
Journal of Computational Geometry jocg.org

APPROXIMATING THE AVERAGE STRETCH FACTOR OF GEOMETRIC
GRAPHS∗

Siu-Wing Cheng,†Christian Knauer,‡ Stefan Langerman,§ and Michiel Smid¶

Abstract. Let G be a geometric graph whose vertex set S is a set of n points in Rd.
The stretch factor of two distinct points p and q in S is the ratio of their shortest-path
distance in G and their Euclidean distance. We consider the problem of approximating the
average of the

(
n
2

)
stretch factors determined by all pairs of points in S. We show that

for paths, cycles, and trees, this average can be approximated, within a factor of 1 + ε, in
O(n ·polylog(n)) time. For plane graphs in R2, we present a (2+ε)-approximation algorithm
with running time O(n5/3 ·polylog(n)), and a (4 + ε)-approximation algorithm with running
time O(n3/2 ·polylog(n)). Finally, we show that, for any tree in R2, the exact average of the
squares of the

(
n
2

)
stretch factors can be computed in O(n1.8335) time.

1 Introduction

Let S be a set of n points in Rd and let G be a connected graph with vertex set S in which
the weight of any edge (p, q) is equal to the Euclidean distance |pq| between p and q. The
length of a path in G is defined to be the sum of the weights of the edges on the path. For
any two points p and q of S, we denote by |pq|G the minimum length of any path in G
between p and q. If p 6= q, then the stretch factor of p and q is defined to be |pq|G/|pq|. If
t ≥ 1 is a real number such that each pair of distinct points in S has stretch factor at most
t, then we say that G is a t-spanner of S. The smallest value of t such that G is a t-spanner
of S is called the stretch factor of G.

The problem of computing, given any set S of points in Rd and any t > 1, a t-spanner
of S, has been well-studied; see the book by Narasimhan and Smid [12].

For the related problem of computing, or approximating, the stretch factor of a given
geometric graph, much less is known. Narasimhan and Smid [11] show that the problem of
approximating the stretch factor of any geometric graph on n vertices can be reduced to
performing approximate shortest-path queries for O(n) pairs of points; they also show that

∗SWC was supported by the Research Grant Council, Hong Kong, China (project no. 612107). MS was
supported by NSERC. A preliminary version of this paper appeared in the Proceedings of the 21st Annual
International Symposium on Algorithms and Computation (ISAAC), Part I, Lecture Notes in Computer
Science, Vol. 6506, Springer-Verlag, Berlin, 2010, pp. 37–48.
†Department of Computer Science and Engineering, HKUST, Hong Kong, scheng@cse.ust.hk
‡Institute of Computer Science, Universität Bayreuth, Germany, christian.knauer@uni-bayreuth.de
§Mâıtre de Recherches du F.R.S.-FNRS. Département d’Informatique, Université Libre de Bruxelles,

stefan.langerman@ulb.ac.be
¶School of Computer Science, Carleton University, Ottawa, Canada, michiel@scs.carleton.ca

http://jocg.org/

Journal of Computational Geometry jocg.org

such a sequence of queries can be answered efficiently for paths, cycles, trees, and plane
graphs. Gao and Zhang [8] present a fast algorithm for answering such a sequence of queries
for unit-disk graphs; thus they obtain a fast algorithm for approximating the stretch factor
of such a graph.

Agarwal et al. [1] show that the exact stretch factor of a geometric path, tree, and
cycle on n points in the plane can be computed in O(n log n), O(n log2 n), and O(n

√
n log n)

expected time, respectively. They also present algorithms for the three-dimensional versions
of these problems. Klein et al. [10] consider the problem of reporting all pairs of vertices
whose stretch factor is at least some given value t; they present efficient algorithms for the
cases when the input graph is a geometric path, tree, or cycle.

Given a method to compute the stretch factor of a graph, a natural question is
whether the graph-connectivity can be adjusted to lower the stretch factor. For instance,
this would be helpful in reducing the maximum commute time in a road network; related
problems have been considered (see, e.g., Farshi et al. [6]). However, the stretch factor can
be high just because the stretch factors of a few pairs of points are high, while the stretch
factors of the other pairs are low. A more robust measure is the average stretch factor,
which we define as follows.

Let SSF (G) denote the sum of all stretch factors, i.e.,

SSF (G) =
∑

{p,q}∈P2(S)

|pq|G
|pq|

,

where P2(S) denotes the set of all
(
n
2

)
unordered pairs of distinct elements in S. The value

SSF (G)/
(
n
2

)
is equal to the average stretch factor of the graph G, which is an interesting

quantity associated with G.

To the best of our knowledge, even for a simple graph G such as a path, it is not
known if SSF (G) can be computed in o(n2) time. We remark that Wulff-Nilsen shows
in [14] that the related problem of computing the Wiener index (i.e.,

∑
{p,q}∈P2(S)

|pq|G) of

an unweighted planar graph can be solved in O(n2 log logn/ log n) time.

In this paper, we consider the problem of approximating SSF (G). We start in
Section 2 by showing that, not surprisingly, the well-separated pair decomposition (WSPD)
of Callahan and Kosaraju [5] can be used to reduce the problem of approximating SSF (G) to
that of approximating O(n) different sums of shortest-path distances

∑
p∈Ai

∑
q∈Bi
|pq|G,

with one such double-summation for each pair {Ai, Bi} in the WSPD. Note that this is
different from the general approach of Narasimhan and Smid [11] for approximating the
(worst) stretch factor: For that problem, it is sufficient to take, for each of the O(n) pairs
{Ai, B)}, one point p in Ai and one point q in Bi, and approximate the shortest-path
distance |pq|G.

In Section 3, we apply the general approach of Section 2 to compute a (1 + ε)-
approximation to SSF (G) in O(n log2 n) time, for the cases when G is a path or a cycle.
In Section 4, we modify the general approach of Section 2 and show how to compute a
(1 + ε)-approximation to SSF (G) in O(n log2 n/ log log n) time for the case when G is a
tree. In Section 5, we consider plane graphs. We further modify the general approach of

http://jocg.org/

Journal of Computational Geometry jocg.org

Section 2 and obtain a (2 + ε)-approximation to SSF (G) in O((n log n)5/3) time, and a
(4 + ε)-approximation in O(n3/2 log2 n) time.

As mentioned above, it is not known whether the exact value of SSF (G) can be
computed in subquadratic time, even for a simple graph G such as a path. In Section 6,
we consider the related problem of computing the exact sum of all squared stretch factors,
i.e., the quantity

SSF (2)(G) =
∑

{p,q}∈P2(S)

(
|pq|G
|pq|

)2

.

Thus, the value SSF (2)(G)/
(
n
2

)
is equal to the average squared stretch factor of the graph

G. For trees in R2, we use an appoach based on arithmetization and fast polynomial
multipoint-evaluation, inspired by a technique developed by Ajwani et al. [2], to show that
the exact value of SSF (2)(G) can be computed in O(n1.8335) time.

2 The General Approach using Well-Separated Pairs

Our algorithms are based on Callahan and Kosaraju’s well-separated pair decomposition;
see [5]. We start by reviewing this decomposition and some of the relevant properties that
will be used in the rest of this paper.

Let s > 0 be a real number, called the separation ratio. We say that two point sets
A and B in Rd are well-separated with respect to s, if there exist two balls, one containing
A and the other containing B, of the same radius, say ρ, which are at least sρ apart. If A
and B are well-separated, a and a′ are points in A, and b and b′ are points in B, then it is
easy to verify that

|ab| ≤ (1 + 4/s)|a′b′|. (1)

Let S be a set of n points in Rd. A well-separated pair decomposition (WSPD) of S
is a sequence {A1, B1}, . . . , {Am, Bm} of well-separated pairs of subsets of S, such that, for
any two distinct points p and q in S, there is a unique index i such that p ∈ Ai and q ∈ Bi
or p ∈ Bi and q ∈ Ai.

Callahan and Kosaraju have shown that a WSPD can be obtained from the split-tree
T (S) of the point set S. This tree is defined as follows: If n = 1, then T (S) consists of one
single node storing the only element of S. Assume that n ≥ 2. Consider the bounding box
B of S. By splitting the longest edge of B into two parts of equal size, we obtain two boxes
B1 and B2. The split tree T (S) consists of a root having two subtrees, which are recursively
defined split trees T (S1) and T (S2) for the point sets S1 = S ∩ B1 and S2 = S ∩ B2,
respectively. Observe that the height of T (S) can be as large as Ω(n).

Given a separation ratio s > 0, Callahan and Kosaraju showed that the split tree
T (S) can be used to compute a WSPD of S, consisting of m = O(n) pairs, where each subset
Ai (and, similarly, each subset Bi) corresponds to a node v of the split-tree, in the sense
that Ai equals the set Sv of all points that are stored at the leaves of the subtree rooted at
v. Callahan [4, Section 4.5] showed that, for this particular WSPD,

∑m
i=1 min(|Ai|, |Bi|) =

O(n log n).

http://jocg.org/

Journal of Computational Geometry jocg.org

Theorem 1 ([4, 5]). Let S be a set of n points in Rd and let s > 0 be a real constant.
In O(n log n) time and using O(n) space, the split tree T (S) and a corresponding WSPD
{A1, B1}, . . . , {Am, Bm} of S can be computed, such that

1. m = O(n) and

2.
∑m

i=1 min(|Ai|, |Bi|) = O(n log n).

Consider a connected graph G with vertex set S, the split tree T (S), and the cor-
responding WSPD {A1, B1}, . . . , {Am, Bm} of Theorem 1. It follows from the definition of
the WSPD that

SSF (G) =

m∑
i=1

∑
p∈Ai,q∈Bi

|pq|G
|pq|

.

By (1), all distances |pq|, for any p in Ai and any q in Bi, are within a factor of 1 + 4/s of
each other. Therefore, for each i with 1 ≤ i ≤ m, we choose an arbitrary point xi in Ai and
an arbitrary point yi in Bi, and consider the summation

SSF ′(G) =
m∑
i=1

1

|xiyi|
∑

p∈Ai,q∈Bi

|pq|G.

Using (1), it follows that

1

1 + 4/s
≤ SSF ′(G)

SSF (G)
≤ 1 + 4/s.

Thus, by choosing s = 4/ε, the value SSF ′(G) approximates the sum of all stretch factors
within a factor of 1 + ε.

In order to compute SSF ′(G), we need to compute the values∑
p∈Ai,q∈Bi

|pq|G (2)

for all i with 1 ≤ i ≤ m. In Section 3, we will show that by traversing the split tree in
post-order, these values can be computed efficiently for the cases when G is a path or a
cycle. In Sections 4 and 5, we will follow a similar, but slightly different, approach for the
cases when G is a tree or a plane graph.

3 Approximating SSF for Paths and Cycles

Assume that the graph G is a path (p1, p2, . . . , pn) on the points of the set S. For two
indices i and j with 1 ≤ i < j ≤ n, we say that pi is to the left of pj in G, and pj is to the
right of pi in G.

Before we present the algorithm that approximates SSF (G), we describe the main
idea. Consider a pair {Ai, Bi} of the WSPD. Let p be an arbitrary point in Ai, let b1, . . . , bk

http://jocg.org/

Journal of Computational Geometry jocg.org

be the points in Bi that are to the left of p in G, and let b′1, . . . , b
′
k′ be the points in Bi that

are to the right of p in G. Then we have

k∑
j=1

|pbj |G = k|p1p|G −
k∑
j=1

|p1bj |G

and
k′∑
j=1

|pb′j |G =

k′∑
j=1

|p1b′j |G − k′|p1p|G.

It follows that ∑
q∈Bi

|pq|G = (k − k′)|p1p|G +

k′∑
j=1

|p1b′j |G −
k∑
j=1

|p1bj |G. (3)

Let v be the node in the split tree such that Bi = Sv, i.e., Bi is the subset of S that is
stored in the subtree rooted at v. Assume that we have a balanced binary search tree Tv
storing the points of Sv at its leaves, sorted according to their indices in the path G. Also
assume that each node u of this tree stores

1. the number of points stored in the subtree of u and

2. the sum of the path lengths |p1q|G, where q ranges over all points stored in the subtree
of u.

Then by searching in Tv for p (more precisely, for the index of p in G), we obtain, in
O(log |Bi|) = O(log n) time,

1. a sequence of O(log n) canonical nodes in Tv whose subtrees partition the set of all
points in Bi that are to the left of p in G, and

2. a sequence of O(log n) canonical nodes in Tv whose subtrees partition the set of all
points in Bi that are to the right of p in G.

From the information stored at the canonical nodes, we can compute the summation in (3)
in O(log n) time.

Based on this discussion, we obtain the following algorithm.

Step 1: Compute the split tree T (S) and the corresponding WSPD {A1, B1}, . . . , {Am, Bm}
of Theorem 1, with separation ratio s = 4/ε. Assume, without loss of generality, that
|Ai| ≤ |Bi| for all 1 ≤ i ≤ m.

Step 2: Traverse the path G and store with each point pi (1 ≤ i ≤ n) the path length
|p1pi|G.

Step 3: Traverse the split tree T (S) in post-order, maintaining the following invariant:
After having just visited node v, this node contains a pointer to the above data structure
Tv storing the set Sv.

Let v be the node of T (S) that is currently visited.

http://jocg.org/

Journal of Computational Geometry jocg.org

1. (a) If v is a leaf of T (S), then initialize Tv such that it contains only the point stored
at v.

(b) Otherwise, let v1 and v2 be the two children of v.

i. If the size of Tv1 is at most that of Tv2 , then insert all elements of Tv1 into
Tv2 , discard Tv1 , and rename Tv2 as Tv.

ii. Otherwise, insert all elements of Tv2 into Tv1 , discard Tv2 , and rename Tv1 as
Tv.

2. For each pair {Ai, Bi} in the WSPD for which Bi = Sv, do the following: Let w be
the node of the split tree such that Ai = Sw. Traverse the subtree rooted at w and
for each point p stored in this subtree, use Tv to compute the value in (3). The sum
of all these values (over all p in Ai) gives the summation in (2).

The correctness of this algorithm follows from the discussion above. By Theorem 1,
Step 1 takes O(n log n) time. Step 2 can be done in O(n) time. Consider Step 3. The
total time spent in computing the trees Tv is equal to O(log n) times the total number of
insertions that take place. Since the algorithm always inserts the elements of the smaller of
Tv1 and Tv2 into the larger of these two, each point is inserted O(log n) times. Therefore,
the total time for computing the trees Tv is O(n log2 n). Finally, the total time for searching
in the trees Tv is

∑m
i=1 |Ai| log n, which, by Theorem 1, is O(n log2 n). We have proved the

following result:

Theorem 2. Let G be a path on n points in Rd and let ε > 0 be a real constant. In
O(n log2 n) time and using O(n) space, we can compute a real number that lies between
SSF (G)/(1 + ε) and (1 + ε)SSF (G).

Remark 1. In Section 4, we will present an algorithm that approximates SSF (G) for
an arbitrary tree G in O(n log2 n) time. If G is a path, then this algorithm is slightly
different from the one presented above. In fact, we will even show in Section 4 that for any
tree G, SSF (G) can be approximated in O(n log2 n/ log logn) time; thus, this will improve
Theorem 2.

We now consider the case when the graph G is a cycle (p1, p2, . . . , pn, p1) on the
points of the set S. We will refer to the ordered sequence p1, . . . , pn as the clockwise order
of the points.

For two points p and q of S, we denote by G[p, q] the path that starts at p, follows
the cycle G in clockwise order, and ends at q. The length of this path is denoted by |G[p, q]|.

Let L be the total length of all edges on the cycle. For each point p of S, define ν(p)
to be the last point of G, in clockwise order from p, for which |pν(p)| ≤ L/2.

Consider a pair {Ai, Bi} of the WSPD and let p be an arbitrary point in Ai. Assume
that p is contained inG[p1, ν(p)]. (The case when ν(p) is contained inG[p1, p] can be handled
in a similar way.) The points p and ν(p) partition the set Bi into three subsets (some of
which may be empty):

1. the points b1, . . . , bk that are on the path G[p1, p],

http://jocg.org/

Journal of Computational Geometry jocg.org

2. the points b′1, . . . , b
′
k′ that are on the path G[p, ν(p)], and

3. the points b′′1, . . . , b
′′
k′′ that are on the path G[ν ′(p), pn], where ν ′(p) is the clockwise

neighbor of ν(p) on the cycle G.

We have

∑
q∈Bi

|pq|G = k|G[p1, p]| −
k∑
j=1

|G[p1, bj]|

+
k′∑
j=1

|G[p1, b
′
j]| − k′|G[p1, p]|

+
k′′∑
j=1

(L− |G[p1, b
′′
j]|) + k′′|G[p1, p]|.

Let v be the node in the split tree such that Bi = Sv. By using the same balanced binary
search tree Tv that we used before, and by searching in Tv with the indices (in G) of the
points p and ν(p), we can compute the value of

∑
q∈Bi
|pq|G in O(log n) time. Thus, by

using a slight modification of the algorithm in Section 3, we obtain the following result:

Theorem 3. Let G be a cycle on n points in Rd and let ε > 0 be a real constant. In
O(n log2 n) time and using O(n) space, we can compute a real number that lies between
SSF (G)/(1 + ε) and (1 + ε)SSF (G).

4 Approximating SSF for Trees

Let S be a set of n points in Rd and let G be a spanning tree of S. In this section, we
present a divide-and-conquer algorithm that approximates the value SSF (G).

Assume that n ≥ 3. Let c be a centroid of G, i.e., c is a node whose removal from G
(together with its incident edges) results in two forests G′1 and G′2, each one having size at
most 2n/3. It is well known that such a centroid always exists and can be computed in O(n)
time. Let S1 and S2 be the vertex sets of G′1 and G′2, respectively. Thus, S = S1 ∪S2 ∪{c}.
Let G1 be the tree obtained by adding c to G′1, together with the edges of G between c and
G′1. Define G2 similarly with respect to G′2. We have

SSF (G) = SSF (G1) + SSF (G2) +
∑
p∈S1

∑
q∈S2

|pq|G
|pq|

. (4)

We will show that the double-summation in (4) can be approximated in O(n log n) time.
Therefore, by recursively approximating the values SSF (G1) and SSF (G2), we obtain an
approximation of SSF (G) in O(n log2 n) time. (The base case is when n = 2; in this case,
SSF (G) = 1.)

We color each point of S1 red and each point of S2 blue. The centroid c does not get
a color. Consider the split tree T (S) and the corresponding WSPD {A1, B1}, . . . , {Am, Bm}

http://jocg.org/

Journal of Computational Geometry jocg.org

of Theorem 1, with separation ratio s = 4/ε. For each i with 1 ≤ i ≤ m, let Ari and Abi be
the set of red and blue points in Ai, respectively, and let Br

i and Bb
i be the set of red and

blue points in Bi, respectively. The double-summation in (4) is equal to

m∑
i=1

∑
p∈Ar

i

∑
q∈Bb

i

|pq|G
|pq|

+
∑
p∈Br

i

∑
q∈Ab

i

|pq|G
|pq|

 .

For each i with 1 ≤ i ≤ m, let xi be an arbitrary point in Ai and let yi an arbitrary point
in Bi. Then, the summation

m∑
i=1

 1

|xiyi|

∑
p∈Ar

i

∑
q∈Bb

i

|pq|G +
∑
p∈Br

i

∑
q∈Ab

i

|pq|G

 (5)

approximates the double-summation in (4) within a factor of 1 + ε. Observe that∑
p∈Ar

i

∑
q∈Bb

i

|pq|G =
∑
p∈Ar

i

∑
q∈Bb

i

(|pc|G + |cq|G)

= |Bb
i |
∑
p∈Ar

i

|pc|G + |Ari |
∑
q∈Bb

i

|cq|G.

By a symmetric argument, we get∑
p∈Br

i

∑
q∈Ab

i

|pq|G = |Abi |
∑
p∈Br

i

|pc|G + |Br
i |
∑
q∈Ab

i

|cq|G.

This leads to the following algorithm for approximating the double-summation in (4):

1. Traverse the tree G in postorder (assuming it is rooted at the centroid c) and store
with each point p the path length |pc|G.

2. Traverse the split tree T (S) in postorder and store with each node v the number of
red points in Sv and the number of blue points in Sv.

3. For each leaf v of the split tree T (S), do the following: Let p be the point stored at v.

(a) If p is red, then set redsum(v) = |pc|G and bluesum(v) = 0.

(b) If p is blue, then set redsum(v) = 0 and bluesum(v) = |pc|G.

(c) If p is the centroid, then set redsum(v) = 0 and bluesum(v) = 0.

4. Traverse the split tree T (S) in postorder. For each internal node v, with children v1
and v2, set redsum(v) = redsum(v1) + redsum(v2) and bluesum(v) = bluesum(v1) +
bluesum(v2).

Consider a pair {Ai, Bi} in the WSPD, and let v and w be the nodes in the split
tree such that Ai = Sv and Bi = Sw. Node v stores the values |Ari | and |Abi |. Also, the

http://jocg.org/

Journal of Computational Geometry jocg.org

values of redsum(v) and bluesum(v) are equal to
∑

p∈Ar
i
|pc|G and

∑
q∈Ab

i
|cq|G, respectively.

Similarly, from the information stored at w, we obtain the values of |Br
i |, |Bb

i |,
∑

p∈Br
i
|pc|G,

and
∑

q∈Bb
i
|cq|G.

Thus, after having computed the split tree and the WSPD (which takes O(n log n)
time), we obtain an approximation of the double-summation in (4) in O(n) time. We have
proved the following result:

Theorem 4. Let G be a tree on n points in Rd and let ε > 0 be a real constant. In
O(n log2 n) time and using O(n) space, we can compute a real number that lies between
SSF (G)/(1 + ε) and (1 + ε)SSF (G).

We now show how the running time can be improved by a doubly-logarithmic factor.
Consider the recursion tree of the above divide-and-conquer algorithm, and consider a node
in this tree. Let S′ be the set of points in S that are involved in the call at this node, and
let n′ be the size of S′. As we have seen above, the total time spent at this node is equal
to the sum of (i) O(n′ log n′), which is the time to compute the split tree and the WSPD
of S′, and (ii) O(n′), which is the time for the rest of the algorithm at this node of the
recursion tree. Assume that, at this node, we do not compute the split tree and the WSPD
of S′, but use the split tree and the WSPD for the entire point set S (which was computed
during the call at level zero of the recursion tree). Consider a centroid c′ of the subtree of
G that corresponds to S′. This centroid splits the set S′ into two subsets, which we color
red and blue, whereas the centroid c′ does not get a color. Also, no point of S \ S′ gets a
color. Now we can use the split tree T (S) to compute an approximation of the summation
in (4) in O(n) time.

Let h be a positive integer such that h = O(log n). By using the split tree T (S) and
the corresponding WSPD of the entire set S at the levels 0, 1, . . . , h − 1 of the recursion
tree, the total time spent at these levels is O(n log n + 2hn). At each node at level h of
the recursion tree, we compute the split tree and the WSPD for the points involved in the
recursive call at this node. In this way, the total time of our algorithm is

O

((
n log n+ 2hn

) log n

h

)
.

For h = log log n, this quantity is O(n log2 n/ log logn). Thus, we have proved the following
result:

Theorem 5. Let G be a tree on n points in Rd and let ε > 0 be a real constant. In
O(n log2 n/ log log n) time and using O(n) space, we can compute a real number that lies
between SSF (G)/(1 + ε) and (1 + ε)SSF (G).

5 Approximating SSF for Plane Graphs

In this section, G denotes a plane connected graph whose vertex set is a set S of n points
in R2.

http://jocg.org/

Journal of Computational Geometry jocg.org

In Section 5.2, we will show that SSF (G) can be approximated within a factor of
2 + ε in O(n5/3 · polylog(n)) time. In Section 5.3, we will obtain a (4 + ε)-approximation in
O(n3/2 · polylog(n)) time. We start by reviewing separators and Frederickson’s r-divisions
(see [7]).

5.1 Separators and r-Divisions

Let C be a separator of the graph G. That is, C is a subset of the point set S, such that
the following is true: By removing the points of C (together with their incident edges) from
G, we obtain two graphs, with vertex sets, say, A and B, such that G does not contain any
edge joining some point of A with some point of B.

For any point p in S \ C, let p′ be a point of C for which |pp′|G is minimum. The
following lemma appears in Arikati et al. [3]. For completeness, we include a proof.

Lemma 1. Let p be a point in A, let q be a point in B, and assume that |pp′|G ≤ |qq′|G.
Then

|pp′|G + |p′q|G ≤ 2|pq|G.

Proof. First observe that the shortest path in G between p and q must visit some point in
the separator C. Let c be such a point. By the definition of p′, we have |pp′|G ≤ |pc|G and,
similarly, |qq′|G ≤ |qc|G. By combining these inequalities with the triangle inequality and
the assumption that |pp′|G ≤ |qq′|G, we obtain

|pp′|G + |p′q|G ≤ |pc|G + (|p′p|G + |pc|G + |cq|G)

≤ |pc|G + (|q′q|G + |pc|G + |cq|G)

≤ |pc|G + (|qc|G + |pc|G + |cq|G)

= 2|pq|G.

The following notions were introduced by Frederickson [7]. A division of G is a
sequence R1, . . . , Rk of subsets of S, for some k ≥ 1, such that

1. ∪ki=1Ri = S and

2. for each i with 1 ≤ i ≤ k and for each p in Ri,

(a) either p is an interior point of Ri, i.e., (i) p is not contained in any other subset
in the sequence and (ii) for every edge (p, q) in G, the point q also belongs to Ri

(b) or p is a boundary point of Ri, i.e., p is contained in at least one other subset in
the sequence.

Each subset Ri in the sequence is called a region.

Let r be an integer with 1 ≤ r ≤ n. A division R1, . . . , Rk of G is called an r-division,
if

http://jocg.org/

Journal of Computational Geometry jocg.org

1. k = O(n/r) and

2. for each i with 1 ≤ i ≤ k, the region Ri contains at most r points and O(
√
r) boundary

points.

Frederickson [7] has shown that such an r-division can be computed in O(n log n)
time, using O(n) space. Observe that the total number of boundary points in an r-division
is k ·O(

√
r) = O(n/

√
r). Also, for any i with 1 ≤ i ≤ k, the boundary points of Ri form a

separator of the graph G.

5.2 Approximating SSF (G) within 2 + ε

We choose an integer r with 1 ≤ r ≤ n; the precise value of r will be determined later. We
compute, in O(n log n) time, an r-division R1, . . . , Rk of G. This r-division partitions the
pairs {p, q} in P2(S) into two groups:

1. The pair {p, q} is of type 1, if p and q belong to the same region.

2. The pair {p, q} is of type 2, if p and q belong to different regions.

For j ∈ {1, 2}, we define

SSF j(G) =
∑

{p,q} of type j

|pq|G
|pq|

.

Then
SSF (G) = SSF 1(G) + SSF 2(G).

We start by showing how a 2-approximation of SSF 1(G) can be computed. Using
the algorithm of Arikati et al. [3], we preprocess the graph G in O(n3/2) time and using
O(n3/2) space, after which, for any two points p and q, a 2-approximation of |pq|G can be
computed in O(log n) time. Since the total number of pairs of type 1 is at most kr2 = O(rn),
this leads to a 2-approximation of SSF 1(G) in time

O
(
n3/2 + rn log n

)
,

while using O(n3/2) space.

In the rest of this section, we will show how to compute a (2 + ε)-approximation of
SSF 2(G) in time

O

(
n2 log2 n√

r

)
, (6)

while using

O

(
n2√
r

+
√
rn

)
space. By adding the approximations of SSF 1(G) and SSF 2(G), and by choosing r =
(n log n)2/3, we obtain the following result:

http://jocg.org/

Journal of Computational Geometry jocg.org

Theorem 6. Let G be a plane graph on n points in R2 and let ε > 0 be a real constant.
In O((n log n)5/3) time and using O(n5/3/(log n)1/3) space, we can compute a real number
that lies between SSF (G)/(2 + ε) and (2 + ε)SSF (G).

A (2 + ε)-approximation of SSF 2(G) is obtained in the following way. For each
boundary point p, we run Dijkstra’s shortest-path algorithm with source p. In this way, we
obtain the shortest-path lengths for all pairs p, q of points, where p ranges over all boundary
points and q ranges over all points of S. We store the values |pq|G in a table so that we can
access any one of them in O(1) time. Since there are O(n/

√
r) boundary points, and since

Dijkstra’s algorithm takes O(n log n) time, this part of the algorithm takes O((n2 log n)/
√
r)

time, which is within the time bound in (6). This part of the algorithm uses O(n2/
√
r)

space.

Next, we compute the split tree T (S) and the corresponding WSPD {A1, B1}, . . . ,
{Am, Bm} of Theorem 1, with separation ratio s = 8/ε. (In earlier sections, we used the
separation ratio s = 4/ε. In the current section, we compute 2-approximations of shortest-
path lengths. Because of this, we have to double the value of s.) Assume, without loss of
generality, that |Ai| ≤ |Bi| for all 1 ≤ i ≤ m.

We repeat the following for each region R in the r-division R1, . . . , Rk. We color
each point of R red and color each point of S \ R blue. For each i with 1 ≤ i ≤ m, let Ari
and Abi be the set of red and blue points in Ai, respectively, and let Br

i and Bb
i be the set

of red and blue points in Bi, respectively.

As in Section 4 (see (5)), in order to obtain a (2 + ε)-approximation of SSF 2(G), it
is sufficient to compute a 2-approximation of the values∑

p∈Ar
i

∑
q∈Bb

i

|pq|G (7)

and ∑
p∈Br

i

∑
q∈Ab

i

|pq|G,

for all i with 1 ≤ i ≤ m. We will show how a 2-approximation of the summation in (7) can
be computed. The second summation can be approximated in a symmetric way.

Let b1, . . . , b` be the boundary points of the region R. Recall that ` = O(
√
r). For

each point p of S, let p′ be a point in {b1, . . . , b`} for which |pp′|G is minimum. Observe that,
since we have run Dijkstra’s algorithm from every boundary point, each point p “knows”
the closest boundary point p′.

Consider a pair {Ai, Bi} in the WSPD, let v be the node in the split tree T (S) such
that Bi = Sv, and let Sbv be the set of blue points in Sv. Assume that v stores the following
information (which uses O(`n) = O(

√
rn) space):

1. Balanced binary search trees Tv,j for 1 ≤ j ≤ `. Each such tree Tv,j stores the points
q of Sbv at its leaves, sorted according to the values |qq′|G. Moreover, each node u in
this tree stores

http://jocg.org/

Journal of Computational Geometry jocg.org

(a) the number of leaves in the subtree of u and

(b) the sum of the values |qbj |G, where q ranges over all points in the subtree of u.

2. Balanced binary search trees T ′v,j for 1 ≤ j ≤ `. Each such tree T ′v,j stores the points

q of {q ∈ Sbv : q′ = bj} at its leaves, sorted according to the values |qq′|G. Each node
u in this tree stores

(a) the number of leaves in the subtree of u and

(b) the sum of the values |qbj |G, where q ranges over all points in the subtree of u.

Let us see how these trees can be used to obtain a 2-approximation of the summation in (7).
Let p be a point in Ari . For any point q in Bb

i , we have |pp′|G ≤ |qq′|G or |pp′|G > |qq′|G.

1. Consider a point q in Bb
i for which |pp′|G ≤ |qq′|G. By Lemma 1, |pp′|G + |p′q|G is a

2-approximation of |pq|G. Recall that we know the value |pp′|G. If j is the index such
that p′ = bj , then the value |p′q|G = |bjq|G is implicitly stored in the tree Tv,j . In
fact, we can obtain, from this tree, the sum of all values |p′q|G, where q ranges over
all points in Bb

i for which |pp′|G ≤ |qq′|G.

2. Consider a point q in Bb
i for which |pp′|G > |qq′|G. By Lemma 1, |qq′|G + |q′p|G is

a 2-approximation of |pq|G. We know the value |q′p|G. If j′ is the index such that
q′ = bj′ , then the value |qq′|G = |qbj′ |G is implicitly stored in the tree T ′v,j′ . Thus, we
can obtain, from all these trees, the sum of all values |qq′|G, where q ranges over all
points in Bb

i for which |pp′|G > |qq′|G.

Based on this, we do the following, for each point p in Ari : Let j be the index such that
p′ = bj . By searching in Tv,j with the value |pp′|G, we compute, in O(log n) time,

1. the number N of points q in Bb
i for which |pp′|G ≤ |qq′|G,

2. the summation
X =

∑
q∈Bb

i ,|pp′|G≤|qq′|G

|p′q|G,

3. the value N |pp′|G +X.

Observe that
N |pp′|G +X =

∑
q∈Bb

i ,|pp′|G≤|qq′|G

(|pp′|G + |p′q|G).

Next, for all j′ with 1 ≤ j′ ≤ `, by searching in the trees T ′v,j′ with the value |pp′|G, we

compute, in O(` log n) = O(
√
r log n) total time,

1. the numbers Nj′ of points q in {q ∈ Bb
i : q′ = bj′} for which |pp′|G > |qq′|G,

2. the summations
Xj′ =

∑
q∈Bb

i ,q
′=bj′ ,|pp′|G>|qq′|G

|qq′|G,

http://jocg.org/

Journal of Computational Geometry jocg.org

3. the summation ∑̀
j′=1

(Nj′ |pq′|G +Xj′).

Observe that this last summation is equal to∑
q∈Bb

i ,|pp′|G>|qq′|G

(|pq′|G + |q′q|G).

Thus, for a fixed point p in Ari , we have computed, in O(
√
r log n) time, a 2-approximation

of the summation
∑

q∈Bb
i
|pq|G. Therefore, in O(|Ari |

√
r log n) time, we have computed a

2-approximation of the summation in (7). (Recall that this assumes that we have the trees
Tv,j and T ′v,j for all j with 1 ≤ j ≤ `.)

By traversing the split tree T (S) in post-order, as we did in Step 3 of the algorithm
in Section 3, we obtain 2-approximations of the summations in (7), for all i with 1 ≤ i ≤ m,
in total time which is the sum of

1. O(
√
rn log2 n): This is the total time to compute all binary search trees Tv,j and T ′v,j .

2. O(
√
rn log2 n): This is the total time to search in all these binary search trees.

Recall that we repeat this algorithm for each of the O(n/r) regions R in the r-
division. It follows that the total time used to compute a (2+ ε)-approximation of SSF 2(G)
is within the time bound in (6). This completes the proof of Theorem 6.

5.3 Approximating SSF (G) within 4 + ε

In this section, we improve the running time in Theorem 6, while increasing the approxi-
mation factor to 4 + ε. Since the algorithm is recursive, a generic call solves a more general
problem.

Let R be a subset of S, which we can think of to be a region in a division of the
graph G. Recall that a point p of R is an interior point, if for every edge (p, q) in G, the
point q is also in R. All other points of R are boundary points. We denote the sets of
interior and boundary points of R by int(R) and ∂R, respectively. The subgraph of G that
is induced by R is denoted by G[R].

The input for the algorithm consists of a subset R of S such that |int(R)| = r and
|∂R| = O(

√
r). The output will be a real number that is between SSF (int(R))/(4 + ε) and

(4 + ε)SSF (int(R)), where

SSF (int(R)) =
∑

{p,q}∈P2(int(R))

|pq|G
|pq|

.

By running this algorithm with R = S (in which case int(R) = S and ∂R = ∅), we obtain
a (4 + ε)-approximation of SSF (G).

http://jocg.org/

Journal of Computational Geometry jocg.org

We assume that the entire graph G has been preprocessed using the algorithm of
Arikati et al. [3]. Recall that this preprocessing takes O(n3/2) time and uses O(n3/2) space,
after which, for any two points p and q, a 2-approximation of |pq|G can be computed in
O(log n) time.

If r is less than some constant, we use the data structure of [3] to compute a 2-
approximation of SSF (int(R)) in O(log n) time. For a large value of r, the algorithm does
the following.

Let r′ = r/2. Use the algorithm of Frederickson [7] to compute an r′-division of the
graph G[R]. Since G[R] has size O(r), this takes

O(r log r) (8)

time and produces k = O(r/r′) = O(1) regions, each one having size at most r′ = r/2
and O(

√
r′) = O(

√
r) boundary points. Thus, the total number of boundary points in the

r′-division is O(
√
r).

The r′-division partitions the pairs in P2(int(R)) into three groups:

1. The pair {p, q} is of type 0, if at least one of p and q is a boundary point of some
region.

2. The pair {p, q} is of type 1, if p and q are interior points of the same region.

3. The pair {p, q} is of type 2, if p and q are interior points of different regions.

For j ∈ {0, 1, 2}, we define

SSF j(int(R)) =
∑

{p,q} of type j

|pq|G
|pq|

,

so that
SSF (int(R)) = SSF 0(int(R)) + SSF 1(int(R)) + SSF 2(int(R)).

We obtain a 2-approximation of SSF 0(int(R)) by querying the data structure of [3]
with each pair of type 0. Since the number of such pairs is O(r3/2), this takes time

O
(
r3/2 log n

)
. (9)

We obtain a (4 + ε)-approximation of SSF 1(int(R)), by running the algorithm re-
cursively on each region in the r′-division. Recall that k denotes the number of regions in
the r′-division. For 1 ≤ i ≤ k, we denote by ri the number of interior points of the i-th
region and by T (ri) the running time of the recursive call on the i-th region. Then, the
total time to approximate SSF 1(int(R)) is

O(r) +

k∑
i=1

T (ri). (10)

http://jocg.org/

Journal of Computational Geometry jocg.org

Observe that r1 + . . .+ rk ≤ r and each value ri is at most r/2.

It remains to show how to approximate SSF 2(int(R)). We first do the following for
each region R′ in the r′-division. Consider the graph G[R′]. We add a dummy vertex and
connect it by an edge to every point of ∂R′; each such edge gets weight, say, one. Then we
run Dijkstra’s algorithm on the resulting graph with the source being the dummy vertex.
This gives, for each point p in int(R′) a point p′ of ∂R′ such that |pp′|G[R′] is minimum,
together with the shortest-path length |pp′|G[R′]. Observe that |pp′|G[R′] = |pp′|G. Since the
number of regions R′ is O(1) and each one has size O(r), this part of the algorithm takes
O(r log r) time and uses O(r) space.

The value of SSF 2(int(R)) is approximated by doing the following for each pair
R′, R′′ of distinct regions in the r′-division. We compute the split tree and the correspond-
ing WSPD {A1, B1}, . . . , {Am, Bm} of Theorem 1 for the point set int(R′)∪ int(R′′), with
separation ratio s = 16/ε. We color the points of int(R′) and int(R′′) red and blue, respec-
tively. For each pair {Ai, Bi}, we define Ari , A

b
i , B

r
i , and Bb

i as in Section 5.2. As before,
we want to approximate the values ∑

p∈Ar
i

∑
q∈Bb

i

|pq|G

and ∑
p∈Br

i

∑
q∈Ab

i

|pq|G,

for all i with 1 ≤ i ≤ m.

Recall that, during the approximation of SSF 0(int(R)), we have computed a 2-
approximation δ(b, p) of |bp|G, for each b in ∂R′ ∪ ∂R′′ and each p in int(R′) ∪ int(R′′).
Consider a point p in int(R′) and a point q in int(R′′). Since any path in G between p and
q passes through a point of ∂R′ ∪ ∂R′′, we can use Lemma 1 to approximate |pq|G:

1. If |pp′|G ≤ |qq′|G, then |pp′|G + δ(p′, q) is a 4-approximation of |pq|G.

2. If |pp′|G > |qq′|G, then |qq′|G + δ(q′, p) is a 4-approximation of |pq|G.

Let b1, . . . , b` be the elements of ∂R′ ∪ ∂R′′. We now use the binary search trees
Tv,j and T ′v,j as in Section 5.2. The only difference is that each node u in any of these
trees stores the sum of the values δ(bj , q), where q ranges over all points in the subtree
of u. By using the same algorithm as in Section 5.2, we obtain 4-approximations of the
summations

∑
p∈Ar

i

∑
q∈Bb

i
|pq|G and

∑
p∈Br

i

∑
q∈Ab

i
|pq|G in total time O(r3/2 log2 r), using

O(r3/2) space.

Thus, since the number of pairs of distinct regions is O(1), the total time for com-
puting a (4 + ε)-approximation of SSF 2(int(R)) is

O
(
r3/2 log2 r

)
. (11)

http://jocg.org/

Journal of Computational Geometry jocg.org

If we denote the total running time of the algorithm by T (r), then it follows from
(8), (9), (10), and (11) that

T (r) = O
(
r3/2(log n+ log2 r)

)
+

k∑
i=1

T (ri).

Recall that r1 + . . .+ rk ≤ r and each value ri is at most r/2. Observe that

k∑
i=1

r
3/2
i (log n+ log2 ri) =

k∑
i=1

ri
√
ri(log n+ log2 ri)

≤
k∑
i=1

ri
√
r/2(log n+ log2 r)

≤ r3/2√
2

(log n+ log2 r)

and 1/
√

2 < 1. Using this, a straightforward inductive proof shows that

T (r) = O
(
r3/2(log n+ log2 r)

)
.

The space used by the entire algorithm is O(n3/2 + r3/2).

As mentioned before, we obtain a (4 + ε)-approximation of SSF (G), by running this
algorithm with R = S. We have proved the following result:

Theorem 7. Let G be a plane graph on n points in R2 and let ε > 0 be a real constant.
In O(n3/2 log2 n) time and using O(n3/2) space, we can compute a real number that lies
between SSF (G)/(4 + ε) and (4 + ε)SSF (G).

6 Computing the Average Squared Stretch Factor for Trees

Recall that SSF (2)(G) denotes the sum of the squares of all
(
n
2

)
stretch factors, i.e.,

SSF (2)(G) =
∑

{p,q}∈P2(S)

(
|pq|G
|pq|

)2

.

Thus, the value SSF (2)(G)/
(
n
2

)
is equal to the average squared stretch factor of the graph

G.

In this section, we present a subquadratic algorithm that computes the exact value
of SSF (2)(G) for the case when G is a tree in R2:

Theorem 8. Let G be a tree on n points in R2. The value of SSF (2)(G) can be computed
in O(n1.8335) time.

The proof of this theorem will be based on fast polynomial multipoint-evaluation.
Before we present the proof in Section 6.2, we recall some relevant results.

http://jocg.org/

Journal of Computational Geometry jocg.org

6.1 Tools for Polynomial Multipoint-Evaluation

A bi-variate polynomial of degree at most k is a function f(x, y) of the two variables x and
y that can be written as

f(x, y) =

k∑
i=0

k∑
j=0

cijx
iyj ,

where the coefficients aij are real numbers. We say that f is represented in coefficient-form,
if all these (k + 1)2 coefficients are given.

Let f1, f2, . . . , fm be a sequence of m bi-variate polynomials, where each polynomial
has degree 2 and is given in coefficient-form. There exist two bi-variate polynomials F and
G, both of degree O(m), such that

m∑
k=1

1

fk(x, y)
=
F (x, y)

G(x, y)
.

Lemma 2. The coefficient-form representations of the polynomials F and G can be com-
puted in O(m2 · polylog(m)) time.

Proof. If m is less than some constant, we use a brute-force algorithm. Assume that m is a
large integer. Also, assume for simplicity that m is even. The following divide-and-conquer
algorithm computes the polynomials F and G:

1. By running the algorithm recursively on f1, . . . , fm/2, we obtain coefficient-form rep-
resentations of two bi-variate polynomials F1 and G1, both of degree O(m), such
that

m/2∑
k=1

1

fk(x, y)
=
F1(x, y)

G1(x, y)
.

2. By running the algorithm recursively on f1+m/2, . . . , fm, we obtain coefficient-form
representations of two bi-variate polynomials F2 and G2, both of degree O(m), such
that

m∑
k=1+m/2

1

fk(x, y)
=
F2(x, y)

G2(x, y)
.

3. Observe that F = F1G2 + F2G1 and G = G1G2. Using an algorithm of Nüsken and
Ziegler [13]1, we obtain, in O(m2·polylog(m)) time, the coefficient-form representations
of F and G.

Thus, the entire divide-and-conquer algorithm takes O(m2 · polylog(m)) time.

Define ω2 to be the infimum of all real numbers w such that any n× n matrix can
be multiplied by any n × n2 matrix in O(nw+ε) time, for any constant ε > 0. It is known
that ω2 < 3.334; see Huang and Pan [9].

The following lemma appears as Result 4 in Nüsken and Ziegler [13].

1See Question 2(i) on page 545 and its answer on page 546.

http://jocg.org/

Journal of Computational Geometry jocg.org

Lemma 3. Assume we are given the coefficient-form representation of the bi-variate poly-
nomial F , whose degree is at most m, and a set V of n points in the plane. For any constant
ε > 0, the sequence of all values F (p), where p ranges over all points in V , can be computed
in total time

O
((
n+m2

)
mω2/2−1+ε

)
.

6.2 Proof of Theorem 8

Let S be a set of n points in R2 and let G be a tree with vertex set S. As in Section 4,
let c be a centroid of G. Thus, by removing c, we obtain two forests G′1 and G′2, each one
having at most 2n/3 vertices. Recall that c can be computed in O(n) time. Let S1 and S2
denote the vertex sets of G′1 and G′2, respectively, so that the vertex set S of G is equal to
S1 ∪ S2 ∪ {c}. Let G1 be the tree obtained by adding c to G′1, together with the edges of G
between c and G′1. Define G2 similarly with respect to G′2.

We will apply the divide-and-conquer technique to compute the value SSF (2)(G).
To this end we first observe that

SSF (2)(G) = SSF (2)(G1) + SSF (2)(G2) +
∑
p∈S1

∑
q∈S2

(
|pq|G
|pq|

)2

.

The values SSF (2)(G1) and SSF (2)(G2) will be computed recursively. Below, we will show
how to compute

SSF (2)(G,S1, S2) =
∑
p∈S1

∑
q∈S2

(
|pq|G
|pq|

)2

in O(n1.8335) time. From this, it will follow that the entire divide-and-conquer algorithm
has running time O(n1.8335).

For any p in S1, we define

f(p) =
∑
q∈S2

(
|pq|G
|pq|

)2

.

Thus,

SSF (2)(G,S1, S2) =
∑
p∈S1

f(p).

We now show how to compute the values f(p) for all p ∈ S1 simultaneously in
O(n1.8335) time. Adding up those O(n) many values will give us SSF (2)(G,S1, S2).

For any vertex v of G, let `v denote the length of the path in the tree G between v
and the centroid c. Observe that all values `v, where v ranges over all vertices of G, can be
computed in O(n) total time.

If p is a vertex of S1 and q is a vertex of S2, then |pq|G = `p + `q. It follows that

f(p) =
∑
q∈S2

(
`p + `q
|pq|

)2

= `2p
∑
q∈S2

1

|pq|2
+ 2`p

∑
q∈S2

`q
|pq|2

+
∑
q∈S2

`2q
|pq|2

.

http://jocg.org/

Journal of Computational Geometry jocg.org

For i ∈ {0, 1, 2}, we define

f (i)(p) =
∑
q∈S2

`iq
|pq|2

.

Thus,
f(p) = `2p · f (0)(p) + 2`p · f (1)(p) + f (2)(p).

We partition S2 arbitrarily into N = Θ(
√
n) subsets S1

2 , . . . , S
N
2 , each subset having size

Θ(
√
n), and define, for j ∈ {1, 2, . . . , N} and i ∈ {0, 1, 2},

f
(i)
j (p) =

∑
q∈Sj

2

`iq
|pq|2

.

Then we have
f (i)(p) = f

(i)
1 (p) + f

(i)
2 (p) + . . .+ f

(i)
N (p).

Consider the coordinates (x, y) of the vertex p as symbolic variables and interpret f
(i)
1 , . . . , f

(i)
N

as bi-variate rational functions in those variables.

Let j be an integer with 1 ≤ j ≤ N , let i ∈ {0, 1, 2}, and consider f
(i)
j . By

Lemma 2, we can use the summands `iq/|pq|2 to compute, in O(n · polylog(n)) time, the

coefficient representations of two bi-variate polynomials n
(i)
j (p) and d

(i)
j (p) such that

f
(i)
j (p) =

n
(i)
j (p)

d
(i)
j (p)

.

Both of these polynomials have degree O(
√
n) and, consequently, O(n) coefficients. By

Lemma 3, we can evaluate both polynomials n
(i)
j (p) and d

(i)
j (p) at all points p of S1 simul-

taneously in

O
(
n
(√
n
)ω2/2−1+ε

)
= O

(
n1/2+ω2/4+ε/2

)
time.

Thus, by doing this for all N = Θ(
√
n) values of j, we obtain SSF (2)(G,S1, S2) in

O
(
n1+ω2/4+ε/2

)
time. Since ω2 < 3.334, we can take ε to be sufficiently small such that the running time is
O(n1.8335).

7 Concluding Remarks

We have presented a general approach, based on well-separated pairs, for approximating
the average stretch factor of geometric graphs. For paths, cycles, trees, and plane graphs,
we obtained subquadratic algorithms. We leave as an open problem to improve the running
time of our algorithms for paths, cycles, and trees. For plane graphs, it would be interesting

http://jocg.org/

Journal of Computational Geometry jocg.org

to improve the running time or the approximation factor. Moreover, we leave as an open
problem to obtain subquadratic approximation algorithms for other classes of geometric
graphs.

Gao and Zhang [8] present a fast algorithm for computing a WSPD for any set of
points, where distances are measured in the unit-disk graph shortest-path metric. Using
this WSPD, they show that approximate shortest-path queries in unit-disk graphs can be
answered efficiently. We leave as an open problem to combine their results with those in the
present paper to approximate the average stretch factor of a unit-disk graph in subquadratic
time.

All our results for computing the average stretch factor are approximate. Can the
exact average stretch factor be computed in subquadratic time, for simple classes of graphs
such as geometric paths?

Using fast polynomial multi-point evaluation, we showed that the exact average
squared stretch factor of a tree in R2 can be computed in subquadratic time. Can this
result be generalized to higher dimensions? Can a similar result be obtained for other
classes of geometric graphs?

Acknowledgements

We thank the participants of the 2009 Korean Workshop on Computational Geometry (held
in Kanazawa and Ishikawa, Japan) for fruitful discussions. We thank Antoine Vigneron for
pointing us to reference [13]. We thank the referees for their useful comments.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir, and M. Soss.
Computing the detour and spanning ratio of paths, trees, and cycles in 2D and 3D.
Discrete & Computational Geometry, 39:17–37, 2008.

[2] D. Ajwani, S. Ray, R. Seidel, and H. R. Tiwary. On computing the centroid of the
vertices of an arrangement and related problems. In Proceedings of the 10th Workshop
on Algorithms and Data Structures, volume 4619 of Lecture Notes in Computer Science,
pages 519–528, Berlin, 2007. Springer-Verlag.

[3] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane. In
Proceedings of the 4th European Symposium on Algorithms, volume 1136 of Lecture
Notes in Computer Science, pages 514–528, Berlin, 1996. Springer-Verlag.

[4] P. B. Callahan. Dealing With Higher Dimensions: The Well-Separated Pair Decom-
position and Its Applications. Ph.D. thesis, Department of Computer Science, Johns
Hopkins University, Baltimore, Maryland, 1995.

http://jocg.org/

Journal of Computational Geometry jocg.org

[5] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the
ACM, 42:67–90, 1995.

[6] M. Farshi, P. Giannopoulos, and J. Gudmundsson. Improving the stretch factor of a
geometric network by edge augmentation. SIAM Journal on Computing, 38:226–240,
2008.

[7] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applica-
tions. SIAM Journal on Computing, 16:1004–1022, 1987.

[8] J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric
and its applications. SIAM Journal on Computing, 35:151–169, 2005.

[9] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications.
Journal of Complexity, 14:257–299, 1998.

[10] R. Klein, C. Knauer, G. Narasimhan, and M. Smid. On the dilation spectrum of
paths, cycles, and trees. Computational Geometry: Theory and Applications, 42:923–
933, 2009.

[11] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs.
SIAM Journal on Computing, 30:978–989, 2000.

[12] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, Cambridge, UK, 2007.

[13] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In
Proceedings of the 12th European Symposium on Algorithms, volume 3221 of Lecture
Notes in Computer Science, pages 544–555, Berlin, 2004. Springer-Verlag.

[14] C. Wulff-Nilsen. Wiener index and diameter of a planar graph in subquadratic time. In
Proceedings of the 25th European Workshop on Computational Geometry, pages 25–28,
2009.

http://jocg.org/

	Introduction
	The General Approach using Well-Separated Pairs
	Approximating SSF for Paths and Cycles
	Approximating SSF for Trees
	Approximating SSF for Plane Graphs
	Separators and r-Divisions
	Approximating SSF(G) within 2 +
	Approximating SSF(G) within 4 +

	Computing the Average Squared Stretch Factor for Trees
	Tools for Polynomial Multipoint-Evaluation
	Proof of Theorem 8

	Concluding Remarks

