
Optimal Data Structures for Farthest-Point1

�eries in Cactus Networks∗2

Prosenjit Bose† Jean-Lou De Carufel† Carsten Grimm†‡§
3

Anil Maheshwari† Michiel Smid†4

August 25, 20145

Abstract6

Consider the continuum of points on the edges of a network, i.e., a connected, undirected graph7

with positive edge weights. We measure the distance between these points in terms of the weighted8

shortest path distance, called the network distance. Within this metric space, we study farthest points9

and farthest distances. We introduce optimal data structures supporting queries for the farthest distance10

and the farthest points on trees, cycles, uni-cyclic networks, and cactus networks.11

1 Introduction12

Consider the continuum of points on the edges of a network, i.e., a graph with positive edge weights. We13

measure the distance between these points in terms of the weighted shortest path distance, called the14

network distance. Within this metric space, we study farthest points and farthest distances.15

Decisions where to place facilities are o�en complex and involve optimization of multiple criteria. Our16

data structures enable decision makers to quickly compare farthest distances from potential locations,17

which may constitute an essential factor, e.g., impacting emergency response times for a possible location18

of a new hospital. Furthermore, our results provide a heat-map of farthest distances illuminating the aspect19

of centrality of the network at hand and, thereby, serve as a visual aid for decision makers.20

We introduce optimal data structures supporting queries for the farthest distance and the farthest points21

on trees, cycles, uni-cyclic networks, and cactus networks. We begin with data structures for simple22

networks and then use them as building blocks for more complex networks. With this modular approach23

we can easily extend our results as new building blocks become available.24

�e remainder of this section is organized as follows. In Section 1.1, we set the stage for this work by25

making our notions of networks, points along networks, and network distance precise. In Section 1.2, we26

summarize related work. In Section 1.3, we outline our main contributions and the structure of this work.27

∗�is research has been partially funded by NSERC and by a fellowship from the German Academic Exchange Service (DAAD).
A preliminary version of this work was presented at the 25th Canadian Conference on Computational Geometry [3] and was
part of the Diplomarbeit (Master’s thesis) of the third author [9].

†School of Computer Science, Carleton University
‡Institut für Simulation und Graphik, Fakultät für Informatik, O�o-von-Guericke-Universität Magdeburg
§Corresponding author carsten.grimm@ovgu.de

1

carsten.grimm@ovgu.de


1.1 Preliminaries and Problem Definition28

We call a simple, �nite, undirected graph with positive edge weights a network. Unless stated otherwise, we29

consider only connected networks. Let G = (V ,E) be a network with n vertices andm edges, where V is30

the set of vertices and E is the set of edges. We write uv to denote an edge with endpoints u,v ∈ V and31

we write wuv to denote its weight. A point p on edge uv subdivides uv into two sub-edges up and pv with32

wup = λwuv and wpv = (1 − λ)wuv , where λ is the real number in [0,1] for which p = λu + (1 − λ)v . We33

write p ∈ uv when p is on edge uv and p ∈ G when p is on some edge of G.34

2

8

93

4

4
u v

s

t

x

(a) A network.

2

8

93

q

3 1

2

2

p

(b) A shortest path from p to q.
1

8

11

12
6

3

10

p

(c) An extended shortest path tree.

Figure 1: In the network shown in (a), the network distance from p = 1
4u +

3
4v to q = 1

2s +
1
2t is d(p,q) = 10.

�is distance is, for instance, achieved along the shortest path (blue) from p to q depicted in (b).
�e eccentricity of p is ecc(p) = 12 and the farthest point from p lies along the edge xs , as indicated
by the shortest path tree from p (orange) and its extension (orange ∪ green) illustrated in (c).

As illustrated in Figure 1, we measure distance between points p,q ∈ G in terms of the weighted length35

of a shortest path from p to q in G, denoted by dG (p,q). We say that p and q have network distance dG (p,q).36

�e points on G and the network distance form a metric space. Within this metric space, we study farthest37

points and farthest distances. We call the largest network distance from some point p on G the eccentricity38

of p and denote it by eccG (p), i.e., eccG (p) = maxq∈G dG (p,q). A point p̄ on G is farthest from p if and only39

if dG (p,p̄) = eccG (p). We omit the subscript G whenever the network is understood from the context.40

We extend the de�nition of shortest path trees from graphs to networks. When we say we cut an edge41

ab at a point p ∈ ab we mean that we introduce two new vertices x and y and replace the edge ab with two42

edges ax and yb of weight wax = wap and wyb = wpb . If p coincides with an endpoint of ab, then one of43

ax and yb has weight zero and is omi�ed. Let s be some point on a network G, and let Ts be the shortest44

path tree of s in G. We split each non-Ts edge ab at the farthest point from s on ab and add the resulting45

edges ax and yb to Ts . �e resulting tree is called the extended shortest path tree [25] of s in G; this tree46

encapsulates both the eccentricity of s in G and the farthest points from s in G, as illustrated in Figure 1c.47

We aim to construct data structures for a �xed network G supporting the following queries. Given a48

point p on G, what is the eccentricity of p? What is the set of farthest points from p in G? We refer to the49

former as an eccentricity query and to the la�er as a farthest-point query. Both queries consist of the query50

point p represented by the edge uv containing p and the value λ ∈ [0,1] such that p = λu + (1 − λ)v .51

We study trees, cycles, uni-cyclic networks, and cactus networks. A uni-cyclic network is a network with52

exactly one simple cycle. A cactus network is a network in which no two simple cycles share an edge or, in53

other words, a network where each edge is contained in at most one simple cycle.54

2



1.2 Related Work55

Our data structures implicitly represent (generalized) farthest-point network Voronoi diagrams, where56

the sites are the entire continuum of points along a network [4]. Usually, Voronoi diagrams are de�ned57

with respect to a �nite set of sites representing points of interest in some metric space [1, 24]. �e existing58

research on Voronoi diagrams on networks covers a wide range of queries including queries for the59

closest [12, 28], the farthest [7, 25], and the k-th nearest neighbors [8, 21, 31] among a �nite set of sites. We60

refer the interested reader to, for instance, Okabe et al. [24], Okabe and Sugihara [26], Okabe and Suzuki61

[27], and Taniar and Rahayu [31] for guides through the vast literature on network Voronoi diagrams.62

Network Voronoi diagrams relate to center problems from location analysis [12, 27]. Let G = (V ,E) be63

a network. A center [11] of G is a vertex v that minimizes the network distance to any other vertex, i.e.,64

maxu ∈V d(u,v) = minx ∈V maxu ∈V d(u,x). An absolute center a generalizes a center in that it may be placed65

anywhere along edges of the network, i.e., maxu ∈V d(u,a) = minp∈G maxu ∈V d(u,p). A continuous absolute66

center is a point c with minimal eccentricity, i.e., maxp∈G d(p,c) = minq∈G maxp∈G d(p,q) = minq∈G ecc(q).67

Our results draw three ingredients from the literature on center problems: First, the absolute center [14]68

plays a crucial role when querying for farthest points in a tree network, as we shall see in Section 2.1.69

Second, the decomposition of cactus networks into blocks, branches, and hinges [2, 5, 17, 23] helps us exploit70

their tree structure [10, 16, 19] in Section 3. �ird, viewing the network from di�erent perspectives [2, 13,71

20, 23] allows us to process branches and blocks independently, as explained in Sections 2.3 and 3.72

Conversely, our constructions solve some center problems en passant: For example, we obtain the absolute73

center of a uni-cyclic network [13] as a by-product when building our data structure for queries in uni-cyclic74

networks. Furthermore, while it was known how to locate a single continuous absolute center in a cactus75

network in linear time [2], we produce the entire set of these centers inO(n) time improving theO(m2 logn)76

bound for general networks with n vertices andm edges [15].77

A comprehensive summary of the literature about center problems is beyond the scope of this work. We78

refer readers interested in this sub-�eld of location analysis to a wealth of surveys [18, 22, 29, 33, 34], as79

well as to treatments of more recent results in the books by Kincaid [19], Shi [30], and Tansel [32].80

1.3 Structure and Results81

We introduce data structures supporting eccentricity queries and farthest-points queries for trees, cycles,82

uni-cyclic networks, and cactus networks. As summarized in Table 1, these data structures improve our83

results for general networks [4] and achieve optimal query times, sizes, and construction times.

Type Eccentricity�ery Farthest-Point�ery Size Construction Time

Tree O(1) O(k) O(n) O(n)
Cycle O(1) O(logn) O(n) O(n)

Uni-Cyclic O(logn) O(k + logn) O(n) O(n)
Cactus O(logn) O(k + logn) O(n) O(n)

General [4] O(logn) O(k + logn) O(m2) O(m2 logn)

Table 1: �e traits of our data structures for queries in di�erent types of networks, where n is the number
of vertices,m is the number of edges, and k is the number of reported farthest points.

84

3



�e remainder of this work is organized as follows. In Section 2, we introduce data structures for trees,85

cycles, and uni-cyclic networks. In Section 3, we construct data structures supporting eccentricity queries86

and farthest-point queries on cactus networks. Our approach is to reduce a cactus network to smaller87

networks having a su�ciently simple structure such that the data structures and query algorithms of88

Section 2 can be applied. In Section 4, we discuss directions for future research on closing the gap between89

general networks and cactus networks in Table 1.90

2 Trees, Cycles, and Uni-Cyclic Networks91

In this section, we introduce data structures for farthest-point queries in trees and cycles. We then combine92

these two structures to support queries in uni-cyclic networks, i.e., networks with exactly one simple cycle.93

�ese data structures have linear size and construction times while providing optimal query times, and94

they serve as building blocks for our data structure for cactus networks in Section 3.95

2.1 Trees96

�e layout of farthest points on a tree hinges on the position of the absolute center. �is point subdivides97

a tree into sub-trees where all points in a given sub-tree have their farthest points in other sub-trees.98

Conversely, each sub-tree has a set of leaves that are farthest from the absolute center and these leaves will99

be farthest from points in other sub-trees.100

On tree networks, every farthest point is a leaf and the point c whose farthest leaves are closest is an101

absolute center [11, 20]. In other words, an absolute center on a tree T is a point with minimal eccentricity,102

i.e., ecc(c) = minд∈T ecc(д). We say that two leaves l and l ′ of T are most distant when they realize the103

maximum distance between two points on T , i.e., d(l ,l ′) = maxa,b ∈T d(a,b).104

�eorem 1 (Handler [14]). Every tree has exactly one absolute center midway along any path connecting two105

most distant leaves and we can locate the absolute center of a tree with n vertices in O(n) time.106

Handler [14] determines the absolute center of a tree with two rounds of breadth-�rst-search: �e �rst107

breadth-�rst-search starts from an arbitrary leaf l . With this search, we determine a farthest leaf l̄ from l .108

We then start the second breath-�rst-search from l̄ to determine a farthest leaf l̂ from l̄ . Handler [14] shows109

that l̄ and l̂ are most distant leaves and that the absolute center is located midway on the path from l̄ to l̂ .110

We split a tree T at its absolute center c into sub-trees as follows. When c lies on an edge uv with111

u , c , v , we split T into two sub-trees: the sub-tree T1 containing the sub-edge uc , and the sub-tree T2112

containing the sub-edge cv . When c lies on a vertex with neighborsv1,v2, . . . ,vr , we splitT into r sub-trees113

T1, T2, . . . , Tr , where sub-tree Ti contains the sub-edge cvi . Figures 2 and 3 exemplify spli�ing trees at their114

absolute center and illustrate the following lemma that relates absolute centers with farthest points.115

Lemma 2. Let T be a tree with absolute center c , let Ti be one of the sub-trees obtained by spli�ing T at c , and116

let p be a point on Ti with p , c . �e farthest distance from p in T is ecc(p) = d(p,c) + ecc(c) and the farthest117

points from p are precisely the farthest leaves from c outside of Ti , i.e., for every leaf l we have118

ecc(p) = d(p,l) ⇐⇒ l < Ti ∧ ecc(c) = d(c,l) .

4



c

c̄1

c̄2
c̄3

1
2

1
2

Figure 2: A tree networkT where all edges have unit weight unless indicated otherwise. �e absolute center
c splitsT into two sub-treesT1 (orange) andT2 (blue). �e farthest distance from c is ecc(c) = 11.5
and c has three farthest leaves: c̄1 and c̄2 in T1; and c̄3 in T2. According to Lemma 2, c̄3 is farthest
from every point on sub-tree T1, whereas c̄1 and c̄2 are farthest from every point on sub-tree T2.

c v1

v2

v3 v4
c̄1

c̄2

c̄5

c̄6

c̄7

c̄3

c̄4

Figure 3: A tree T where all edges have unit weight. �e absolute center c is located at a vertex and splits
T into four sub-trees T1 (blue), T2 (orange), T3 (green), and T4 (red). �e farthest distance from c
is ecc(c) = 6 and c has seven farthest leaves: c̄1, c̄2, and c̄3 in T1; c̄4 in T2; c̄5, c̄6, and c̄7 in T3; and
none in T4. Let L1 = {c̄1, c̄2, c̄3}, L2 = {c̄4}, L3 = {c̄5, c̄6, c̄7}, and L4 = ∅. According to Lemma 2, the
leaves in L2 ∪ L3 ∪ L4 are farthest from all points onT1, the leaves in L1 ∪ L3 ∪ L4 are farthest from
all points on T2, and the leaves in L1 ∪ L2 ∪ L4 are farthest points from all points on T3. All points
on the red sub-tree T4 share their farthest points with the absolute center c , since L4 = ∅.

5



Proof of Lemma 2. We show that every path from p to a farthest leaf p̄ from p passes through c .119

Let l and l̄ be two most distant leaves of T . According to �eorem 1, c is located midway along the120

path from l to l̄ with ecc(c) = d(c,l) = d(c, l̄). When spli�ing T at c , the leaves l and l̄ end up in di�erent121

sub-trees. Assume, without loss of generality, that l and p lie in di�erent sub-trees, which implies that c lies122

on a path from p to l , i.e., d(p,l) = d(p,c) + d(c,l).

c

l

l ′

p

p̄

q

Figure 4: �e impossible layout of the paths in a tree T where a point p on T has a farthest point p̄ such
that the shortest path from p to p̄ avoids the absolute center c of T . According to �eorem 1, the
absolute center c is located midway on a path between two most distant leaves l and l̄ . �e path
from p to one of these leaves—l in this case—passes through c .

123

Assume, for the sake of a contradiction, that p has a farthest leaf p̄ and the path in T from p to p̄ avoids c ,124

i.e., p̄ is in the same sub-tree as p. Let q be the meeting point of the path from c to p̄ with the path from p to125

p̄. Figure 4 shows this (impossible) constellation in which we have126

d(p,q) + d(q,p̄) = d(p,p̄) = ecc(p) ≥ d(p,l) = d(p,q) + d(q,l) ,
which implies d(q,p̄) ≥ d(q,l), i.e., l is no farther away from q than q̄. Since q lies on the path from p to p̄127

and this path avoids c , we have q , c and, thus, d(c,q) > 0. We arrive at a contradiction via128

d(c,p̄) = d(c,q) + d(q,p̄) > d(q,p̄) ≥ d(q,l) = d(q,c) + d(c,l) > d(c,l) ,
which implies that p̄ is farther away from c than the farthest leaf l , i.e., d(c,p̄) > d(c,l) = ecc(c) ≥ d(c,p̄).129

�erefore, every path from p to any farthest leaf must contain the absolute center c of T .130

�e farthest distance we can travel along a path from p through c is d(p,c) + d(c,l) = d(p,c) + ecc(c).131

Conversely, every farthest leaf from c outside of Ti achieves this distance and, thus, is farthest from p. �132

We perform eccentricity queries on tree networks as follows. Let T be a tree with absolute center c .133

Consider an eccentricity query from a point p on edge uv where u is closer to c than v , i.e., d(c,u) < d(c,v).134

�e shortest path from p to c leads through u, i.e., d(p,c) = wpu + d(u,c), and we have ecc(p) = d(p,c) +135

ecc(c) = wpu + d(u,c) + ecc(c). �us, we can determine the eccentricity of p in constant time, provided that136

we know the eccentricity of c and the network distance from c to every vertex of T .137

We perform farthest-point queries on T as follows. Let T1, T2, . . . , Tr be the sub-trees obtained by138

spli�ing T at c . For i = 1,2, . . . ,r , let Li denote the set of farthest leaves from c in sub-tree Ti , i.e.,139

Li B {l ∈ Ti | ecc(c) = d(c,l)}. For a farthest point query from a point p on sub-tree Ti with p , c , we140

report all leaves in each Lj with j , i as farthest points of p. For a farthest-point query from the absolute141

center c , we report all leaves in Li for all i = 1,2, . . . ,r . For a query point with k farthest points, this takes142

O(k) time, provided that we know the sets of farthest leaves L1,L2, . . . ,Lr and provided that we can identify143

the sub-tree among T1,T2, . . . ,Tr containing the query point in constant time.144

6



�e description of eccentricity queries and farthest-point queries on trees suggests which auxiliary data145

should be pre-computed. For a given tree T with n vertices, we �rst locate the absolute center c of T in146

O(n) time using Handler’s Algorithm [14]. Using a breadth-�rst-search from c , we perform three tasks: we147

compute the distances from c to every vertex of T , we label each edge with an index indicating its sub-tree,148

and we determine the farthest leaves in each sub-tree, which yields the sets L1,L2, . . . ,Lr . Altogether, we149

spend O(n) time to obtain our data structure, which is summarized in the following theorem.150

�eorem 3. Let T be a tree network with n vertices. �ere is a data structure with O(n) construction time151

supporting eccentricity queries on T in constant time and farthest-point queries on T in O(k) time, where k is152

the number of reported farthest points.153

By storing the lengths of the lists L1,L2, . . . ,Lr , the data structure from �eorem 3 also allows us to count154

the number of farthest-points from any query point in a tree network in constant time.155

2.2 Cycles156

Let C be a cycle network and let wC be the sum of all edge weights of C . Each point p on C has exactly one157

farthest point p̄ located on the opposite side of C with ecc(p) = d(p,p̄) = wC/2. Supporting eccentricity158

queries on C amounts to calculating and storing the value wC/2.159

To support farthest-point queries, we subdivide C at each farthest point of a vertex and store a pointer160

from each vertex to its farthest point and vice versa. To compute this subdivision, we �rst locate the farthest161

point v̄ for some initial vertex v by walking a distance of wC/2 from v along C . As illustrated in Figure 5,162

we then sweep a point p from position p = v to position p = v̄ alongC while maintaining the farthest point163

p̄. During this sweep we subdivide C at p whenever p̄ hits a vertex and at p̄ whenever p hits a vertex. �e164

entire sweep takes linear time, thus, the resulting data structure occupies linear space.

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

p

p̄

v̄5

v̄6

(a) Sweeping along the cycle.

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

v̄5

v̄6

v̄7

v̄4

(b) �e subdivision.

Figure 5: A sweep along cycle C starting from p = v1 and the resulting subdivision of C . For instance, any
point on sub-edge v5v̄2 has its farthest point on sub-edge v̄5v2.

165

Using the subdivided network, we answer farthest-point queries as follows. For a query point p on edge166

uv ofC , we �rst locate the sub-edge ab containing p using binary search. �is takesO(logn) time for a cycle167

with n vertices, since we subdivide uv at most n times. Let ā and b̄ be farthest from a and b, respectively.168

�e farthest point p̄ from p is located on sub-edge āb̄ at distance wap from ā.169

Lemma 4. Let C be a cycle network with n vertices. �ere is a data structure with construction time O(n)170

supporting eccentricity queries on C in constant time and farthest-point queries on C in O(logn) time.171

7



2.3 Uni-Cyclic Networks172

A network with exactly one simple cycle is called uni-cyclic [13]. As illustrated in Figure 6, every uni-cyclic173

network U consists of a cycle C with trees T1,T2, . . . ,Tl a�ached to C at vertices v1,v2, . . . ,vl , respectively.174

We refer to the trees T1,T2, . . . ,Tl as the branches of U and to the vertex vi as the hinge of branch Ti .

8

11

89

T4

T3

T1

T4

T3

T1

T2

v5

v3

8

v1

v4

v2

8

Figure 6: A uni-cyclic network with four branches. Edges have weight one whenever no weight is indicated.

175

Our data structure for uni-cyclic networks consists of two adjoined data structures: one for queries176

from the branches and one for queries from the cycle. �ese data structures are based on the following177

contractions. For each branchT with hingev in a uni-cyclic networkU , we represent all paths inU starting178

at hinge v and leading out of T by an edge vv ′ (to a dummy vertex v ′) of weight wvv ′ = eccU \T (v). We call179

the tree consisting of T and the edge vv ′ the perspective of T from U denoted by perU (T ). For the cycle C ,180

we represent the paths starting from hinge v leading into a branch T by an edge vt (to a dummy vertex t )181

of weight wvt = eccT (v). We call the resulting network the perspective of U from C denoted by perU (C).182

Figure 7 summarizes the di�erent perspectives for the network from Figure 6.

v ′4

25

v ′1
28 v ′2

25

v ′3

24
v3

v1

v4

v2

8

(a) �e perspective from each branch.

8

11

89

t4
t3

t1

t2

6
12

38
v5

v3

8

v1

v4

v2

(b) �e perspective from the cycle.

Figure 7: �e network from Figure 6 viewed from the branches (a) and from the cycle (b).
183

8



�e data structure for queries from the branches T1,T2, . . . ,Tl consists of the tree data structures for184

per(T1), per(T2), . . . , per(Tl ) from Section 2.1. Consider a point p on branchTi . An eccentricity query from p185

in per(Ti ) yields the eccentricity of p in U . A farthest-point query from p in per(Ti ) reports the farthest186

points from p that are located in Ti and this query reports ti whenever p has farthest points outside of Ti .187

As we shall explain later, we obtain the farthest points from p outside of Ti using a query from the hinge of188

Ti in our data structure for the cycle perspective per(C).189

�e data structure for queries from the cycle C consists of two components: the �rst component reports190

the farthest points from C on C itself, using the data structure for cycles from Section 2.2 on C ignoring191

the remainder of U . �e second component reports which branches among T1,T2, . . . ,Tl , if any, contain192

farthest points by supporting queries for the farthest vertices among t1,t2, . . . ,tl from any query point on193

C in the cycle perspective per(C). We call this type of query a farthest-branch query.194

2.3.1 Farthest-Branch�eries195

We consider the perspective perU (C) for the cycle C of a uni-cyclic network. �e vertices t1,t2, . . . ,tl196

represent the compressed branches ofU in perU (C) and are connected to the hingesv1,v2, . . . ,vl , respectively.197

Furthermore, let v̄i denote the farthest point on C from hinge vi , i.e., dC (vi ,v̄i ) = eccC (vi ).198

We call a vertex ti relevant if there exists a point p onC that has ti as a farthest vertex among t1,t2, . . . ,tl ,199

and we call ti irrelevant otherwise. Knowing which of t1,t2, . . . ,tl are relevant will enable us to perform200

farthest-branch queries, i.e., report all branches containing farthest points from a query point on C .201

Lemma 5. Vertex ti is relevant if and only if ti is farthest from v̄i among t1,t2, . . . ,tl .202

Proof. We show both directions via indirection.203

When ti is irrelevant no point on C—including v̄i—has ti as a farthest vertex among t1,t2, . . . ,tl .

vj

vi

v̄i

ti

tj

Figure 8: �e constellation of ti and tj where vj lies on the clockwise path from vi to v̄i .
204

Conversely, let there be some vertex tj that is farther away from v̄i than ti , i.e., d(v̄i ,ti ) < d(v̄i ,tj ). As
illustrated in Figure 8, vj lies either on the clockwise or counter-clockwise path from ti to v̄i . Since either
path is a shortest path, we have d(ti ,v̄i ) = d(ti ,vj ) + d(vj ,v̄i ). �us, tj is farther from vj than ti , as

d(ti ,vj ) = d(ti ,v̄i ) − d(v̄i ,vj ) < d(tj ,v̄i ) − d(v̄i ,vj ) = d(tj ,vj ) .
Now ti is irrelevant, because tj is farther away from any point p on C than ti , since205

d(p,ti ) ≤ d(p,vj ) + d(vj ,ti ) < d(p,vj ) + d(vj ,tj ) = d(p,tj ) . �

9



According to Lemma 5, a vertex ti is irrelevant when there is some other vertex tj with d(ti ,v̄i ) < d(tj ,v̄i ).206

In this case, we say that ti is dominated by tj and write ti ≺ tj . Algorithm 1 below computes the relevant207

vertices using dominance. We begin with a circular list containing the vertices t1,t2, . . . ,tl in the order as208

the hinges v1,v2, . . . ,vl appear along the cycle C . We traverse the list in counterclockwise order and delete209

vertices whenever they are dominated by their successor (succ) or their predecessor (pred). We mark a210

vertex t as processed if we can neither remove t nor any of its neighbors based on this criteria.211

Algorithm 1: Determining the relevant vertices
input : �e vertices t1,t2, . . . ,tl stored in a circular list.
output : �e relevant vertices among t1,t2, . . . ,tl .

1 Mark each t1,t2, . . . ,tl as unprocessed;
2 t ← t1;
3 while t is unprocessed do
4 if t ≺ pred(t) or t ≺ succ(t) then
5 t ← succ(t);
6 delete(pred(t));
7 else if pred(t) ≺ t then delete(pred(t));
8 else if succ(t) ≺ t then delete(succ(t));
9 else /* t ⊀ pred(t) ⊀ t ⊀ succ(t) ⊀ t */

10 Mark t as processed;
11 t ← succ(t);
12 end
13 end

Invariant 6. �e following invariants hold whenever Algorithm 1 marks a vertex as processed in Line 10.212

(i) Every marked vertex t dominates none of its current neighbors, i.e., pred(t) ⊀ t and succ(t) ⊀ t .213

(ii) Every marked vertex t is dominated by none of its current neighbors, i.e., t ⊀ pred(t) and t ⊀ succ(t).214

Proof. Assume, for the sake of a contradiction, that there is a marked vertex ti with a neighbor tj such that215

ti ≺ tj or tj ≺ ti when Line 10 is executed. Assume, without loss of generality, that tj has been marked a�er216

ti or that tj has never been marked so far. When we marked ti as processed, ti and tj were not neighbors.217

When tj became a neighbor of ti , the previous neighbor tk of ti was either deleted in Line 6 with tj assuming218

the role of variable t in Line 5 or tk was deleted in Lines 8 with t = tj . In both cases variable t would be at219

tj with ti as direct neighbor and we would have deleted ti in Line 7 or in Line 8 before marking any other220

vertex as processed. �erefore, we have never marked ti , which contradicts our assumption. �221

As a consequence of Invariant 6, no vertex dominates any neighbor when Algorithm 1 terminates.222

We are now ready to prove the correctness of Algorithm 1. We pre-compute the distances from v1 to all223

other vertices along C while constructing per(C). �is allows us to compare distances along C in constant224

time and, thus, enables us to determine in constant time whether one vertex dominates another.225

�eorem 7. Let S be the perspective of a uni-cyclic network U from its cycle C , and let t1,t2, . . . ,tl be the226

vertices of S representing the l branches of U given in clockwise order. Algorithm 1 computes all relevant227

vertices among t1,t2, . . . ,tl in O(l) time, provided that checking for dominance takes constant time.228

10



Proof. In each iteration of the while-loop of Algorithm 1, we either delete some vertex or we mark the229

vertex stored in t as processed ensuring that it will never assume the role of t again. �erefore, Algorithm 1230

terminates in O(l) steps, provided that checking for dominance is a constant time operation.231

Algorithm 1 never deletes a relevant vertex, since we only delete vertices that are dominated and, thus,232

irrelevant. Consider the circular list of those vertices that remain a�er Algorithm 1 terminates. We assume,233

for the sake of a contradiction, that this list contains irrelevant vertices. Let t be a relevant vertex and let234

tcw be the �rst irrelevant vertex in clockwise direction from t , and let tccw be the �rst irrelevant vertex235

in counterclockwise direction from t . Since no vertex in the �nal list dominates any of its neighbors by236

Invariant 6, the �nal list contains at least four vertices with at least one vertex between t and tcw and at237

least one vertex between t and tccw. �e argumentation below remains valid when tcw and tccw coincide.238

Let v̄ , v̄cw and v̄ccw be the farthest point on C from t , tcw, and tccw, respectively. We distinguish the two239

cases illustrated in Figure 9, based on the relative positions of t , v̄ , and v̄ccw.240

t

v

v̄

tccw

t ′
vccw

v ′

v̄ ′
v̄ccw

(a) �e point v̄ccw lies clockwise between t to v̄ .

t

v

v̄

tccw

vccw

v̄ccw

tcw

vcw

v ′′
t ′′

v̄ ′′

v̄cw

(b) �e point v̄ccw lies counterclockwise between t to v̄ .

Figure 9: �e cyclic order of the branch representing vertices t , tccw, tcw, t ′, t ′′, and their corresponding
antipodal points in the two cases from the proof of �eorem 7.

Consider the case when the point v̄ccw lies on the clockwise path from t to v̄ , as illustrated in Figure 9a.241

Let t ′ B pred(tccw) be the clockwise neighbor of tccw and let v̄ ′ be the farthest point from tccw on C . �e242

vertices v̄ccw, v̄ ′, and v̄ appear clockwise in this order along C , which implies that v̄ccw lies on a shortest243

path from t to v̄ ′, i.e., d(t ,v̄ ′) = d(t ,v̄ccw) + d(v̄ccw,v̄
′). Furthermore, we have tccw ≺ t and t ′ ⊀ t , since tccw244

was the �rst dominated vertex in clockwise direction from t . Together, this yields245

d(tccw,v̄ccw) tccw≺t
< d(t ,v̄ccw) = d(t ,v̄ ′) − d(v̄ ′,v̄ccw) t

′⊀t≤ d(t ′,v̄ ′) − d(v̄ ′,v̄ccw) = d(t ′,v̄ccw) ,
which implies d(tccw,v̄ccw) < d(t ′,v̄ccw), i.e., tccw ≺ t ′. �is contradicts Invariant 6.246

Consider the case when v̄ccw lies on the counterclockwise path from t to v̄ , as illustrated in Figure 9b.247

�is implies that the vertices t , tcw, tccw, and v̄ appear clockwise in this order (with potentially tcw = tccw).248

�erefore, v̄cw also lies on the counterclockwise path from t to v̄ . Similarly, to the above, we derive the249

contradiction tcw ≺ t ′′ where t ′′ B succ(tcw) is the counterclockwise neighbor of tcw. �erefore, tcw (and250

thus tccw) cannot exist and there are no irrelevant vertices in the circular list produced by Algorithm 1. �251

11



We have a circular list of the relevant vertices among t1,t2, . . . ,tl . Using this list, we pre-process S to252

support farthest-branch queries as follows. We pick any relevant vertex ti and traverse C counterclockwise253

starting from v̄i keeping track of the farthest branch. Since ti and its counterclockwise successor tj =254

succ(ti ) are relevant, v̄i has ti as its farthest branch and v̄j has tj as its farthest branch. At some point pi j255

between v̄i and v̄j the farthest branch changes from ti to tj ; we subdivide C at pi j and store ti as farthest256

branch for the (sub)edges from v̄i to pi j . We continue subdividing C in this fashion into at most l chains,257

one for each relevant vertex. Using a binary search on these chains, we answer farthest-branch queries in258

O(log l) time. Figure 10 illustrates an example of this subdivision for the network from Figure 6. As in all259

�gures in this section, edges have unit weight unless indicated otherwise.260

�eorem 8. Let U be a uni-cyclic network with n vertices and cycle C of length l . �ere is a data structure261

with construction time O(n) supporting farthest-branch queries from any query point on C in O(log l) time.262

8

11

89

T4

T3

T1

T4

T3

T1

T2

v5

v3

8

v1

v4

v2

8

(a) A uni-cyclic network.

t4
t3

t1

t2

6
12

38
v5

v3

v1

v4

v2
7

11

9 2.5

5.5

2

3

3

(b) �e farthest-branch subdivision.

Figure 10: �e farthest-branch subdivision (b) of the uni-cyclic network from (a). �e sub-edges in (b)
are shaded in a colour matching their farthest branch. On black sub-edges, no branch contains
farhtest points—instead, the farthest point lies on the opposite side of the cycle. In this example,
no points on the cycle have farthest points in branch T2, i.e., t2 is irrelevant.

2.3.2 �eries in Uni-Cyclic Networks263

We perform an eccentricity query from a point q on U as follows. When q lies on some branch T , we use264

the tree data structures for the perspective T ′ = per(T ) from T , as eccT ′(q) = eccU (q) by construction of265

T ′. When q lies on the cycle C , we �rst compute the distance dB B maxli=1 d(q,ti ) from q to the farthest266

vertex among t1,t2, . . . ,tl in the perspective S = per(C) fromC , using our data structure for farthest-branch267

queries in S . �en, we compute the farthest distance eccC (q) from q on C , using the cycle data structure268

for C . �e greater distance of the two is the eccentricity of q in S and, thus, the eccentricity of q in U , i.e.,269

eccU (q) = eccS (q) = max{dB ,eccC (q)}. �is way, we answer eccentricity queries from branches in constant270

time and eccentricity queries from the cycle in O(log l) time.271

12



T4

T3

T1

T4

T3

T1

T2

v5

v3

v1

v4

v2

8

q

q′

7

11

9 2.5

5.5

2

6

(a) Two queries form the cycle.

t4
t3

t1

t2
v5

v3

v1

v4

v2
7

11

9 2.5

5.5

2

3

3

q

q′

(b) Farthest-branch queries for q and q′.

v ′4

25

v ′1
28 v ′2

25

v ′3

24
v3

v1

v4

v2

8

(c) Cascading the queries into the branches.

v5

v̄2

v̄3

5

3

5
6

6 5

3

5

v̄1

v3

v̄4

v1

v4 v̄5

v2

q̄

q
2

2

(d) �erying for the antipodal of q.

Figure 11: �e farthest-point queries from the points q (salmon) and q′ (ocker) on the cycle of a uni-cyclic
network (a). We perform a farthest-branch query for both query points (b) and then cascade the
queries into the perspectives from the branches (c) and into the cycle (d) as needed.

We perform a farthest-point query from a point q on the cycle C of U as illustrated in Figure 11. We272

�rst perform a farthest branch query from q in S and a farthest point query from q in C . We report the273

antipodal of q on C if it is farthest from q in U and then cascade the query in each reported branch. More274

precisely, if T was a branch containing farthest points from q then perform a farthest-point query from275

v ′ in the perspective T ′ = perU (T ) of U from T , where v ′ is the vertex representing the exterior of T . �e276

farthest leaves from v ′ in T ′ are also farthest from any point outside of T that has farthest points in T .277

We perform a farthest-point query from a point q on a branch T of U with hinge v as follows. We begin278

with a farthest point query in the perspective T ′ = per(T ) ofU from T . �is reports all farthest points from279

q in T and, potentially, the point v ′ representing the exterior of T . When cascading the query from T ′ into280

the perspective S = per(C) of U from the cycle C , we need to perform a farthest-point query in S from the281

vertex t representing T . However, we have no structure to support this query directly. Instead, we query282

from v in S , which leads to a good case and a bad case.283

13



In the good case, shown in Figure 12, v has some farthest point in S other than t , which means that the284

farthest points from t are the farthest points from v (potentially excluding t itself). In the bad case, shown285

in Figure 13, t is the only farthest point from v in S . Fortunately, the bad case can only appear for exactly286

one branch ofU , as t being the only farthest vertex fromv implies that t is farthest from all other vertices of287

S as well. �erefore, we can deal with the bad case by computing the farthest points from v in the network288

S −vt (during the preprocessing phase) and storing the result with v . We use this only when cascading a289

query from T into S , i.e., when we know that there are farthest points from the query point q outside of T .290

�e following theorem summarizes our data structure for uni-cyclic networks.291

�eorem 9. Let U be a uni-cyclic network with n vertices and a cycle of length l . �ere is a data structure292

with size and construction time O(n) supporting eccentricity queries from the branches of U in O(1) time,293

eccentricity queries from the cycle in O(log l) time, farthest-point queries from branches in O(k) time, and294

farthest-point queries from the cycle in O(k + log l) time, where k is the number of reported farthest points.295

q

(a) A query from a branch.

q
6

(b) �erying within the perspective from the branch.

5

4

3

(c) Cascading the query into the perspective from the cycle.

7

(d) Cascading the query into another branch.

Figure 12: A farthest-point query from a branch of a unicyclic network (a). We perform a farthest-point
query in the perspective from the branch containing the query point (b). We cascade the query
into the perspective from the cycle (c) and then into another branch as needed (d).

14



q

(a) A query from a branch.

7

q

(b) �erying in the perspective from the branch.

5

3

10
bad case!

(c) Farthest-branch query leads back into the branch.

5

3

(d) Fixed farthest-branch query.

6

(e) �ery continues in correct branch.

Figure 13: �e bad case for a farthest-point query from a branch T (red) of a unicyclic network (a). We
perform a farthest-point query in the perspective from the branch containing the query point (b).
We cascade the query into the perspective from the cycle (c), however, this query sends us back
into the red branch, since the red branch is farthest on the entire cycle. To �x this, we remove
the edge representing the red branch (d) and repeat the query in the resulting network. �is
time, we obtain the correct branch where we cascade the query (e) to determine the farthest
points in this (blue) branch. Observe that the �xed network (d) is irrelevant for queries from
other branches which will use the normal perspective from the cycle (c).

15



3 Cactus Networks296

In this section, we construct a data structure supporting eccentricity queries and farthest-point queries on297

cactus networks. Recall that a cactus networks is a network in which no two simple cycles share an edge.298

�e following notions prove useful when describing cactus networks; examples are shown in Figure 14.299

A cut-vertex is a vertex whose removal increases the number of connected components, a block is a maximal300

connected sub-graph without cut-vertices and with at least three vertices, and a branch is a (maximal) tree301

that remains when removing the edges of all blocks and all resulting isolated vertices. We treat blocks and302

branches in a similar fashion, so we refer to a sub-network B as a bag when B is either a block or a branch.303

Decomposing a network with n vertices into its blocks and branches takes O(n) time [17]. A hinge is a304

vertex contained in more than one bag. �e tree structure of a cactus networkG , denoted byT (G), is the tree305

whose vertices are the hinges and bags of G where a hinge h is connected to a bag B when h lies in B [16].

h

v

u

(a) A cactus network G with 7 bags.

hB

(b) �e tree structure T (G) of G.

Figure 14: A cactus network (a) together with its tree structure (b). �e blocks and branches are indicated
in colours and the hinges connecting these bags are marked as empty discs. For example, the
green edges form a block and the red edges form a branch. Vertex h is a hinge, because h is a
cut-vertex contained in more than one bag; vertex v is a cut-vertex but not a hinge, since v is
only contained in the yellow branch; and vertex u is not a cut-vertex and, thus, also not a hinge.

306

Let B be a bag containing hinge h. �e component containing h a�er removing all edges of B is called307

the bag-cut of B at h, denoted by bcut(B,h). �e component containing h a�er removing all edges of308

bcut(B,h) is called the co-bag-cut of B at h, denoted by co-bcut(B,h). Figure 15 gives examples of bag-cuts309

and co-bag-cuts for the cactus network from Figure 14.310

We view an (undirected) edge from B to h in the tree structure as two (directed) arcs B → h and h → B.311

As illustrated in Figures 15c and 15d, we associate bcut(B,h) with B → h and we associate co-bcut(B,h)312

with h → B. We use this correspondence as orientation. For example, we store the eccentricity of h in313

bcut(B,h) with the arc B → h and the eccentricity of h in co-bcut(B,h) with the arc h → B.314

16



(a) �e bag-cuts of the green block.

B

(b) �e arcs in T (G) corresponding to the bag-cuts in (a).

(c) �e bag-cut and the co-bag-cut of B at h.

hB

(d) �e arcs in T (G) corresponding to the cuts in (c).

Figure 15: �e bag-cuts of the green block (a) together with their corresponding arcs (of matching colour)
in the tree structure (b). �e bag-cut (salmon) and co-bag-cut (light green) corresponding to the
two arcs of an edge from B to h in the tree structure (d) and in the network itself (c).

3.1 Eccentricity�eries315

To support eccentricity queries on a bag B of a network G , we compress the bag-cuts of B like we compress316

the branches of uni-cyclic networks: for any hinge h ∈ B we replace bcut(B,h) with a vertex ĥ and an edge317

hĥ whose weight is the largest distance from h to any point in bcut(B,h), i.e., whĥ = eccbcut(B,h)(h). We318

refer to the resulting network as the perspective of G from B, denoted by perG (B). �e perspective of G319

from bag B preserves farthest distances of G, i.e., we have eccperG (B)(p) = eccG (p) for all p on B.320

�e perspective from a branch is a tree and the perspective from a block of a cactus network is a uni-cyclic321

network. Since, we already have e�cient data structures for trees and uni-cyclic networks, the challenge322

lies in constructing these perspectives in linear time. As illustrated in Figure 16, we �rst construct the323

perspective per(B∗) of an arbitrary bag B∗ by computing the extended shortest path tree of each hinge h∗ of324

B∗ in bcut(B∗,h∗). �is takes linear time using a modi�ed breadth-�rst search from each hinge h∗ where we325

cut each simple cycle C at the antipodal v̄ of the vertex v where we �rst enter C . Using the data structure326

for queries in per(B∗) and the extended shortest path trees from the hinges of B∗, we then construct the327

perspectives from the bags adjacent to B∗ and continue in a breadth-�rst search fashion.328

17



B∗

h∗

(a) �e bag-cuts of the starting bag B∗.

B∗

h∗

eccbcut(B∗,h∗)(h∗)
ĥ∗

(b) �e perspective from B∗.

Figure 16: A schematic view of the construction of the perspective per(B∗) from the initial bag B∗. For every
hinge h∗ of B∗, the bag-cut bcut(B∗,h∗) is replaced with an edge h∗ĥ∗ weighted with the largest
distance from h∗ into bcut(B∗,h∗). �e extended shortest path trees from the hinges of B∗ are
outlined as arrows from the hinges of the network. An arrow pointing into the co-bag-cut of bag
B at hinge h means that we obtain the extended shortest path tree from h into co-bcut(B,h) as a
by-product of the construction of the perspective from B∗.

Let B′ be a bag neighboring B∗ at hinge h∗, as shown in Figure 17. For all hinges h′ of B′ with h′ , h∗,
the extended shortest path tree of h′ in bcut(B′,h′) is a sub-tree of the extended shortest path tree of h∗
in bcut(B∗,h∗). So we know the weight of the edge ĥ′h′ in per(B′), where ĥ′ represents bcut(B′,h′). At
hinge h∗, we have the extended shortest path trees of h∗ in every co-bag-cut at h∗ except for co-bcut(B∗,h∗),
the one leading back into B∗. �e eccentricity of h∗ in bcut(B′,h∗) is the largest distance from h∗ into any
co-bag-cut co-bcut(B,h∗) for all bags B neighboring B′ at h∗, i.e.,

eccbcut(B′,h∗)(h∗) = max{eccco-bcut(B,h∗)(h∗) | B is a bag with h∗ ∈ B , B′} . (1)

We need eccco-bcut(B∗,h∗)(h∗) to compute per(B′). �e di�erence between the perspective perG (B∗) of G329

fromB∗ and the perspective perco-bcut(B∗,h∗)(B∗) of co-bcut(B∗,h∗) fromB∗ is that the la�er lacks the edge ĥ∗h∗330

where ĥ∗ represents bcut(B∗,h∗) in perG (B∗). We avoid constructing perco-bcut(B∗,h∗)(B∗) using the following331

observation. �e farthest points from ĥ∗ in perG (B∗,h∗) are also farthest from h∗ in perco-bcut(B∗,h∗)(B∗) =332

perG (B∗,h∗) − ĥ∗h∗, but they are closer by wh∗ĥ∗ , i.e.,333

eccco-bcut(B∗,h∗)(h∗) = eccper(B∗)−ĥ∗h∗(h∗) = eccper(B∗)(ĥ∗) −wh∗ĥ∗ = eccper(B∗)(ĥ∗) − eccbcut(B∗,h∗)(h∗) .

To see this, consider the extended shortest path tree from ĥ∗ in perG (B∗). Removing the edge ĥ∗h∗ from334

this tree yields the extended shortest path tree from h∗ in perG (B∗) − ĥ∗h∗ = co-bcut(B∗,h∗). In this way,335

we obtain eccco-bcut(B∗,h∗)(h∗) with a constant time query from ĥ∗ in perG (B∗), as illustrated in Figure 17d.336

Finally, we obtain the missing value eccbcut(B′,h∗)(h∗) by taking the maximum in (1). However, we need337

to avoid a dependence on the number of bags containing h∗, i.e., the degree of h∗ in the tree structure.338

18



B∗

B′

h∗

(a) �e bag-cuts of neighboring bag B′.

B′

h∗

?

(b) �e missing weight in the persprective from B′.

B∗

h∗

(c) �e desired query in co-bcut(B∗,h∗).

B∗

h∗

eccbcut(B∗,h∗)(h∗)
ĥ∗

(d) �e actual query in per(B∗).
Figure 17: A schematic view of the construction of the perspective of a bag B′ neighboring the initial

bag B∗. From the construction of per(B∗), we already have the distance information for the
bag-cuts (blue) of B′ at all hinges except for the one at h∗ (green) and we have the distances
for all co-bag-cuts of neighbors of B′ (yellow) other than co-bcut(B∗,h∗) (red). To obtain the
missing value eccco-bcut(B∗,h∗)(h∗) we would like to query from h∗ in co-bcut(B∗,h∗), but instead
we perform a query from ĥ∗ in per(B∗) to avoid constructing a data structure for co-bcut(B∗,h∗).

19



We augment the arcs of T (G) with the following during the construction of B∗: When we compute the339

extended shortest path trees from the hinges of B∗, we store eccco-bcut(B,h)(h) with arc h → B in T (G).340

�ese values are, at �rst, unknown for arcs in T (G) on paths towards B∗. With each hinge vertex we341

store the largest and second largest known value among its adjacent arcs in T (G) and two bags B1 and342

B2 a�aining these values. How does this help us compute the maximum in (1)? When we learn of the343

missing value eccco-bcut(B∗,h∗)(h∗) at h∗ in T (G), we have three cases depending on whether h∗ has farthest344

points in the direction of B∗ or, if not, in the direction of B′. First, eccco-bcut(B∗,h∗)(h∗) could be larger than345

eccco-bcut(B1,h∗)(h∗) in which case eccbcut(B′,h∗)(h∗) = eccco-bcut(B∗,h∗)(h∗). Second, eccco-bcut(B∗,h∗)(h∗) could be346

strictly smaller than eccco-bcut(B1,h∗)(h∗) with B1 , B′ in which case eccbcut(B′,h∗)(h∗) = eccco-bcut(B1,h∗)(h∗).347

�ird, eccco-bcut(B∗,h∗)(h∗) could be strictly smaller than eccco-bcut(B1,h∗)(h∗) with B1 = B′ in which case348

eccbcut(B′,h∗)(h∗) = eccco-bcut(B2,h∗)(h∗). With the aforementioned bookkeeping, we can handle each of the349

three cases in constant time and consequently construct per(B′) in time proportional to the size of B′.350

With the above technique, we construct per(B′) re-using the preprocessing from the construction of351

per(B∗) and the augmented tree structure. In the same way, we construct the perspectives from all other352

neighbors of B∗, then all perspectives from the neighbors of all neighbors of B∗ and so forth for an overall353

construction time of O(n). We inherit the query times from the data structures of trees and uni-cyclic354

networks; in summary this yields the following theorem for eccentricity queries in cactus networks.355

�eorem 10. LetG be a cactus network withn vertices. �ere is a data structure withO(n) size and construction356

time supporting eccentricity queries onG in O(1) time from branches and in O(log l) time from blocks of size l .357

3.2 Farthest-Point�eries358

Consider a farthest-point query from a point q in bag B, as illustrated in Figure 18. First, we perform a359

farthest-point query from q in the farthest-point data structure of the perspective of G from B. �is query360

yields all farthest-points from q inside B and it returns the vertex ĥ representing the bag-cut bcut(B,h)361

when q has farthest points in bcut(B,h). Any path from q to a farthest point q̄ in bcut(B,h) passes through h,362

hence q̄ is also farthest from h in bcut(B,h). Recall that bcut(B,h) consists of the co-bag-cuts co-bcut(B′,h)363

of the bags B′ neighboring B at h. To �nd all farthest points from q in bcut(B,h), we cascade the query into364

the co-bag-cuts co-bcut(B′,h) of those neighbors B′ of B that contain farthest points from h in bcut(B,h),365

i.e., eccco-bcut(B′,h)(h) = eccbcut(B,h)(h). For the decision into which co-bag-cuts to cascade, we consult the366

eccentricity values stored with the arcs of the tree structure.367

Now assume we cascade a query from q into the co-bag-cut co-bcut(B′,h), as in Figures 18c and 18d. To368

query for the farthest points from h in co-bcut(B′,h), we perform a farthest-point query from ĥ′ in per(B′),369

where ĥ′ is the vertex representing bcut(B′,h) in per(B′). �e farthest points from ĥ′ in per(B′) are also370

farthest from h in per(B′)− ĥ′h, which corresponds to co-bcut(B′,h). Since ĥ′ is a pendant vertex in per(B′),371

this query takes time proportional to the number of reported farthest points in per(B′). �e farthest points372

from ĥ′ in per(B′) that lie in B′ are farthest points form the original query point q, and those farthest points373

from ĥ′ in per(B′) that represent bag-cuts adjacent to B′ indicate where we have to continue our search for374

other farthest points from q. In this fashion, we propagate the query from q to the bags of G along paths to375

farthest points from q. However, we might visit Ω(n) bags before we reach one that contains a farthest376

point from q. We improve the query time by introducing shortcuts in the tree structure to bypass long377

chains of bags without farthest points.378

20



q

(a) A query from q with its farthest points.

q

(b) �ery in the perspective containing q.

(c) Cascading the query in adjacent bags. (d) Cascading the query further.

Figure 18: Answering a farthest-point query from q using the perspectives. �ery points are indicated
with orange circles, reported farthest points with orange squares. To process the query, we �rst
query for q in the perspective from the bag containing the query point (b). �en we cascade the
query into adjacent bags that lead to further farthest points (c and d). Here, we show only two
cascaded queries, to report all farthest points, we need �ve more cascaded queries.

Consider a co-bag-cut co-bcut(B,h) of bag B at hinge h. �is co-bag-cut corresponds to the arc from h to379

B in the tree structure and all bags in co-bcut(B,h) are in the sub-treeTh→B reachable from h through B. To380

give a visual idea of our shortcuts, imagine we do the following: First, we color a bag B′ in Th→B red when381

B′ contains farthest points from h in co-bcut(B,h). Second, we color an uncolored bag B′ in Th→B orange382

when two paths from h to red bags split at B′. Finally, we color the remaining bags black. We seek to bypass383

black bags, since these are irrelevant for our query. For now, we only consider arcs of Th→B leading away384

from h. �e shortcut for arc h′ → B′ in Th→B leads to the �rst arc h′′ → B′′ where B′′ is the closest orange385

or red descendant of h′. �e shortcuts reachable from h form a directed tree where all vertices representing386

bags are either yellow or red; following all shortcuts in this tree takes time O(r ) where r is the number of387

red bag vertices in Th→B . In other words, using these shortcuts, the number of bags visited when reporting388

farthest points from h in co-bcut(B,h) is linear in the number of bags containing these farthest points. An389

example of a farthest-point query with and without using shortcuts is shown in Figure 19.390

How can we determine these shortcuts e�ciently? Recall that the propagation scheme starts at some bag391

B∗ where we �rst compute the extended shortest path tree of each hinge h in B∗ in bcut(B∗,h∗). We �rst392

consider only the arcs ofT (G) leading away from B∗. �e arcs leading to leaf bags ofT (G) need no shortcuts.393

Consider an arc h → B and assume that all other arcs in the sub-tree Th→B already have their shortcuts, as394

illustrated in Figure 20 on page 23. We distinguish three cases using a query in per(B): First, there could be395

farthest points from ĥ in B (red case). Second, there could be farthest points from ĥ in two bag cuts of B396

21



q

(a) A query from q with its farthest points. (b) Traversal of the tree structure.

Figure 19: �e traversal of the tree strucuture (b) during a farthest-point query (a). �e bags containing
farthest-points are colored red, the bags where two paths to farthest points split are colored
yellow, and all other blocks are colored gray. In blue, we highlight the arcs visited during the
query and, in green, we highlight a shortcut bypassing several gray bags.

(orange case). �ird, all farthest points from ĥ could lie in a single bag cut bcut(B,h′) (black or orange case).397

In the �rst two cases, we introduce a trivial shortcut, i.e., the shortcut from h → B points to h → B. In the398

third case, we inspect the information stored at the arcs incident to hinge h′ to determine whether the399

farthest points from ĥ in bcut(B,h′) lie in multiple co-bag-cuts at h′ (orange case) or in a single co-bag-cut400

co-bcut(B′,h′) (black case). In the black case, we introduce a shortcut from h → B to the destination of401

the shortcut from h′ → B′. In this way, we obtain all shortcuts in the tree structure leading away from B∗402

without increasing our asymptotic bound on the size and construction time.403

We employ our breadth-�rst-search propagation scheme to construct the shortcuts in the tree structure404

for arcs pointing towards B∗. At any hinge h of B∗, we are only missing the shortcut for the arc h → B∗.405

With a query in per(B∗), we can immediately determine whether the red, the orange or the black case from406

above applies; no shortcuts towards B∗ are required for this step. With all shortcuts of the arcs from the407

hinges of B∗ in place, we can compute the shortcuts towards B∗ for the hinges of all blocks neighboring B∗,408

then all hinges of the bags neighboring the neighbors of B∗ and so forth.409

Placing the shortcuts during the construction of our data structure for eccentricity queries takes only410

constant additional time and space per shortcut. How much time does a farthest point query take? First,411

we have to perform a farthest-point query in the perspective from the bag containing the query point.412

�en, we follow shortcuts towards bags containing more farthest points. �e farthest-point queries in the413

perspective of subsequent bags B′ take time linear in the number of reported farthest points in per(B′),414

since we query from pendant vertices of per(B′). Moreover, as all visited blocks are either orange or red,415

the number of visited blocks is linear in the number of red blocks, i.e., blocks containing farthest points.416

Altogether, this yields a query time of O(k) from branches and O(k + log l) from blocks of size l .417

�eorem 11. LetG be a cactus network withn vertices. �ere is a data structure withO(n) size and construction418

time supporting farthest-point queries onG inO(k) time from branches and inO(k + log l) time from blocks of419

size l , where k is the number of reported farthest points.420

22



?

B

h

ĥ

(a) �e missing shortcut for co-bcut(B,h).

B

h

ĥ

(b) We do not place a shortcut when the perspective
from B contains any farthest points within B itself.

B

h

ĥ

(c) We do not introduce a shortcut when there are
farthest points in several adjacent bag-cuts.

B

h

ĥ

(d) When only one bag-cut contains farthest-points,
we take a closer look at its co-bag-cuts.

B

h

ĥ

h′

(e) We do not introduce a shortcut when several co-
bag-cuts contain farthest points.

B′
B

h

ĥ

h′

(f) We only introduce a shortcut when only one co-
bag-cut contains farthest points.

Figure 20: Determining a missing shortcut into a co-bag-cut of B at h, where the shortcuts for all co-bag
cuts of the other hinges of B are known (a). We consider the farthest points from ĥ in per(B): we
place no shortcut when (b) there are farthest points in B, when (c) paths to farthest points split
at B, and when (d,e) all farthest points lie in multiple co-bag-cuts of the same adjacent bag-cut.
We only place a shortcut when (f) all farthest points lie in a single co-bag cut co-bcut(B′,h′). In
this case, the shortcut from co-bcut(B,h) leads to the target of the shortcut into co-bcut(B′,h′).

23



4 Conclusions and Future Work421

In previous work [4], we obtain a data structure with construction time O(m2 logn) for any network with n422

vertices andm edges, and with optimal query times for eccentricity queries and farthest-point queries. In423

this work, we improve the construction time to O(n) for certain classes of networks without sacri�cing424

optimal query time. In future work, we aim to achieve o(m2 logn) construction time for more general425

classes of networks such as planar networks, k-almost-trees [10], and series parallel graphs [6].426

References427

[1] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangulations.428

World Scienti�c, 2013. doi: 10.1142/8685.429

[2] Boaz Ben-Moshe, Binay Bha�acharya, Qiaosheng Shi, and Arie Tamir. “E�cient algorithms for430

center problems in cactus networks”. In: �eoretical Computer Science 378.3 (2007), pp. 237–252. doi:431

10.1016/j.tcs.2007.02.033.432

[3] Prosenjit Bose, Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, and Michiel Smid. “Optimal433

Data Structures for Farthest-Point �eries in Cactus Networks”. In: Proceedings of the 25th Canadian434

Conference on Computational Geometry. CCCG 2013. (Waterloo, Ontario, Canada, Aug. 8–10, 2013).435

2013. url: http://cccg.ca/proceedings/2013/papers/paper 23.pdf.436

[4] Prosenjit Bose, Kai Dannies, Jean-Lou De Carufel, Christoph Doell, Carsten Grimm, Anil Maheshwari,437

Stefan Schirra, and Michiel Smid. “Network Farthest-Point Diagrams”. In: Journal of Computational438

Geometry 4.1 (2013), pp. 182–211. url: http://jocg.org/v4n1p8/.439

[5] Rainer E. Burkard and Jakob Krarup. “A linear algorithm for the pos/neg-weighted 1-median problem440

on a cactus”. In: Computing 60.3 (1998), pp. 193–215. doi: 10.1007/BF02684332.441

[6] Richard J. Du�n. “Topology of Series-Parallel Networks”. In: Journal of Mathematical Analysis and442

Applications 10.2 (1965), pp. 303–318. doi: 10.1016/0022-247X(65)90125-3.443

[7] Martin Erwig. “�e Graph Voronoi Diagram with Applications”. In: Networks 36.3 (2000), pp. 156–163.444

doi: 10.1002/1097-0037(200010)36:3〈156::AID-NET2〉3.0.CO;2-L.445

[8] Takehiro Furuta, Atsuo Suzuki, and Keisuke Inakawa. �e k-th Nearest Network Voronoi Diagram and446

its Application to Districting Problem of Ambulance Systems. Technical Report 0501. Nanzan University,447

2005. url: http://birdie.ic.nanzan-u.ac.jp/MCENTER/pdf/wp0501.pdf.448

[9] Carsten Grimm. “Eccentricity Diagrams. On Charting Farthest-Point Information in Networks”.449

Diplomarbeit (Master’s �esis). Magdeburg: O�o-von-Guericke Universität Magdeburg, Mar. 2012.450

[10] Yuri Gurevich, Larry J. Stockmeyer, and Uzi Vishkin. “Solving NP-Hard Problems on Graphs that are451

almost Trees and an Application to Facility Location Problems”. In: Journal of the ACM 31.3 (1984),452

pp. 459–473. doi: 10.1145/828.322439.453

[11] S. Louis Hakimi. “Optimum Locations of Switching Centers and the Absolute Centers and Medians454

of a Graph”. In: Operations Research 12.3 (1964), pp. 450–459. JSTOR: 168125.455

[12] S. Louis Hakimi, Martine Labbé, and Edward Schmeichel. “�e Voronoi Partition of a Network and456

its Implications in Location �eory”. In: ORSA Journal on Computing 4.4 (1992), pp. 412–417. doi:457

10.1287/ijoc.4.4.412.458

24

http://dx.doi.org/10.1142/8685
http://dx.doi.org/10.1016/j.tcs.2007.02.033
http://cccg.ca/proceedings/2013/papers/paper_23.pdf
http://jocg.org/v4n1p8/
http://dx.doi.org/10.1007/BF02684332
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://dx.doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L
http://birdie.ic.nanzan-u.ac.jp/MCENTER/pdf/wp0501.pdf
http://dx.doi.org/10.1145/828.322439
http://www.jstor.org/stable/168125
http://dx.doi.org/10.1287/ijoc.4.4.412


[13] Pen�i Hämäläinen. “�e absolute Center of a unicyclic Network”. In: Discrete Applied Mathematics459

25.3 (1989), pp. 311–315. doi: 10.1016/0166-218X(89)90009-7.460

[14] Gabriel Y. Handler. “Minimax Location of a Facility in an undirected Tree Graph”. In: Transportation461

Science 7.3 (1973), pp. 287–293. JSTOR: 25767706.462

[15] Pierre Hansen, Martine Labbé, and Brigi�e Nicolas. “�e Continuous Center Set of a Network”. In:463

Discrete Applied Mathematics 30.2-3 (1991), pp. 181–195. doi: 10.1016/0166-218X(91)90043-V.464

[16] Frank Harary and Geert Prins. “�e Block-Cutpoint-Tree of a Graph”. In: Publicationes Mathematicae465

Debrecen 13 (1966), pp. 103–107.466

[17] John Hopcro� and Robert Tarjan. “Algorithm 447: E�cient Algorithms for Graph Manipulation”. In:467

Communications of the ACM 16 (6 June 1973), pp. 372–378. doi: 10.1145/362248.362272.468

[18] Oded Kariv and S. Louis Hakimi. “An Algorithmic Approach to Network Location Problems. I: �e469

p-Centers”. In: SIAM Journal on Applied Mathematics 37.3 (1979), pp. 513–538. doi: 10.1137/0137040.470

[19] Rex K. Kincaid. “Exploiting Structure: Location Problems on Trees and Treelike Graphs”. In: Founda-471

tions of Location Analysis. Springer US, 2011, pp. 315–334. doi: 10.1007/978-1-4419-7572-0 14.472

[20] Rex K. Kincaid and Timothy J. Lowe. “Locating an absolute center on graphs that are almost trees”.473

In: European Journal of Operational Research 44.3 (1990), pp. 357–372. doi: 10.1016/0377-2217(90)474

90247-9.475

[21] Mohammad Kolahdouzan and Cyrus Shahabi. “Voronoi-based K Nearest Neighbor Search for Spatial476

Network Databases”. In: Proceedings of the �irtieth International Conference on Very Large Data Bases.477

VLDB ’04. (Toronto, Ontario, Canada, Aug. 31–Sept. 3, 2004). VLDB Endowment, 2004, pp. 840–851.478

url: http://www.vldb.org/conf/2004/RS21P6.PDF.479

[22] Martine Labbé, Dominique Peeters, and Jacques-François �isse. “Location on Networks”. In: Network480

Routing. Vol. 8. Handbooks in Operations Research and Management Science. Elsevier, 1995. Chap. 7,481

pp. 551–624. doi: 10.1016/S0927-0507(05)80111-2.482

[23] Yu-Feng Lan, Yue-Li Wang, and Hitoshi Suzuki. “A linear-time Algorithm for solving the Center483

Problem on weighted Cactus Graphs”. In: Information Processing Le�ers 71.5–6 (1999), pp. 205–212.484

doi: 10.1016/S0020-0190(99)00111-8.485

[24] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial Tessellations: Concepts486

and Applications of Voronoi Diagrams. 2nd Edition. Probability and Statistics. John Wiley & Sons, Ltd.,487

2000. doi: 10.1002/9780470317013.488

[25] Atsuyuki Okabe, Toshiaki Satoh, Takehiro Furuta, Atsuo Suzuki, and K. Okano. “Generalized Network489

Voronoi Diagrams: Concepts, Computational Methods, and Applications”. In: International Journal of490

Geographical Information Science 22.9 (2008), pp. 965–994. doi: 10.1080/13658810701587891.491

[26] Atsuyuki Okabe and Kokichi Sugihara. Spatial Analysis Along Networks: Statistical and Computational492

Methods. Statistics in Practice. John Wiley & Sons, Ltd., 2012. doi: 10.1002/9781119967101.493

[27] Atsuyuki Okabe and Atsuo Suzuki. “Locational Optimization Problems solved through Voronoi494

Diagrams”. In: European Journal of Operational Research 98.3 (1997), pp. 445–456. doi: 10.1016/S0377-495

2217(97)80001-X.496

25

http://dx.doi.org/10.1016/0166-218X(89)90009-7
http://www.jstor.org/stable/25767706
http://dx.doi.org/10.1016/0166-218X(91)90043-V
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1137/0137040
http://dx.doi.org/10.1007/978-1-4419-7572-0_14
http://dx.doi.org/10.1016/0377-2217(90)90247-9
http://dx.doi.org/10.1016/0377-2217(90)90247-9
http://dx.doi.org/10.1016/0377-2217(90)90247-9
http://www.vldb.org/conf/2004/RS21P6.PDF
http://dx.doi.org/10.1016/S0927-0507(05)80111-2
http://dx.doi.org/10.1016/S0020-0190(99)00111-8
http://dx.doi.org/10.1002/9780470317013
http://dx.doi.org/10.1080/13658810701587891
http://dx.doi.org/10.1002/9781119967101
http://dx.doi.org/10.1016/S0377-2217(97)80001-X
http://dx.doi.org/10.1016/S0377-2217(97)80001-X
http://dx.doi.org/10.1016/S0377-2217(97)80001-X


[28] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. “�ery Processing in Spatial Network497

Databases”. In: Proceedings of the 29th International Conference on Very Large Data Bases. VLDB ’03.498

(Berlin, Germany, Sept. 9–12, 2003). VLDB Endowment, 2003, pp. 802–813. url: http://www.vldb.499

org/conf/2003/papers/S24P02.pdf.500

[29] Charles S. ReVelle and Horst A. Eiselt. “Location Analysis: A Synthesis and Survey”. In: European501

Journal of Operational Research 165.1 (2005), pp. 1–19. doi: 10.1016/j.ejor.2003.11.032.502

[30] Qiaosheng Shi. “E�cient Algorithms for Network Center/Covering Location Optimization Prob-503

lems”. PhD thesis. Burnaby, British Columbia, Canada: School of Computing Science, Simon Fraser504

University, 2008. url: http://summit.sfu.ca/item/8893.505

[31] David Taniar and Wenny Rahayu. “A Taxonomy for Nearest Neighbour �eries in Spatial Databases”.506

In: Journal of Computer and System Sciences 79.7 (2013), pp. 1017–1039. doi: 10.1016/j.jcss.2013.507

01.017.508

[32] Barbaros Ç. Tansel. “Discrete Center Problems”. In: Foundations of Location Analysis. International509

Series in Operations Research & Management Science. Springer US, 2011, pp. 79–106. doi: 10.1007/510

978-1-4419-7572-0 5.511

[33] Barbaros Ç. Tansel, Richard L. Francis, and Timothy J. Lowe. “Location on Networks: A Survey.512

Part I: �e p-Center and p-Median Problems”. In: Management Science 29.4 (1983), pp. 482–497. doi:513

10.1287/mnsc.29.4.482.514

[34] Barbaros Ç. Tansel, Richard L. Francis, and Timothy J. Lowe. “Location on Networks: A Survey.515

Part II: Exploiting Tree Network Structure”. In: Management Science 29.4 (1983), pp. 498–511. doi:516

10.1287/mnsc.29.4.498.517

26

http://www.vldb.org/conf/2003/papers/S24P02.pdf
http://www.vldb.org/conf/2003/papers/S24P02.pdf
http://www.vldb.org/conf/2003/papers/S24P02.pdf
http://dx.doi.org/10.1016/j.ejor.2003.11.032
http://summit.sfu.ca/item/8893
http://dx.doi.org/10.1016/j.jcss.2013.01.017
http://dx.doi.org/10.1016/j.jcss.2013.01.017
http://dx.doi.org/10.1016/j.jcss.2013.01.017
http://dx.doi.org/10.1007/978-1-4419-7572-0_5
http://dx.doi.org/10.1007/978-1-4419-7572-0_5
http://dx.doi.org/10.1007/978-1-4419-7572-0_5
http://dx.doi.org/10.1287/mnsc.29.4.482
http://dx.doi.org/10.1287/mnsc.29.4.498

	Introduction
	Preliminaries and Problem Definition
	Related Work
	Structure and Results

	Trees, Cycles, and Uni-Cyclic Networks
	Trees
	Cycles
	Uni-Cyclic Networks
	Farthest-Branch Queries
	Queries in Uni-Cyclic Networks


	Cactus Networks
	Eccentricity Queries
	Farthest-Point Queries

	Conclusions and Future Work

