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Abstra
tLayered Manufa
turing is a te
hnology that allows physi
al prototypes of three-dimensionalmodels to be built dire
tly from their digital representation, as a sta
k of two-dimensionallayers. A key design problem here is the 
hoi
e of a suitable dire
tion in whi
h the digitalmodel should be oriented and built so as to minimize the area of 
onta
t between the prototypeand temporary support stru
tures that are generated during the build. Devising an eÆ
ientalgorithm for 
omputing su
h a dire
tion has remained a diÆ
ult problem for quite some time.In this paper, a suite of eÆ
ient and pra
ti
al heuristi
s is presented for estimating the minimum
onta
t-area. Also given is a te
hnique for evaluating the quality of the estimate provided byany heuristi
, whi
h does not require knowledge of the (unknown and hard-to-
ompute) optimalsolution; instead, it provides an indire
t upper bound on the quality of the estimate via tworelatively easy-to-
ompute quantities. The algorithms are based on various te
hniques from
omputational geometry, su
h as ray-shooting, 
onvex hulls, boolean operations on polygons,and spheri
al arrangements, and have been implemented and tested. Experimental results on awide range of real-world models show that the heuristi
s perform quite well in pra
ti
e.
1 Introdu
tionLayered Manufa
turing (LM) is a fast-growing te
hnology with signi�
ant impa
t on the eÆ
ien
yof the design pro
ess in a broad range of industries [Ja
92, CLL03℄. LM o�ers a 
exible and 
ost-e�e
tive alternative to traditional methods used in the design phase of physi
al prototypes. CurrentLM te
hnology produ
es high-quality prototypes with added 
olor in a matter of hours and at low
ost. The prototypes 
an be inspe
ted for 
aws and if ne
essary the design 
an be modi�ed andthe pro
ess repeated until the �nal design has rea
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Figure 1: The Stereolithography Apparatus, along with the sli
ed digital model and support stru
-tures.
Stereolithography is a widely-used LM pro
ess. In essen
e, the Stereolithography Apparatus(SLA) 
onsists of a vat of light-sensitive liquid resin, a platform, and a laser (see Figure 1). Theinput to the pro
ess (and to virtually all other LM pro
esses) is a surfa
e triangulation of thedigital model in the industry-standard STL format. The model is oriented suitably and sli
ed intohorizontal 2D layers, whi
h are then sent over a network to the SLA. The laser tra
es out the
ontour of ea
h layer (a polygon) and then s
ans the interior in a zig-zag pattern. The exposureto the laser 
auses the s
anned portion of the liquid to harden and form the physi
al layer. Theplatform is then lowered by an amount equal to the layer thi
kness (typi
ally a few thousandths ofan in
h) and the next layer is then built on top of the previous one; thus, the 3D prototype is realizedeventually as a verti
al sta
k of 2D layers. Ideally ea
h new layer should rest 
ompletely on top ofthe previous one, so that the prototype is self-supporting during the build phase. Unfortunately,the 
omplex shape of real-world prototypes often prevents them from being self-supporting (inany orientation). Therefore, during a pre-pro
essing step, the model is analyzed and additionalstru
tures 
alled supports are 
reated and merged with the des
ription of the model. Supports arebuilt simultaneously with the prototype and later removed in a post-pro
essing step.The 
hoi
e of orientation 
an impa
t 
riti
ally the eÆ
ien
y of the build pro
ess and the surfa
equality of the physi
al prototype. Several 
ompeting 
riteria need to be addressed when 
hoosingan optimal orientation. For example, an optimal orientation that minimizes the amount of supportstru
tures will, in general, lead to faster build times. Similarly, an orientation that minimizesthe 
onta
t-area (the area of that portion of the surfa
e of the prototype that is in 
onta
t withsupports) would help minimize damage to the surfa
e of the prototype during support removal.The problem of �nding a suitable orientation 
an be translated into purely geometri
 terms andthis has led to a 
onsiderable amount of resear
h in re
ent years. Asberg et al. [ABB+97℄ (see also[Bos95℄) des
ribe eÆ
ient algorithms to de
ide if a given model 
an be built without supports usingStereolithography. Majhi et al. [MJSG99℄ give algorithms to minimize the volume of supports and
onta
t-area for 
onvex polyhedra. (See also [Maj98℄.) S
hwerdt et al. show how to 
hoose a builddire
tion that prote
ts pres
ribed fa
ets from being damaged by supports [SSJ+00℄. Agarwal andDesikan [AD00℄ give an eÆ
ient algorithm to 
ompute a build dire
tion whi
h approximates theminimum 
onta
t-area for a 
onvex polyhedron. They also show that for a non-
onvex polyhedron
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the set of dire
tions for whi
h the total area of the fa
ets in 
onta
t with supports is minimumhas 
(n4) 
onne
ted 
omponents. (Note that this problem is not quite the same as minimizingthe total 
onta
t-area, as it 
onsiders the entire area of a fa
et in 
onta
t with supports regardlessof area a
tually in 
onta
t; nevertheless, the 
(n4) lower bound hints at the potential diÆ
ultyasso
iated with minimizing the 
onta
t-area and provides further motivation for the heuristi
s we
onsider here.) Johnson [Joh99℄ shows how to 
ompute support des
riptions eÆ
iently for a givenbuild dire
tion.Unfortunately, very few results are available for the problem of optimizing support requirementsfor non-
onvex polyhedra. Majhi et al. [MJS+99℄ give support optimization algorithms for non-
onvex polygons in the 
ase of 2D Stereolithography. An exa
t algorithm to minimize 
onta
t-areafor polyhedral models is presented in [S
h01℄, but its high running time pre
ludes its use in pra
ti
e;spe
i�
ally, the running time is O(n6q(n)), where q(n) is the time to solve a 
ertain non-linearoptimization problem on the unit-sphere. Allen and Dutta [AD95℄ give heuristi
s for minimizingsupport 
onta
t-area for non-
onvex polyhedra. Their approa
h restri
ts 
andidate build dire
tionsto the (dis
rete) set of fa
et normals of the 
onvex hull of the model and, furthermore, 
onsidersonly those fa
ets whose areas are relatively large (so that the part is stable).Contributions: In this paper, we make further progress on the 
onta
t-area problem for poly-hedral models. Spe
i�
ally, we provide a suite of eÆ
ient and pra
ti
al heuristi
s for estimatingsupport 
onta
t-area (Se
tions 4{6). These heuristi
s are based on various te
hniques from 
om-putational geometry, su
h as ray-shooting, 
onvex hulls, boolean operations on polygons, spheri
alalgorithms et
., and make use of the CGAL [CGA℄ and LEDA [MN99℄ libraries in the softwareimplementation. We also give a method for evaluating the quality of the estimate provided byany heuristi
, whi
h does not require knowledge of the (unknown and hard-to-
ompute) optimalsolution; instead, it provides an indire
t upper bound on the quality of the estimate via relativelyeasy-to-
ompute quantities (Se
tion 3). Finally, we present an extensive set of experimental resultson real-world STL models that show that the heuristi
s perform quite well in pra
ti
e (Se
tion 7).
2 PreliminariesWe denote by P the polyhedron of interest and by n the number of fa
ets in P. We assume thatthe fa
ets of P are triangles and that its boundary is represented in some standard form, su
has, for instan
e, a doubly-
onne
ted edge list [dBvKOS97℄ or a winged-edge stru
ture [Bau75℄. (Ifne
essary, su
h a representation 
an be 
omputed easily from the standard STL representation ofP [MS99℄.) Let d be a given build dire
tion (a unit-ve
tor); we assume, w.l.o.g., that d 
oin
ideswith the positive z-dire
tion.Let f be any fa
et of P. We 
lassify f , w.r.t. the given build dire
tion d, as a front fa
et, aba
k fa
et, or a parallel fa
et of P depending on whether the angle between the build dire
tion dand the outward unit-normal, nf , of f is less than, greater than, or equal to 90Æ, respe
tively.We now formalize the notion of supports. A fa
et of a polyhedron will need to be supported ifand only if the angle between its outer normal and the build dire
tion of the polyhedron is greaterthan 90Æ. This implies that the ba
k fa
ets of P will need to be supported. For 
on
reteness,
onsider a ba
k fa
et f of P. The support polyhedron for f is the 
losure of the set of all pointsp 2 IR3 su
h that p is not in the interior of P and the ray shot from p in dire
tion d �rst enters Pthrough f . Informally, the support polyhedron of f is bounded from above by f , on the sides by
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verti
al fa
ets that \drop down" from the edges of f , and from below by the platform on whi
h Prests and/or portions of front fa
ets of P. (If P is 
onvex, then it is bounded from below by onlythe platform.) The supports of P w.r.t. a build dire
tion is the 
olle
tion of support polyhedra forthe ba
k fa
ets.The support 
onta
t-area for P is the total surfa
e area of P that is in 
onta
t with supports.It 
onsists of the area of all the ba
k fa
ets of P and the areas of those portions of front fa
ets andparallel fa
ets that are in 
onta
t with supports. Note that for a 
onvex polyhedron, the supportstru
tures are relatively simple, in that only ba
k fa
ets are in 
onta
t with supports and everypoint on a ba
k fa
et is in 
onta
t with supports. Furthermore, the support stru
tures extend allthe way down to the platform. However, for a general polyhedron, the situation is more 
omplex:First, in addition to ba
k fa
ets, some front and parallel fa
ets 
an also be in 
onta
t with supports(involuntarily, due to a ba
k fa
et on a higher layer needing support). Se
ond, front and parallelfa
ets may be only partially in 
onta
t with supports. Finally, supports need not extend all the waydown to the platform, but may instead terminate on other parts of the polyhedron itself. This isillustrated in Figure 1 for the supports for the �fth layer. (The �gure is shown in 2D, for simpli
ity.)It is this 
omplexity of the support stru
tures that makes the support optimization problem thatwe 
onsider so 
hallenging.
3 An upper bound on the quality of the estimateIdeally, we would like to �nd a dire
tion d� that minimizes the 
onta
t-area of P. Unfortunately,the stru
ture of non-
onvex polyhedra presents signi�
ant 
hallenges in �nding an optimal solutioneÆ
iently. Unlike 
onvex obje
ts, for whi
h only the ba
k fa
ets are in 
onta
t with supports,non-
onvex obje
ts 
an have portions of front and parallel fa
ets in 
onta
t with supports, as well.Furthermore, a small 
hange in the build orientation 
an result in a signi�
antly di�erent footprintof the support stru
tures, possibly a�e
ting other fa
ets that previously were not in 
onta
t withsupports. These fa
tors make it diÆ
ult to design an exa
t algorithm that is both eÆ
ient andpra
ti
al. Therefore, a simple and eÆ
ient heuristi
 to estimate the 
onta
t area, along with ameasure of the quality of the estimate, 
an be quite useful in pra
ti
e.We now develop a measure for the quality of the estimate provided by a given heuristi
. Spe
if-i
ally, the ratio test developed below gives an indi
ation of how 
lose the estimated 
onta
t-area isto the optimal 
onta
t-area. Let CA(d) denote the 
onta
t-area of P for a given build dire
tion, d,and let d̂ be the dire
tion 
omputed by a heuristi
. We show how to obtain an upper bound on theratio CA(d̂)=CA(d�) via two relatively easy-to-
ompute quantities. Let BFA(d) be the total areaof the ba
k fa
ets w.r.t. d and let d0 be a dire
tion that minimizes the total area of ba
k fa
ets.Noti
e that BFA(d�) � CA(d�), sin
e CA(d�) in
ludes possible 
onta
t-area on front andparallel fa
ets, and BFA(d0) � BFA(d�), by de�nition of d0. Therefore,CA(d̂)CA(d�) � CA(d̂)BFA(d�) � CA(d̂)BFA(d0) (1)The above result allows us to upper-bound the 
onta
t-area estimate for a set of 
andidatedire
tions, relative to the (unknown) optimal solution, and to 
hoose from these the best dire
tiond̂. Noti
e that BFA(d0) needs to be 
omputed only on
e, and therefore, the quality test will dependmainly on the eÆ
ien
y of 
omputing the 
onta
t-area for a given dire
tion. In the next se
tion wepresent two algorithms that 
ompute the 
onta
t-area, but di�er in their a

ura
y and eÆ
ien
y.4



We note that the upper bound in Equation (1) is 
onsiderably weaker than a performan
e guar-antee typi
ally proved for an approximation algorithm. Proving su
h a bound would be desirablebut it has eluded us thus far. Nevertheless, the bound in Equation (1) is still useful sin
e it 
an aidthe user in sele
ting a suitable heuristi
 for estimating 
onta
t-area, as we will see in Se
tion 7.
4 Computing 
onta
t-area on front fa
ets for a �xed dire
tionIn this se
tion, we des
ribe an exa
t algorithm and a heuristi
 for 
omputing the 
onta
t-area onfront fa
ets for a �xed build dire
tion d. The exa
t algorithm is simple, but too slow to be ofpra
ti
al use. However, this is tolerable sin
e we use the exa
t algorithm merely to do a one-time(o�ine) veri�
ation of the a

ura
y of our heuristi
 whi
h is simple and eÆ
ient.4.1 An exa
t algorithmW.l.o.g. assume that P rests on the xy-plane and that the build dire
tion d 
oin
ides with thepositive z dire
tion. Let f be a �xed front fa
et and let b be any ba
k fa
et. We proje
t f andb to the xy-plane and 
ompute the interse
tion of their proje
tions (i.e., triangles), whi
h yields a
onvex polygon, Cf (b) (Figure 2(a)). If Cf (b) 6= ;, then let p be any point in it, say the 
entroid.If the pre-images, pref (p) and preb(p), of p on f and b, respe
tively, are su
h that preb(p) is abovepref (p) in dire
tion d, then pref (p) is in 
onta
t with supports. This implies that the pre-imagepref (Cf (b)) is in 
onta
t with supports. This follows sin
e no fa
et of P pier
es another, so there
annot be another point q in Cf (b), whose pre-images on f and b are in the opposite order fromthose of p. (Note that it need not be the 
ase that the 
ylinder bounded by pref (Cf (b)) and bypreb(Cf (b)) is a support 
ylinder, sin
e b, or parts thereof, need not be immediately above f ; there
ould be parts of other ba
k fa
ets in between.) We 
an 
ompute the portions of the front fa
et fthat are in 
onta
t with supports, i.e., the footprint of supports on f , by taking the union of thepre-images pref (Cf (b)) that are found to be in 
onta
t with supports, for all ba
k fa
ets b. (Inour implementation, we used the fun
tions provided by LEDA [MN99℄ to perform the union andinterse
tion operations.)The most expensive part of this algorithm turns out to be the union step in the 
omputation ofthe footprints. Note that the algorithm simply proje
ts all ba
k fa
ets down to the xy-plane, withoutregard to any intervening fa
ets. Thus, the 
omplexity of the union of the polygons pref (Cf (b))on a single front fa
et, f , 
an be �(n2) in the worst 
ase, and �(n3) over all front fa
ets. (Anexample of this is a 
on�guration of n=3 front fa
ets sta
ked on top of ea
h other and two sets ofn=3 ba
k fa
ets above them that overlap in the form of a trellis.) The total time to 
ompute theunion is O(n2 log n) in the worst 
ase for any front fa
et [dBvKOS97℄, hen
e O(n3 log n) over allfront fa
ets. The storage requirement is O(n2); sin
e the algorithm works on a fa
et-by-fa
et basis,the spa
e 
an be reused.With some additional e�ort, the running time 
an be improved to O(n3), as follows: For ea
hfront fa
et, f , we �rst proje
t all ba
k fa
ets onto f . Next, we take the lines supporting ea
hpolygon in the proje
tion, 
ompute the arrangement of these lines, and determine the 
ells in thisarrangement that are 
overed by the proje
tion of at least one ba
k fa
et. The union of these 
ellsgives the footprint of the supports on f . The 
overing information for the 
ells 
an be 
omputedin
rementally, by doing a depth-�rst traversal of the dual graph of the arrangement and maintaininga 
ounter that is in
remented or de
remented depending on whether or not the next 
ell in the
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Figure 2: (a) Computing a pat
h that is in 
onta
t with supports in the exa
t algorithm; (b) Rayshooting for a front fa
et f in the heuristi
.
traversal is 
overed by the triangle whose side is 
rossed to rea
h the 
ell. The time per front fa
etredu
es to O(n2) and the 
laimed bound follows. (Note that this method, unlike the previous one,takes quadrati
 time per front fa
et, regardless of the geometri
 
omplexity of the footprint.)We note also that a theoreti
ally faster algorithm, running in O(n2 log n) time and O(n2)spa
e, is possible. This algorithm uses 
ylindri
al de
omposition [Mul93℄ and respe
ts interveningfa
ets during proje
tion. An output-sensitive algorithm with running time O(n log2 n + V log n),where V is the 
omplexity of the de
omposition, is given in [SH02℄. Unfortunately, the algorithmsdes
ribed in this se
tion and in [SH02℄ are extremely sensitive to degenerate input 
on�gurations,and therefore, reliable implementations require the use of exa
t arithmeti
. Our experimentalresults indi
ate that the use of exa
t arithmeti
 introdu
es 
onsiderable overhead in the runningtime. Therefore, as mentioned at the beginning of Se
tion 4, we use an exa
t-result algorithmmerely for a one-time veri�
ation of the heuristi
 in Se
tion 4.3, and we have 
hosen to implementthe relatively simpler O(n3 log n)-time algorithm des
ribed above for this purpose.Table 1 shows the running time of our O(n3 log n)-time algorithm and that of [SH02℄ on twogroups of data. The �rst group 
onsists of two geometri
 models.1 The vertex 
oordinates ofthe two models have been perturbed slightly and parallel fa
ets have been removed to satisfy thegeneral position assumption required by the algorithm in [SH02℄; this explains why the number offa
ets in these models is slightly lower here than in Tables 2 and 3. The se
ond group 
onsists ofsets of triangles whose 
oordinates have been generated randomly in a �xed range.As 
an be seen from the table, our algorithm runs faster on the two models and slower on thesets of overlapping triangles than does the algorithm in [SH02℄. One possible explanation for thisis that the triangle datasets 
ontain many pairs that overlap in proje
tion and represent \diÆ
ult"
on�gurations for our algorithm. In real-world models, the number of overlapping triangles isgenerally mu
h smaller and so our algorithm runs faster. (Our algorithm also does not make any1The geometri
 models used here (and those used later in Tables 2 and 3) are real-world models that have beenredu
ed in size, while preserving their general topology, in order to keep the running times reasonable. We use softwaresu
h as De
imator [De
℄ and VRMesh [VRM℄ to do the redu
tion. However, our �nal experiments in Tables 4 and 5use the original models. 6



model (.stl) redu
ed time (se
.) time (se
.)#fa
ets Algo. in Se
tion 4.1 Algo. in [SH02℄mj 1896 3390 11649triad1 1983 3788 15161random tri. 1 400 3203 800random tri. 2 500 6906 1129Table 1: Comparison between the a
tual running times of the O(n3 log n) algorithm in Se
tion 4.1and the algorithm in [SH02℄. The �rst two test 
ases are de
imated versions of real-world modelswhile the last two are sta
ks of randomly-generated overlapping triangles. All experiments weredone on a SunBlade 100 ma
hine with 512 MB of main memory and a 500 MHz pro
essor; exa
tarithmeti
 is used in both implementations.
general position assumptions.)4.2 A heuristi
 based on ray-shootingIn this se
tion we des
ribe a simple heuristi
 with a very fast rate of 
onvergen
e, whi
h makes itpra
ti
al for real data sets. Consider a front fa
et f and let p be a point on f . The point p willbe in 
onta
t with supports if and only if the ray originating at p in dire
tion d interse
ts someother fa
et of P. Thus, the main idea behind the heuristi
 is to pi
k a set of points in the interiorof f and identify those points that will be in 
onta
t with supports by shooting rays in dire
tiond (Figure 2(b)). Let Hf (resp. Mf ) denote the set of rays, originating at points on f , that hit afa
et of P (resp. miss all fa
ets of P). Then the area of f that is in 
onta
t with supports 
an beestimated as (jHf j=(jHf j+ jMf j)) � area(f). As the density of the sample points is in
reased, thea

ura
y of the estimate improves (Figure 2(b)).The sample points are sele
ted through an adaptive subdivision pro
ess. During the exe
utionof the algorithm ea
h front fa
et is subdivided into a number of triangular pat
hes (initially theentire fa
et is the only pat
h). The 
entroids of the pat
hes are sele
ted as sample points and theresults from the ray shooting are re
orded. Next, ea
h pat
h is subdivided into two triangles (forexample, by 
onne
ting the midpoint of its longest side with the opposite vertex). The new pat
hesare pla
ed at the end of a queue of unpro
essed pat
hes, whi
h guides the subdivision pro
ess in abreadth-�rst sear
h fashion.The subdivision pro
ess is made adaptive in that the number of sample points per fa
et isweighted based on area, so that bigger fa
ets have more sample points. In a pre-pro
essing stepea
h front fa
et is subdivided repeatedly until the resulting pat
hes have areas that are less thanthe average of the areas of the front fa
ets of P. This ensures that bigger fa
ets are subdivideddeeper and 
onsequently generate more sample points for the ray-shooting phase. Furthermore, asthe following lemma shows, the pre-pro
essing does not result in too many pat
hes.Lemma 4.1 The number of pat
hes generated after the pre-pro
essing step is less than 3n, wheren is the number of fa
ets of P.Proof Let m be the number of front fa
ets of P, A be total area of the front fa
ets, and �A = Ambe the average front fa
et area. Let S be the set of pat
hes that result from the front fa
ets of7



P that are subdivided at least on
e. Sin
e our method of subdivision halves the area of a pat
hand the area is larger than �A just prior to the last subdivision, all pat
hes in S have areas thatare greater than �A=2. If we let A0 denote the total area of the pat
hes in S, and let k = jSj, thenk �A2 < A0. Sin
e A0 � A, we have k �A2 < A, or k A2m < A, and therefore, k < 2m.In addition, there are at most m front fa
ets of P that are not subdivided in pre-pro
essing(be
ause their areas are less than �A to begin with). Sin
e m � n, the lemma follows.Ea
h iteration of the algorithm 
orresponds to a 
omplete subdivision of the pat
hes, andtherefore, will pro
ess twi
e as many pat
hes as the previous one. The algorithm terminates aftera prede�ned number of iterations, 
ontrolled by the user, or when the 
hange in 
onta
t-area is notsigni�
ant. Currently, we use the 
onvergen
e 
riterion Æ = jCAi+1 � CAij < 0:01 � CAi, i.e., thealgorithm terminates when the 
onta
t-area from iteration i to iteration (i + 1) (denoted by CAiand CAi+1, respe
tively) 
hanges by less than 1%.During ea
h iteration i, i � 1, the algorithm pro
esses less than 2i�1 � 3n pat
hes. In ourimplementation, a brute-for
e approa
h is used to answer a ray shooting query in O(n) time. Thus,for ea
h pat
h the ray shooting takes O(n) time to de
ide whether the ray hits any fa
et of P, sothe overall time per iteration is O(2i � n2). Therefore, for a user-spe
i�ed number, d, of iterations,the overall running time is O(2d � n2).4.3 Experimental resultsTable 2 provides a 
omparison between the exa
t algorithm and the heuristi
. The heuristi
 was runwith two di�erent terminating 
riteria: (i) terminating after ten iterations, denoted as \� = 10",following the initial subdivision of large fa
ets; (ii) terminating based on the 
onvergen
e 
riteriondes
ribed in Se
tion 4.2, denoted as \Æ < 1%". In the latter 
ase, we also imposed an upperlimit of ten iterations following the initial subdivision of large fa
ets, so that the 
omputationdid not be
ome prohibitively expensive. The 
omparison tests were run on de
imated versions ofreal-world STL models due to the slow performan
e of the exa
t algorithm from Se
tion 4.1 thatwe implemented for purposes of 
omparison. (However, our �nal experiments in Tables 4 and 5were done on original models, not de
imated ones.) As 
an be seen, the heuristi
 provides nearlythe same answer as the exa
t algorithm, but in a fra
tion of the time. All experiments were doneon a SunBlade 100 ma
hine with 512 MB of main memory and a 500 MHz pro
essor. Programswere written in C++ and use CGAL [CGA℄ and LEDA [MN99℄; the 
ode for the heuristi
 uses
oating-point arithmeti
.
5 Handling parallel fa
etsThe previous algorithms 
onsider only the 
onta
t-area on front and ba
k fa
ets. In order to getan overall estimate of the 
onta
t-area, we need to also 
onsider the portions of parallel fa
etsthat are in 
onta
t with supports. In Se
tion 5.1 we give an algorithm for 
omputing the exa
t
onta
t-area on parallel fa
ets, and in Se
tion 5.2 we give an eÆ
ient heuristi
, analogous to theone in Se
tion 4.2.
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model (.stl) redu
ed algorithm 
onta
t-area time(#fa
ets) #fa
ets (% di�eren
e) (se
.)bot 
ase 2000 � = 10 13644.0, (0%) 41(17642) Æ < 1% 13660.6, (0%) 1exa
t 13642.3 4182
ar
asse 2000 � = 10 63.75, (0%) 34(22876) Æ < 1% 63.61, (0%) 1exa
t 63.73 3296mj 2000 � = 10 1.68, (0%) 29(2832) Æ < 1% 1.66, (-1%) 1exa
t 1.68 3391top 
ase 2000 � = 10 10239.5, (0%) 53(16692) Æ < 1% 10251.5, (0%) 1exa
t 10268.1 4790triad1 2000 � = 10 0.33, (0%) 36(11352) Æ < 1% 0.33, (0%) 1exa
t 0.33 3757Table 2: Comparison between the exa
t algorithm and the heuristi
 to 
ompute, for a given dire
-tion, the 
onta
t-area on front fa
ets. Large models have been de
imated to 2000 fa
ets due to theslow speed of the exa
t algorithm. Note that the exa
t algorithm is only used for a one-time veri-�
ation of the a

ura
y of the heuristi
. The models bot 
ase and top 
ase required 2 iterationsafter the initial subdivision to meet the Æ < 1% terminating 
riterion; 
ar
asse and mj required3 iterations; triad1 required 4 iterations. In the 
olumn labeled \
onta
t-area" the number inparenthesis shows the per
entage di�eren
e between the 
onta
t-area 
omputed by the heuristi
and by the exa
t algorithm (values are rounded to the nearest per
ent). The z-dire
tion is 
hosenas a build dire
tion. The models used here and in the rest of the tables are illustrated in Table 5.

9
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Figure 3: Computing 
onta
t-area on parallel fa
ets: (a) (exa
t algorithm) identifying the segmentsthat require supports; (b) (exa
t algorithm) identifying the portions of f that are in 
onta
t withsupports; (
) (heuristi
) segment sp is in 
onta
t with supports but sp0 is not.
5.1 Exa
t algorithmLet f be a parallel fa
et and let Vf be the verti
al strip that is in the supporting plane of f and
ontains f exa
tly. We may assume, w.l.o.g., that no vertex of f is in the interior of Vf . (Ea
hbounding line of Vf 
ontains at least one vertex of f . If there is a vertex in the interior of Vf , wedraw a verti
al line through it and split f into two fa
ets that ea
h satisfy the assumption.) Let f̂be the proje
tion of f on the xy-plane. (Noti
e that f̂ is just a line segment.)Consider the ba
k fa
ets of P that either pier
e Vf above f , or tou
h Vf above f and are in thesame halfspa
e of Vf as the outer unit-normal, nf , of f . (These are the ba
k fa
ets whose supportsare potentially in 
onta
t with f when P is built in dire
tion d.) The interse
tions of these ba
kfa
ets with Vf is a set, A, of line segments (Figure 3(a)).Let A0 be the set of segments that 
orrespond to the proje
tions of the segments in A on thexy-plane. Clearly, all the segments in A0 lie on f̂ and 
an be merged eÆ
iently, so that no two ofthe resulting segments overlap. For ea
h merged segment s we ere
t a verti
al strip Vs and �nd itsoverlap area with f (Figure 3(b)). The sum of the areas of overlap for all strips Vs gives the overall
onta
t-area on f .For ea
h fa
et f the size of A is O(n). Merging the segments in A0 
an be done eÆ
iently inO(n log n) time by pre-sorting them on their �rst endpoint. For ea
h strip Vs the overlap area 
anbe found in 
onstant time. Therefore, the algorithm takes O(n log n) time per parallel fa
et, orO(n2 log n) time for all parallel fa
ets.5.2 Heuristi
Let f be a parallel fa
et and let f̂ be the proje
tion of f on the xy-plane. (Noti
e that f̂ is just aline segment.) Let p be any point on f̂ and let sp be the segment obtained by interse
ting f withthe ray originating at p in dire
tion d. The segment sp will be in 
onta
t with supports if and only10



model (.stl) redu
ed algorithm 
onta
t-area time(#fa
ets) #fa
ets (% di�eren
e) (se
.)bot 
ase 2000 � = 10 701.17, (0%) 0(17642) Æ < 1% 701.17, (0%) 0exa
t 701.17 1
ar
asse 2000 � = 10 22.70, (0%) 8(22876) Æ < 1% 22.70, (0%) 0exa
t 22.68 143mj 2000 � = 10 1.88, (0%) 4(2832) Æ < 1% 1.88, (0%) 0exa
t 1.88 40top 
ase 2000 � = 10 4352.26, (0%) 21(16692) Æ < 1% 4340.39, (0%) 0exa
t 4352.30 352triad1 2000 � = 10 0.065, (0%) 3(11352) Æ < 1% 0.065, (0%) 0exa
t 0.065 34Table 3: Comparison between the exa
t algorithm and the heuristi
 to 
ompute, for a given dire
-tion, the 
onta
t-area on parallel fa
ets of the models in Table 2. The z-dire
tion is 
hosen as abuild dire
tion. Four of the models required 2 iterations after the initial subdivision to meet theÆ < 1% terminating 
riterion; 
ar
asse required 3 iterations. In the 
olumn labeled \
onta
t-area"the number in parenthesis shows the per
entage di�eren
e between the 
onta
t-area 
omputed bythe heuristi
 and by the exa
t algorithm (values are rounded to the nearest per
ent).
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if the supporting line of sp interse
ts properly a fa
et of P at a point above sp (Figure 3(
)).Let S be a set of sample points on f̂ . Let Hf (resp. Mf ) be the set of segments, sp, thatare (resp. are not) in 
onta
t with supports. If length(Hf) and length(Mf) denote the sum ofthe lengths of the segments in Hf and Mf , respe
tively, we 
an estimate the 
onta
t-area on f as(length(Hf)=(length(Hf) + length(Mf))) � area(f). As the number of sample points is in
reased,the a

ura
y of the estimate also in
reases.The sample points are sele
ted through an adaptive subdivision pro
ess similar to the onedes
ribed in Se
tion 4.2. The main di�eren
e is that the pat
hes are line segments, and not triangles(initially, ea
h fa
et f is represented by the pat
h f̂). The sample points are the midpoints of the
orresponding pat
hes and ea
h pat
h is subdivided into two equal length segments at its midpoint.In our implementation a pat
h is represented by the edge of f that 
ompletely spans the strip Vf ,i.e., whose proje
tion on the xy-plane is the same as f̂ . The pat
hes are subdivided until the lengthsof the span segments fall below the initial average length of all span segments. The terminating
riterion is the same as the one des
ribed in Se
tion 4.2. Table 3 summarizes the exe
ution of theexa
t algorithm and the heuristi
 on de
imated models.
6 Minimizing ba
k fa
et areaThe eÆ
ien
y of 
omputing the upper-bound in Equation (1) depends 
riti
ally on the eÆ
ien
y of�nding a dire
tion d0 that minimizes the ba
k fa
et area. In this se
tion we des
ribe an algorithm,based on arrangements of great 
ir
les on the unit-sphere, that 
omputes d0.6.1 PreliminariesLet S2 denote the unit-sphere of dire
tions. We map ea
h fa
et, f , to a point on S2 
orrespondingto the unit ve
tor, nf , normal to the supporting plane of f . Let Cf be the set of points on S2 thatare at distan
e �=2 from nf , i.e., Cf is a great 
ir
le on S2. (Note that several fa
ets of P 
an
orrespond to a single great 
ir
le.) Cf de�nes two open hemispheres: H+f with pole nf , and H�fwith pole �nf . Given a build dire
tion d the fa
et f will be a ba
k fa
et, and therefore will requiresupports, if and only if d 2 H�f . Similarly, f will be a front fa
et, requiring no supports, if and onlyif d 2 H+f . Finally, f will be a parallel fa
et, requiring no supports, if and only if d 2 Cf . (Althougha front or parallel fa
et requires no support, it 
ould be in 
onta
t with supports required by ba
kfa
ets, as seen previously.)Consider the arrangement, A, of great 
ir
les Cf 
orresponding to the fa
ets f of P. A de-
omposes S2 into three types of elements: (i) 
ells, whi
h are (open) regions of interse
tion of thehemispheres de�ned by the great 
ir
les, (ii) ar
 edges, whi
h are (open) portions of great 
ir
lesand determine the boundaries of the 
ells in A, and (iii) verti
es, whi
h are interse
tions of great
ir
les and are the endpoints of ar
 edges.Lemma 6.1 The elements of A de�ne regions on S2 that 
orrespond to sets of dire
tions for whi
hthe ba
k fa
et area is 
onstant.Lemma 6.2 The build dire
tion d0 minimizing the ba
k fa
et area 
orresponds to a vertex in A.
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Proof We show that the ba
k fa
et area 
orresponding to any point in a 
ell or ar
 edge isnever less than the ba
k fa
et area 
orresponding to the verti
es of the 
ell. This implies that it issuÆ
ient to 
onsider only the verti
es of A in order to �nd d0.Let 
 be a 
ell in A. For any element q of A, let BFA(q) be the ba
k fa
et area asso
iatedwith any dire
tion in q. By Lemma 6.1 BFA(q) is well-de�ned and a 
onstant. Noti
e that theedges bounding 
 represent transitions onto great 
ir
les, whi
h 
orrespond to front and/or ba
kfa
ets be
oming parallel fa
ets. Therefore, the set of ba
k fa
ets 
orresponding to any point on theboundary of 
 is either the same as or a proper subset of the set of ba
k fa
ets 
orresponding toany point in the interior of 
. This implies that the ba
k fa
et area 
annot in
rease. Therefore,BFA(e) � BFA(
) for any edge e on the boundary of 
.Let e be an edge in A and let u be one of the verti
es in A that is adja
ent to e along thesupporting great 
ir
le C(e) of e. The vertex u represents a transition, along the ar
 edge e, ontoa great 
ir
le other than C(e) along the ar
 edge e. Thus, a front and/or a ba
k fa
et be
omesparallel. Arguing as before, BFA(u) � BFA(e).The above dis
ussion shows that the ba
k fa
et area 
orresponding to any point within a 
ellin A is never less than the ba
k fa
et area 
orresponding to any point along the bounding edges ofthe 
ell. Furthermore, the latter is never less than the ba
k fa
et area at the verti
es in A adja
entto the edge. Thus in order to identify the dire
tion d0 that minimizes the ba
k fa
et area, it issuÆ
ient to examine only the dire
tions 
orresponding to the verti
es in A.6.2 The algorithmLemma 6.2 shows that to �nd the dire
tion, d0, that minimizes the ba
k fa
et area it is suÆ
ient to
onsider only the dire
tions on S2 that 
orrespond to the verti
es of A. This immediately suggestsan algorithm for �nding d0:� (pre-pro
essing) Compute the arrangement A of great 
ir
les on the unit sphere.� (initialization) Let u be any vertex in A. Identify the front, ba
k, and parallel fa
ets deter-mined by the dire
tion 
orresponding to u, and initialize the ba
k fa
et area term to the totalarea of the ba
k fa
ets.� (update)Walk along the verti
es of the arrangement, by visiting adja
ent verti
es 
onne
ted byan ar
 edge. Noti
e that a vertex in A is the interse
tion of great 
ir
les and ea
h great 
ir
ledes
ribes a set of dire
tions for whi
h front and/or ba
k fa
ets be
ome parallel. Therefore,during the transition from vertex u to vertex v, let �BFA(u) be the area of the parallel fa
etsat u that be
ome ba
k fa
ets at v, and let �BFA(v) be the area of the parallel fa
ets at vthat were ba
k fa
ets at u. Then BFA(v) = BFA(u) + �BFA(u)��BFA(v).� During the walk along the verti
es of the arrangement we keep tra
k of the vertex v for whi
hthe ba
k fa
et area is minimized and report as d0 the dire
tion 
orresponding to v.The pre-pro
essing step of the above algorithm takes O(n2) time and O(n2) spa
e sin
e thenumber of great 
ir
les in the arrangement is O(n). At ea
h vertex in the arrangement we spendtime proportional to the degree of the vertex, and therefore the overall time during the update stepof the algorithm is O(n2). Therefore, the algorithm takes O(n2) time and uses O(n2) spa
e.
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model #fa
ets minimum area time(.stl) (ba
k fa
ets) (se
.)bot 
ase 17642 14409.4 4079
ar
asse 22876 35.98 6784mj 2832 5.81 82top 
ase 16692 7843.5 3446triad1 11352 2.20 1581Table 4: Performan
e of the algorithm for 
omputing a dire
tion that minimizes the area of theba
k fa
ets.
The spa
e usage of the algorithm 
an be improved to O(n) at the expense of in
reased runningtime to O(n2 log n). The main idea is to walk along ar
 edges belonging to the same great 
ir
le.This allows us to fo
us on only a portion of the arrangement A. Given a great 
ir
le Cf we 
omputeits interse
tions with all the other great 
ir
les and sort the verti
es of interse
tion in their 
ir
ularorder along Cf . Next we pi
k an arbitrary vertex and initialize the ba
k fa
et area term. Finally, wevisit all the verti
es along Cf and update the ba
k fa
et area term following the rule des
ribed in theupdate step of the algorithm above. During the walk we keep tra
k of the vertex, v, 
orrespondingto the dire
tion for whi
h the ba
k fa
et area is minimized. The optimal dire
tion is identi�ed afterall great 
ir
les have been pro
essed.The running time per great 
ir
le is dominated by the time to sort O(n) verti
es of interse
tionin time O(n log n). The walk along a great 
ir
le spends O(n) time for the initialization and 
onstanttime per vertex, or O(n) in total. Over all great 
ir
les the running time is O(n2 log n). Sin
e wedo not 
ompute the whole arrangement, the spa
e is O(n) and this 
an be re-used.Table 4 summarizes the results of the exe
ution of the O(n2 log n)-time algorithm on non-de
imated models.We remark that it is possible to obtain a slightly more eÆ
ient algorithm (O(n2) time and O(n)spa
e) at the expense of in
reased algorithmi
 
omplexity. For 
onvenien
e, we map the portionsof the great 
ir
les lying in the upper half of S2 to straight lines using 
entral proje
tion [PS93℄.We 
an 
ompute the ba
k fa
et areas at the verti
es of the resulting planar arrangement, whi
hare in 1-1 
orresponden
e with the verti
es of the arrangement in the upper half of S2, by doing asweep: when the sweep rea
hes a vertex v, we 
ompute BFA(v) from BFA(u), as above, where u isa neighbor of v that has already been visited. However, to obtain the desired O(n) spa
e bound, we
annot a�ord to do a traditional sweep whi
h requires the entire arrangement to be pre-
omputedand stored. Instead, we use the topologi
al sweep method [EG89℄ whi
h 
omputes and retains onlythe portion of the arrangement that is relevant 
urrently|this has size O(n). A similar approa
his used for the lower half of S2. We note that this approa
h was used previously in [MJSG99℄ tominimize 
onta
t-area of supports for a 
onvex polyhedron.

7 Approximating the 
onta
t-areaIn this se
tion we present several heuristi
s for 
hoosing a 
andidate build dire
tion to estimate theoptimal 
onta
t-area requirements. The quality of ea
h heuristi
 is measured in terms of the ratioCA(d̂)=BFA(d0), where d̂ is the dire
tion 
omputed by the heuristi
, and d0 is the dire
tion that
14



minimizes the area of the ba
k fa
ets. As shown in Se
tion 3 (Equation (1)) this ratio is an upperbound on CA(d̂)=CA(d�), where d� is the dire
tion that minimizes the overall 
onta
t-area.We have implemented and tested the following 
hoi
es for build dire
tion:� min BFA dire
tion | dire
tion that minimizes the ba
k fa
et area, as dis
ussed in Se
tion 6.Sin
e the overall 
onta
t-area in
ludes the area of the ba
k fa
ets, it may be advantageous to
hoose a dire
tion that results in low 
onta
t-area 
ontribution from the ba
k fa
ets.� max PFA dire
tion | dire
tion that maximizes the area of parallel fa
ets. This dire
tion is
omputed along with the dire
tion that minimizes the ba
k fa
et area; it is easy to adapt theproof of Lemma 6.2 to show that the same 
andidate dire
tions need to be examined in both
ases. We 
onsider the dire
tion and its opposite, sin
e both generate the same area of parallelfa
ets, and take the better result. The intuition behind this heuristi
 is that parallel fa
etsdo not themselves require supports, and therefore, by maximizing the area of parallel fa
etsthe number of support stru
tures 
ould be redu
ed, whi
h 
ould lead to redu
ed amount of
onta
t-area.� max PFC dire
tion | dire
tion that maximizes the 
ount of parallel fa
ets. This dire
tionis 
omputed along with the dire
tion that minimizes the ba
k fa
et area; again, it is easy toadapt the proof of Lemma 6.2 to show that the same 
andidate dire
tions need to be examinedin both 
ases. We 
onsider the dire
tion and its opposite, sin
e both generate the same 
ountof parallel fa
ets, and take the better result. This is an alternative to the previous heuristi
,but we try to maximize the number of fa
ets that will not require dire
t supports, whi
h
ould lead to a redu
tion in support stru
tures, and therefore a redu
tion in the amount of
onta
t-area.� PC dire
tion | dire
tion that 
orresponds to the prin
ipal 
omponents of the obje
t. Intu-itively, this heuristi
 builds the obje
t along one of three mutually perpendi
ular axes that
apture the relative shape of the obje
t. We 
onsider ea
h dire
tion and its opposite and takethe best result. The prin
ipal 
omponent dire
tions were 
omputed using MATLABTM [MAT℄software from The MathWorks, In
.� Flat dire
tion | dire
tion that is opposite to the outward unit-normal of a fa
et of the model.During the build phase it is often desirable to build the part su
h that it rests on one of itsfa
ets. In this 
ase the fa
et must be 
ontained in the boundary of the 
onvex hull of themodel (noti
e that a fa
et on the 
onvex hull may 
ontain several fa
ets from the originalmodel). We sele
t the fa
et, f , on the 
onvex hull whi
h 
ontains fa
ets from the originalmodel that have the largest total area and use �nf as the build dire
tion, where nf is theoutward unit-normal of f . The 
onvex hull is 
omputed using the fun
tionality provided bythe CGAL library [CGA℄. (Note that this heuristi
 is somewhat similar to the one in [AD95℄,whi
h is des
ribed in Se
tion 1. Unfortunately, we have not been able to make a dire
t
omparison of the two heuristi
s as the software for the one used in [AD95℄ appears to be nolonger available (personal 
ommuni
ation from D. Dutta).)� Random dire
tions | dire
tions 
hosen at random. This heuristi
 was in
luded for 
ompari-son purposes only. We 
hose a set of �fteen random dire
tions, 
omputed the 
onta
t-areasfor ea
h of these dire
tions, took their mean, and then divided this by the minimum ba
kfa
et area to arrive at the mean 
onta
t-area ratio.15



Table 5 illustrates the models used for our experiment and summarizes the results. For ea
hmodel the table shows the 
onta
t-area ratio 
omputed for ea
h heuristi
 and 
ompares the ratiorealized by the best heuristi
 with the ratio realized by the random heuristi
. As seen in the 
olumnnamed \
omparison", savings ranging from 9% to 83% are a
hieved on real-world (non-de
imated)models. Note that even though we are 
omparing ratios this is equivalent to 
omparing the 
onta
t-areas themselves, sin
e the denominators for both ratios are the same, namely the minimum ba
kfa
et area.How might a designer use the results in Table 4? Suppose that the designer wishes to fabri
ate,say model oldbasex, using no more than twi
e the minimum 
onta
t-area. Table 5 shows thatonly \Max PFA ratio" guarantees that this requirement will be met, so the designer 
an pro
eedto safely use this heuristi
. (It is possible that some of the other heuristi
s will also meet therequirement, sin
e the upper-bound in Equation 1 is loose, but this is not guaranteed.)
8 Con
lusionWe have presented a set of eÆ
ient and pra
ti
al heuristi
s for estimating the 
onta
t-area ofsupports for polyhedral models in Layered Manufa
turing. We have also shown how the quality ofthe estimate, w.r.t. the unknown and hard-to-
ompute optimal solution, 
an be upper-bounded asthe ratio of two relatively easy-to-
ompute quantities. Our algorithms have been implemented andtested on a range of real-world models and have been shown to perform well in pra
ti
e.An interesting problem for further work is 
omputing a build dire
tion that estimates theminimum volume of the support stru
tures. Our approa
h in Se
tion 3 for upper-bounding the
onta
t-area estimate does not appear to extend to the volume version of the problem, so a di�erentapproa
h may be needed.
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prism1 pyramid1 stlbin2 e

4 triad1 tod21 f0m27

mj 3857438 top 
ase 
ar
asse 
over-5 oldbasex bot 
ase

model #fa
ets max possible min BFA max PFA max PFC PC Flat random dir. 
omparison time(.stl) ratio ratio ratio ratio ratio ratio (mean) ratio (%) (se
.)prism1 20 55.2 1.0[1℄ 1.0[1℄ 24.0[4℄ 1.0[1℄ 24.0[4℄ 30.3[6℄ 97 4pyramid1 10 14.3 1.0[1℄ 3.7[3℄ 6.0[4℄ 1.0[1℄ 6.0[4℄ 7.8[6℄ 87 2stlbin2 2761 15.8 2.2[1℄ 2.2[1℄ 9.2[4℄ 8.5[3℄ 9.2[4℄ 9.8[6℄ 77 90e

4 4994 4.9 1.2[1℄ 1.2[1℄ 1.4[1℄ 1.9[5℄ 1.8[4℄ 2.7[6℄ 56 837triad1 11352 2.9 1.9[4℄ 2.1[5℄ 2.1[5℄ 1.4[1℄ 1.4[1℄ 1.8[3℄ 19 2280tod21 1128 7.2 1.1[1℄ 1.1[1℄ 3.8[4℄ 3.8[4℄ 1.1[1℄ 4.2[6℄ 75 49f0m27 3730 4.3 2.4[2℄ 2.3[1℄ 2.3[1℄ 2.4[2℄ 3.2[6℄ 2.8[5℄ 17 213mj 2832 5.3 2.1[1℄ 2.4[2℄ 2.4[2℄ 2.6[5℄ 2.4[2℄ 2.9[6℄ 27 1243857438 12184 3.4 2.6[6℄ 2.5[3℄ 2.5[3℄ 2.4[2℄ 2.3[1℄ 2.5[3℄ 9 2576top 
ase 16692 4.1 2.8[4℄ 2.8[4℄ 3.0[6℄ 2.1[2℄ 2.0[1℄ 2.5[3℄ 22 4944
ar
asse 22876 6.2 3.5[3℄ 3.3[1℄ 4.0[4℄ 4.4[5℄ 3.3[1℄ 4.9[6℄ 34 9434
over-5 906 5.7 3.9[3℄ 3.9[3℄ 3.9[3℄ 3.1[1℄ 5.2[6℄ 3.8[2℄ 19 10oldbasex 3660 15.6 3.3[2℄ 1.7[1℄ 12.0[5℄ 8.2[3℄ 12.0[5℄ 10.4[4℄ 83 161bot 
ase 17642 3.0 2.1[4℄ 2.1[4℄ 2.1[4℄ 1.5[2℄ 1.3[1℄ 1.9[3℄ 33 5617Table 5: Performan
e of the heuristi
s for estimating the 
onta
t-area. The �rst two models were hand-generated; the remainingmodels are from Stratasys, In
, a leading manufa
turer of LM ma
hines (www.stratasys.
om). All models are originals, notde
imated ones. The numbers in square bra
kets show the rankings of the heuristi
s for ea
h model. The 
olumn \
omparison"shows the per
entage improvement of the ratio a
hieved by the top-ranked heuristi
 over the mean ratio given by the random-dire
tions heuristi
. The 
olumn \max possible ratio" is given only as a referen
e and represents the extreme situation where allof the surfa
e area of the obje
t is in 
onta
t with supports. The 
olumn \time" in
ludes the time for 
omputing the minimumba
k fa
et area and the times for 
omputing the ratios for all heuristi
s, ex
ept for the random heuristi
, whi
h is for purposesof 
omparison only. The time-
onsuming step is the 
omputation of the ba
k fa
et area.
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