex of P will be denoted by x′, i.e., x < x′ ≤ l is

the unique vertex of P such that

δP (x, x′ − 1) ≤ λ and δP (x, x′) > λ.

Since x is a vertex of K ′, x′ is a vertex of L′. For the following discussion we

denote the distance achieved in C[k, l] by using the shortcut by c+k,l and the distance

achieved by travelling along P only by c−k,l, i.e.,

c−k,l(x, y) := δP (x, y) and c+k,l(x, y) := δP (x, k) + |pkpl|+ δP (l, y).

Clearly

ck,l(x, y) = min(c+k,l(x, y), c−k,l(x, y)), and |C[k, l]| = c+k,l(x, y) + c−k,l(x, y).

For every vertex y < x′ on L′ we have that ck,l(x, y) ≤ c−k,l(x, y) ≤ λ, so if there is

some vertex y ∈ L′ with y 6= x′ such that ck,l(x, y) > λ, we know that x′ < y ≤ l; in

that case we have that c+k,l(x, y) ≤ c+k,l(x, x
′). Since we assume that ck,l(x, y) > λ,

we also know that c+k,l(x, y) > λ and we can conclude that c+k,l(x, x
′) > λ, and

consequently that ck,l(x, x
′) > λ, i.e., for all x ∈ K ′ we have that∧

y∈L′

ck,l(x, y) ≤ λ if and only if ck,l(x, x
′) ≤ λ.

The distance between (the point) x+ and (the vertex) x′ on P is called the defect

of x and is denoted by ∆(x), i.e., ∆(x) = δP (x+, x′).
Next, we have to show that

ck,l(x, x
′) ≤ λ if and only if |C[k, l]| ≤ ∆(x) + 2λ. (1)
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Observe that

|C[k, l]| = δP (x, k) + |pkpl|+ δP (l, x′) + δP (x′, x+) + δP (x+, x)

= δP (x, k) + |pkpl|+ δP (l, x′) + ∆(x) + λ

= c+k,l(x, x
′) + ∆(x) + λ.

Since c−k,l(x, x
′) > λ, we have that ck,l(x, x

′) ≤ λ if and only if c+k,l(x, x
′) ≤ λ; the

claim stated in (1) follows.

To summarize the above discussion, we have the following chain of equivalences

(here ∆k,l := |C[k, l]| − 2λ):

O(k, l) ≤ λ⇔
∧

x∈K′

ck,l(x, x
′) ≤ λ⇔

∧
x∈K′

∆k,l ≤ ∆(x)⇔ min
x∈K′

∆(x) ≥ ∆k,l.

Since K ′ is an interval, the last condition can be tested easily after some prepro-

cessing: To this end we compute a 1d-range tree on D (see Chapter 5.3 in [2]) and

associate with each vertex in the tree the minimum ∆-value of the corresponding

canonical subset. For every vertex x of P that is at least λ away from the end vertex

of P we can compute ∆(x) in O(log n) time by binary search in D. With these val-

ues the range tree can be built in O(n log n) time. A query for an interval K ′ then

gives us µ := minx∈K′ ∆(x) in O(log n) time and we can check the above condition

in O(1) time.

We describe the algorithm in pseudocode; see Algorithm 1.

The correctness of the algorithm follows from the previous discussion. Com-

putePrefixSums runs in O(n) time, ComputeRangeTree runs in O(n log n)

time, ComputeFeasibleIntervalForN runs in O(log n) time, a call to Check-

OForShortcut requires O(log n) time. The total runtime is therefore O(n log n).

It is easy to see that with n processors, the steps ComputePrefixSums and Com-

puteRangeTree can be realized in O(log n) parallel time and that with this num-

ber of processors, all calls to CheckOForShortcut can be handled in parallel.

Therefore, the entire algorithm can be parallelized and has a parallel runtime of

O(log n).

Megiddo developed in [19, 20] the parametric search technique, whose essence is

stated in the following theorem (see also [24]).

Theorem 2 (Megiddo) Given a decision algorithm AS with runtime TS that de-

cides problem P and a parallel version AP that uses X processors with runtime TP ,

the smallest value of a yes-instance of P can be computed in O (XTP + TSTP logX)

time.

Plugging the result of Lemma 1 into this machinery directly gives our main result.

Theorem 3. Given a path P on n vertices in a metric space, we can compute

m(P ), and a shortcut realizing that diameter, in O(n log3 n) time.
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Algorithm 1: Algorithm for deciding if m(P ) ≤ λ

DecisionAlgorithm(P, λ) ; // Decide if m(P ) ≤ λ
begin1

global D ← ComputePrefixSums(P);

global s′ ← max{v | δP (s, v) ≤ λ};
global e′ ← min{v | δP (v, e) ≤ λ};
global T ← ComputeRangeTree(P, λ);

for 1 ≤ k < n do
Nk ← ComputeFeasibleIntervalForN(k, λ);

if Nk 6= ∅ and CheckOForShortcut(k,min(Nk), λ) then
return True

return False
end

CheckOForShortcut(k, l, λ) ; // Decide if O(k, l) ≤ λ
begin2

K ′ ← {k ≤ x ≤ l | δP (k, x) ≤ λ ∧ δP (x, l) > λ}; // Compute the

interval by binary search

µ← minx∈K′ ∆(x) ; // Query the range tree T

return (µ ≥ |C[k, l]| − 2λ)

end

From the above discussion, we note that, since there are only four possible

distances to compute in order to determine the diameter of a path augmented with

one shortcut edge, we can derive the following corollary (as all four distances that

determine the diameter can be computed in linear time).

Corollary 4. Given a path P on n vertices in a metric space and a shortcut (u, v),

the diameter of P ∪ (u, v) can be computed in O(n) time.

3. An Approximation Algorithm

As before, we are given a path P = (p1, p2, . . . , pn) on n vertices in a metric space.

Any pair p, q of distinct vertices of P is called a shortcut for P . The graph that

results by adding pq as an edge to P will be denoted by P + pq. For any two

vertices x and y of P , we denote the shortest-path distances between x and y in P

and P + pq by δP (x, y) and δP+pq(x, y), respectively. The diameter of P + pq, i.e.,

maxx,y δP+pq(x, y), where x and y range over all vertices of P , will be denoted by

Diam(P + pq).

In this section, we will present a linear-time approximation algorithm for com-

puting a shortcut for which the diameter of the augmented network is minimized.

Throughout the rest of this section, we assume, without loss of generality, that

the total length of the path P , i.e.,
∑n−1

i=1 |pipi+1|, is equal to 1.
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Let α be a real number with 0 < α < 1. We define a subsequence r1, r2, . . . of

the vertices of P :

(1) Let r1 := p1.

(2) For any i ≥ 1, assume that r1, r2, . . . , ri have been defined. Let k be the index

such that ri = pk. Let

j := min{` : ` ≥ k + 1, δP (ri, p`) > α}.

If the index j exists, then we define ri+1 := pj . Otherwise, the construction

of the sequence terminates and ri+1 = pn is added to the sequence unless R

already ended on pn (that is unless ri = pn).

Let r1, r2, . . . , rm be the sequence obtained in this way. Since the total length of the

path P is equal to 1, we have m ≤ d1/αe+ 1.

We define the path

R := (r1, r2, . . . , rm)

and give each edge riri+1 a weight defined by

ω(ri, ri+1) := δP (ri, ri+1).

Observation 1. For each vertex p of P , there is a vertex r of R such that δP (p, r) ≤
α.

Our approximation algorithm will compute a shortcut rs for the path R. The

weight of this shortcut will be equal to |rs|. For any two vertices x and y of R, we

denote the shortest-path distances between x and y in R and R+rs by δωR(x, y) and

δωR+rs(x, y), respectively. Observe that δωR(x, y) = δP (x, y). The diameter of R+ rs

will be denoted by Diamω(R+ rs).

3.1. The Algorithm

Let ε be a real number with 0 < ε < 1. On input P , the algorithm does the following:

Step 1: Compute the path R as defined above, where α = ε/22.

Step 2: For each pair r, s of distinct vertices of R, compute Diamω(R+ rs).

Step 3: Return the pair a, b found in Step 2 for which Diamω(R+ab) is minimized.

Step 1 can obviously be performed in O(n) time. Since the path R has O(1/ε)

vertices, Step 2 computes the value of Diamω(R+ rs) for O(1/ε2) pairs r, s. Since,

for any given pair r, s, the value of Diamω(R+rs) can be computed in O(1/ε) time,

the total time for Step 2 is O(1/ε3). Finally, Step 3 takes O(1) time. Thus, the total

time of the algorithm is O(n+ 1/ε3).

In the following subsection, we will analyze the approximation factor of our

algorithm.
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3.2. The Approximation Factor

The analysis of the approximation factor is based on a sequence of lemmas.

Lemma 5. The following claims hold:

(1) For any shortcut pq of P , Diam(P + pq) ≥ 1/3.

(2) For any shortcut rs of R, Diamω(R+ rs) ≥ 1/3.

Proof. We start by proving the second claim. Recall that δωR(r, s) = δP (r, s). By

the triangle inequality, we have |rs| ≤ δP (r, s). If |rs| = δP (r, s), then

Diamω(R+ rs) = Diamω(R) = Diam(P ) = 1 ≥ 1/3.

Thus, we may assume that |rs| < δP (r, s).

Walk along the path R, from r to s, and let y be the first vertex for which the

shortest path, in R+ rs, from r to y uses the shortcut rs. Let x be the vertex of R

that is immediately before y. Observe that x and y exist. Also, the shortest path, in

R+ rs, from s to y does not use the shortcut rs, and the shortest path, in R+ rs,

from x to y does not use the shortcut rs.

Let D := Diamω(R+ rs). We have

ω(x, y) = δωR+rs(x, y) ≤ D

and

δωR+rs(r1, x) + ω(x, y) + δωR+rs(y, rm) = δωR(r1, x) + ω(x, y) + δωR(y, rm)

= δP (r1, x) + δP (x, y) + δP (y, rm)

= 1,

implying that

δωR+rs(r1, x) + δωR+rs(y, rm) = 1− ω(x, y) ≥ 1−D.

Since both δωR+rs(r1, x) and δωR+rs(y, rm) are at most equal to D, we get

1−D ≤ 2D,

implying that D ≥ 1/3, proving the second claim.

Observe that the second claim holds for any value of α. If we choose α to be less

than the minimum edge weight of the path P , then R is equal to P and, thus, the

first claim follows as well.

Lemma 6. Let pq be an arbitrary shortcut for P , let r be a vertex of R such that

δP (p, r) ≤ α, and let s be a vertex of R such that δP (q, s) ≤ α. Then, for any two

vertices x and y of R, we have

δωR+rs(x, y) ≤ δP+pq(x, y) + 4α.
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Proof. First assume that the shortest path between x and y in P + pq does not

use the shortcut pq. Then we have

δωR+rs(x, y) ≤ δωR(x, y) = δP (x, y) = δP+pq(x, y) ≤ δP+pq(x, y) + 4α.

In the rest of the proof, we assume that the shortest path between x and y in P +pq

uses the shortcut pq. We may assume, without loss of generality, that this shortest

path starts by going from x to p, then takes the shortcut from p to q, and finally

goes from q to y. Since

|rs| ≤ |rp|+ |pq|+ |qs|
≤ δP (r, p) + |pq|+ δP (q, s),

we have

δωR+rs(x, y) ≤ δωR(x, r) + |rs|+ δωR(s, y)

= δP (x, r) + |rs|+ δP (s, y)

≤ δP (x, p) + δP (p, r) + |rs|+ δP (s, q) + δP (q, y)

≤ δP (x, p) + 2 · δP (p, r) + |pq|+ 2 · δP (s, q) + δP (q, y)

≤ δP (x, p) + 2α+ |pq|+ 2α+ δP (q, y)

= δP (x, p) + |pq|+ δP (q, y) + 4α

= δP+pq(x, y) + 4α.

Lemma 7. Let pq be an arbitrary shortcut for P , let r be a vertex of R such that

δP (p, r) ≤ α, and let s be a vertex of R such that δP (q, s) ≤ α. Then,

Diamω(R+ rs) ≤ (1 + 12α) ·Diam(P + pq).

Proof. Let x and y be arbitrary vertices of R. By applying Lemmas 5 and 6, we

have

δωR+rs(x, y) ≤ δP+pq(x, y) + 4α

≤ Diam(P + pq) + 12α ·Diam(P + pq).

Lemma 8. Let rs be an arbitrary shortcut for R. Then,

Diam(P + rs) ≤ (1 + 6α) ·Diamω(R+ rs).

Proof. Let x and y be arbitrary vertices of P , let x′ be a vertex of R such that

δP (x, x′) ≤ α, and let y′ be a vertex of R such that δP (y, y′) ≤ α. We have

δP+rs(x, y) ≤ δP (x, x′) + δP+rs(x
′, y′) + δP (y′, y)

≤ α+ δP+rs(x
′, y′) + α

= δωR+rs(x
′, y′) + 2α

≤ Diamω(R+ rs) + 2α.
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Using Lemma 5, we obtain

δP+rs(x, y) ≤ Diamω(R+ rs) + 6α ·Diamω(R+ rs).

We are now ready to prove the approximation factor of our algorithm:

Lemma 9. Let pq be an optimal shortcut for the path P . Let ab be the shortcut for

R that is computed by our algorithm. Then

Diam(P + ab) ≤ (1 + ε) ·Diam(P + pq).

Proof. Let r be a vertex of R such that δP (p, r) ≤ α and let s be a vertex of R

such that δP (q, s) ≤ α. First observe that

Diamω(R+ ab) ≤ Diamω(R+ rs).

By Lemma 8, we have

Diam(P + ab) ≤ (1 + 6α) ·Diamω(R+ ab)

≤ (1 + 6α) ·Diamω(R+ rs).

Applying Lemma 7, we obtain

Diam(P + ab) ≤ (1 + 6α)(1 + 12α) ·Diam(P + pq).

We conclude the proof by observing that, since 0 < ε < 1 and α = ε/22,

(1 + 6α)(1 + 12α) ≤ 1 + ε.

The following theorem summarizes the results of this section:

Theorem 10. Given a path P on n vertices in a metric space and given a real

number ε with 0 < ε < 1, we can compute, in O(n+ 1/ε3) time, a shortcut ab for P

such that the diameter of P +ab is at most (1+ε) ·Dopt, where Dopt is the diameter

of an optimal solution.

4. Augmenting a Tree with One Edge

Next we consider the case when the input graph is a tree T = (V,E), where V is a

set of n vertices in a metric space. The aim is to compute an edge f in (V ×V ) \E
such that the diameter of the resulting unicyclic graph (V,E ∪ {f}) is minimized.

The naive approach of trying all possible shortcuts and computing the diameter of

the resulting unicyclic graphs results in a runtime of O(n3 log n) using the O(n log n)

algorithm to compute the diameter of a unicyclic graph by Oh et al. [21].

Let PT be the common intersection of all heaviest paths in T . Observe that

PT is a non-empty path in T . We denote the endvertices of PT by a and b. Let

F = T \E(PT ) be the forest that results from deleting the edges of PT from T . For

any vertex u of T ,

(1) let σ(u) be the vertex on PT that is in the same tree of F as u, and
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σ(u)

σ(v)

u
v

τ(u)x1

x2

x3
x4

y1

y2

y3
a

b

Fig. 2: Illustrating the input tree T with (u, v) as an optimal shortcut. The paths

in T between xi and yj , for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3, represent all longest paths in

T . These paths intersect in the path between a and b.

(2) let τ(u) be the tree of F that contains u.

Refer to Figure 2 for an illustration.

Consider any augmenting edge (u, v). In the following lemma, we will prove that

the augmenting edge (σ(u), σ(v)) is at least as good as (u, v). That is, the diameter

of T ∪ {(σ(u), σ(v))} is at most the diameter of T ∪ {(u, v)}. In case σ(u) = σ(v),

T ∪ {(σ(u), σ(v))} is equal to T , and the diameter of T ∪ {(u, v)} is equal to the

diameter of T .

Lemma 11. There exists an optimal augmenting edge f for T such that both ver-

tices of f are vertices of PT .

Proof. Consider an optimal augmenting edge (u, v). We may assume without loss

of generality that σ(u) is on the subpath of PT between a and σ(v), see Figure 2.

Let Topt = T ∪ {(u, v)}, let Dopt be the diameter of Topt, and let T ′ = T ∪
{(σ(u), σ(v))}. In order to prove the lemma, it suffices to show that the diameter of

T ′ is at most Dopt. If Dopt is equal to the diameter of T , then this obviously holds,

because the diameter of T ′ is at most the diameter of T . Thus, from now on, we

assume that Dopt is less than the diameter of T .

We claim that there exist endvertices x and y of some longest path in T such

that

(1) a is on the path in T between x and σ(u),

(2) b is on the path in T between y and σ(v),

(3) x and u are not in the same connected component of τ(u) \ {σ(u)},
(4) y and v1 are not in the same connected component of τ(v) \ {σ(v)}.

To prove this, consider the leaves x1, x2, . . . , xk and y1, y2, . . . , y` of T such that

(1) for each i with 1 ≤ i ≤ k, a is on the path in T between xi and b,

(2) for each j with 1 ≤ j ≤ `, b is on the path in T between yj and a,
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(3) for each i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ `, the path in T between xi and

yj is a longest path in T , and each longest path in T is between some xi and

some yj .

Refer to Figure 2. Recall that PT , the path from a to b in T , is the intersection of all

heaviest paths in T . If k = 1, then x1 = a and we take x = x1. Assume that k ≥ 2.

Consider the maximal subtree of T that contains a and all leaves x1, x2, . . . , xk, and

imagine this subtree to be rooted at a. There is a child a′ of a such that u is not

in the subtree rooted at a′. We take x to be any xi that is in the subtree rooted at

a′. By a symmetric argument, we can prove the existence of the vertex y.

Recall that we assume that the diameter of Topt (i.e., Dopt) is less than the

diameter of T . This implies that the shortest path in Topt from x to y contains the

shortcut (u, v) and, therefore,

δT (σ(u), u) + |uv|+ δT (v, σ(v)) < δT (σ(u), σ(v)). (2)

In particular, σ(u) 6= σ(v).

Now let s and t be any pair of vertices. In the rest of the proof, we will show

that δT ′(s, t) ≤ Dopt. Up to symmetry, there are three main cases to consider with

respect to the positions of s and t:

(1) Both vertices are in trees of F that contain the shortcut vertices: s, t ∈ τ(u) ∪
τ(v), see Figure 3.

(a) The vertices are in different trees of F : s ∈ τ(u) and t ∈ τ(v).

Since

δT ′(s, σ(u)) = δT (s, σ(u)) ≤ δT (x, σ(u)) = δT ′(x, σ(u))

and

δT ′(σ(v), t) = δT (σ(v), t) ≤ δT (σ(v), y) = δT ′(σ(v), y),

we have

δT ′(s, t) = δT ′(s, σ(u)) + |σ(u)σ(v)|+ δT ′(σ(v), t)

≤ δT ′(x, σ(u)) + |σ(u)σ(v)|+ δT ′(σ(v), y)

= δT ′(x, y)

= δT (x, σ(u)) + |σ(u)σ(v)|+ δT (σ(v), y)

≤ δT (x, σ(u)) + δT (σ(u), u) + |uv|+ δT (σ(v), v) + δT (σ(v), y)

= δTopt
(x, y)

≤ Dopt.

(b) The vertices are in the same tree of F : s, t ∈ τ(u).

We will prove that in this case, the shortest paths between s and t in both

T ′ and Topt do not contain the shortcut, i.e., both of these shortest paths



February 13, 2018 14:58 WSPC/INSTRUCTION FILE
IJFCS-PathAndTree

16 U. Große, J. Gudmundsson, C. Knauer, M. Smid, F. Stehn

s

t s

t

σ(u)

u
v

σ(v) σ(v)

x

a

σ(u)

u
v

b b

yy

x

a

Fig. 3: Illustrating (left) case 1(a) and (right) case 1(b).

are equal to the path in τ(u) (and, thus, in T ) between s and t. This will

imply that

δT ′(s, t) = δTopt
(s, t) ≤ Dopt.

Consider the shortest path P ′(s, t) between s and t in T ′. Observe that short-

est paths do not contain repeated vertices. If P ′(s, t) contains the shortcut

(σ(u), σ(v)), then this path visits the vertex σ(u) twice. Thus, P ′(s, t) does

not contain (σ(u), σ(v)).

Consider the shortest path Popt(s, t) from s to t in Topt, and assume that this

path contains (u, v). We may assume without loss of generality that, starting

at s, this path traverses (u, v) from u to v. (Otherwise, we interchange s and

t.) Since Popt(s, t) does not contain repeated vertices, this path contains the

subpath in T from σ(v) to σ(u). This subpath must be the shortest path in

Topt between σ(v) and σ(u). However, as we have seen in (2), this is not the

case. Thus, we conclude that Popt(s, t) does not contain (u, v).

(2) Neither vertices are in trees of F that contain the shortcut vertices: s, t /∈ τ(u)∪
τ(v).

If the shortest path in Topt from s to t does not contain (u, v), then

δT ′(s, t) ≤ δT (s, t) = δTopt(s, t) ≤ Dopt.

Assume that this shortest path contains (u, v). We may assume without loss of

generality that this shortest path traverses the edge (u, v) from u to v. We have

δT ′(s, t) ≤ δT (s, σ(u)) + |σ(u)σ(v)|+ δT (σ(v), t)

≤ δT (s, σ(u)) + δT (σ(u), u) + |uv|+ δT (v, σ(v)) + δT (σ(v), t)

= δTopt
(s, t)

≤ Dopt.

(3) One vertex is in a tree of F that contains a shortcut vertex, the other is not:

s ∈ τ(u) and t /∈ τ(u) ∪ τ(v).

(a) t is a vertex in the maximal subtree of T having x and σ(u) as leaves, see

Figure 4(left).

As in Case 1(b), it can be shown that the shortest paths between s and t
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(as well as the shortest paths between s and x) in both Topt and in T ′ do

not contain the shortcut. Thus,

δT ′(s, t) ≤ δT ′(s, x) = δT (s, x) = δTopt
(s, x) ≤ Dopt.

(b) t is a vertex in the maximal subtree of T having σ(u) and σ(v) as leaves,

see Figure 4(right).

We first observe that

δT ′(s, t) = δT (s, σ(u)) + δT ′(σ(u), t)

≤ δT (x, σ(u)) + δT ′(σ(u), t)

= δT ′(x, t).

If the shortest path in Topt from x to t does not contain (u, v), then

δT ′(x, t) ≤ δT (x, t) = δTopt
(x, t) ≤ Dopt.

Assume that the shortest path in Topt from x to t contains (u, v). Then

δTopt(x, t) = δT (x, σ(u)) + δT (σ(u), u) + |uv|+ δT (v, σ(v)) + δT (σ(v), t).

Observe that

δT ′(x, t) ≤ δT (x, σ(u)) + |σ(u)σ(v)|+ δT (σ(v), t).

The triangle inequality implies that

δT ′(x, t) ≤ δTopt
(x, t) ≤ Dopt.

(c) t is a vertex in the maximal subtree of T having σ(v) and y as leaves.

In this case, we have

δT ′(s, t) = δT (s, σ(u)) + |σ(u)σ(v)|+ δT (σ(v), t)

≤ δT (x, σ(u)) + |σ(u)σ(v)|+ δT (σ(v), y)

≤ δT (x, σ(u)) + δTopt
(σ(u), σ(v)) + δT (σ(v), y)

= δTopt(x, y)

≤ Dopt.

This concludes the proof of the lemma.

As a consequence of Lemma 11, the diameter of a tree cannot be improved by

adding a single shortcut, if the intersection of all longest paths is a vertex or a single

edge.

For a tree T with n vertices, let the intersection of all longest paths in T be

the path PT . In a preprocessing step, we convert T into a caterpillar tree Tcp by

replacing every tree T ′ of T \ E(PT ) by a single edge of length δT (t, v), where v

is the common vertex of T ′ and PT , and t is the furthest vertex in T ′ to v, see

Figure 5. Note that Tcp has a unique longest path.
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Fig. 4: Illustrating (left) case 3(a) and (right) case 3(b).

a b

a b

T

Tcp

PT

PT

Fig. 5: Illustrating the conversion of the tree T embedded in the Euclidean plane

to the caterpillar Tcp, where subtrees dangling from PT (the path from a to b) are

compressed to a single edge.

Recall that for adding an edge to a path, there are only four relevant distances to

compute to determine the diameter; the same holds for a tree with a unique longest

path. These distances can trivially be computed in O(n) time, using a post-order

traversal strategy. Now consider the case when one of the endpoints of the shortcut

is fixed at a vertex v and the second endpoint is moving along PT in Tcp. As for the

path case, the four functions describing the distances are monotonically increasing

or decreasing, hence, a simple binary search along PT for the second endpoint can

be used to determine the optimal placement of the shortcut. As a result, the optimal

shortcut, given one fixed endpoint v of the shortcut, can be computed in O(n log n)

time. We get:

Theorem 12. Given a tree T on n vertices in a metric space, we can compute a
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shortcut that minimizes the diameter of the augmented graph in O(n2 log n) time.

Recall that Lemma 11 states that there exists an optimal shortcut with both its

endpoints on PT . However, our algorithm only exploits that one of the endpoints is

on PT . The obvious question is if one can modify the algorithm so that it takes full

advantages of the lemma.

5. Concluding remarks

In this paper we studied the problem of augmenting an n-vertex path or tree em-

bedded in a metric space, by inserting one additional edge in order to minimize

the diameter of the resulting graph. We presented an O(n log3 n) time algorithm

for paths and an O(n2 log n) time algorithm for trees. We also gave a (1 + ε)-

approximation algorithm for paths with a running time of O(n+ 1/ε3).

There are many interesting open problems remaining. In the non-metric case

it is known that augmenting an edge-weighted graph with r edges is W [2]-hard.

The existing hardness proofs can not be easily modified to the metric case, hence

a hardness result for this case remains an open problem. As only special cases

have been shown to have efficient algorithms, the most obvious open problem is to

develop exact or approximation algorithms for more general settings. That is, are

there efficient algorithms for augmenting a graph with r edges while minimizing the

diameter? A brute force algorithm for the problem has a running time of O(n2r+3).

Can this be improved? Even algorithms for restricted inputs such as graphs with

bounded treewidth or planar graphs would be interesting. Or is it possible to show

conditional lower bounds for these restricted cases?
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