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Abstract

Let C be a compact and convex set in the plane that contains the origin in its
interior, and let S be a finite set of points in the plane. The Delaunay graph DGC(S)
of S is defined to be the dual of the Voronoi diagram of S with respect to the convex
distance function defined by C. We prove that DGC(S) is a t-spanner for S, for some
constant t that depends only on the shape of the set C. Thus, for any two points p and
q in S, the graph DGC(S) contains a path between p and q whose Euclidean length is
at most t times the Euclidean distance between p and q.

1 Introduction

Let S be a finite set of points in the plane and let G be a graph with vertex set S, in which
each edge (p, q) has a weight equal to the Euclidean distance |pq| between p and q. For a real
number t ≥ 1, we say that G is a t-spanner for S, if for any two points p and q of S, there
exists a path in G between p and q whose Euclidean length is at most t|pq|. The smallest
such t is called the stretch factor of G. The problem of constructing spanners has received
much attention; see Narasimhan and Smid [12] for an extensive overview.

Spanners were introduced in computational geometry by Chew [3, 4], who proved the
following two results. First, the L1-Delaunay graph, i.e., the dual of the Voronoi diagram for
the Manhattan metric, is a

√
10-spanner. Second, the Delaunay graph based on the convex

distance function defined by an equilateral triangle, is a 2-spanner. We remark that in both
these results, the stretch factor is measured in the Euclidean metric. Chew also conjectured
that the Delaunay graph based on the Euclidean metric, is a t-spanner, for some constant
t. (If not all points of S are on a line, and if no four points of S are cocircular, then the
Delaunay graph is the well-known Delaunay triangulation.) This conjecture was proved by
Dobkin et al. [8], who showed that t ≤ π(1+

√
5)/2. The analysis was improved by Keil and

Gutwin [9], who showed that t ≤ 4π
√

3
9

.
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In this paper, we unify these results by showing that the Delaunay graph based on any
convex distance function has bounded stretch factor. Furthermore, we generalize definitions
and results for arbitrary point sets, that is when points are not required to be in general
position.

Throughout this paper, we fix a compact and convex set C in the plane. We assume that
the origin is in the interior of C. A homothet of C is obtained by scaling C with respect to
the origin, followed by a translation. Thus, a homothet of C can be written as

x + λC = {x + λz : z ∈ C},
for some point x in the plane and some real number λ ≥ 0. We call x the center of the
homothet x + λC.

For two points x and y in the plane, we define

dC(x, y) := min{λ ≥ 0 : y ∈ x + λC}.
If x 6= y, then this definition is equivalent to the following: Consider the translate x+C and
the ray emanating from x that contains y. Let y′ be the (unique) intersection between this
ray and the boundary of x + C. Then

dC(x, y) = |xy|/|xy′|.
The function dC is called the convex distance function associated with C. Clearly, we have
dC(x, x) = 0 and dC(x, y) > 0 for all points x and y with x 6= y. Chew and Drysdale [5]
showed that the triangle inequality dC(x, z) ≤ dC(x, y) + dC(y, z) holds. In general, the
function dC is not symmetric, i.e., dC(x, y) is not necessarily equal to dC(y, x). If C is
symmetric with respect to the origin, however, then dC is symmetric.

Let S be a finite set of points in the plane. For each point p in S, we define

V ′
C(p) := {x ∈ R

2 : for all q ∈ S, dC(x, p) ≤ dC(x, q)}.
If C is not strictly convex1, then the set V ′

C(p) may consist of a closed region of positive
area with an infinite ray attached to it. For example, in Figure 1, the set V ′

C(a) consists of
the set of all points that are on or to the left of the leftmost zig-zag line, together with the
infinite horizontal ray that is at the same height as the point a. Also, the intersection of two
regions V ′

C(p) and V ′
C(q), where p and q are distinct points of S, may have a positive area.

As a result, the collection V ′
C(p), where p ranges over all points of S, does not necessarily

give a subdivision of the plane in which the interior of each cell is associated with a unique
point of S.

In order to obtain such a subdivision, we follow the approach of Klein and Wood [10]
(see also Ma [11]): first, infinite rays attached by their apices to regions of positive area are
not considered to be part of the region. Second, a point x in R

2 that is in the interior of
more than one region V ′

C(p) is assigned to the region of the lexicographically smallest point
p in S for which x ∈ V ′

C(p).

1C is called strictly convex, if for any two points x and y in C, the open line segment joining x and y is
completely in the interior of C.
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Figure 1: The Voronoi diagram VDC(S) for the set S = {a, b, c, d, e}. The set C is the

square as indicated by the dotted figure; the origin is at the center of C.

To formally define Voronoi cells, let ≺ denote the lexicographical ordering on the set of
all points in the plane. Let p1 ≺ p2 ≺ . . . ≺ pn be the points of S, sorted according to this
order. Then the Voronoi cells VC(pi) of the points of S are defined as

VC(p1) := cl(int(V ′
C(p1)))

and, for 1 < i ≤ n,

VC(pi) := cl

(

int

(

V ′
C(pi) \

(

⋃

j<i

VC(pj)

)))

,

where cl(X) and int(X) denote the closure and the interior of the set X ⊆ R
2, respectively.

Thus, in Figure 1, the Voronoi cell VC(a) consists only of the set of all points that are
on or to the left of the leftmost zig-zag line; the infinite horizontal ray that is at the same
height as the point a is not part of this cell.

The Voronoi diagram VDC(S) of S with respect to C is defined to be the collection of
Voronoi cells VC(p), where p ranges over all points of S. An example is given in Figure 1.

As for the Euclidean case, the Voronoi diagram VDC(S) induces Voronoi cells, Voronoi
edges, and Voronoi vertices. Each point in the plane is either in the interior of a unique
Voronoi cell, in the relative interior of a unique Voronoi edge, or a unique Voronoi vertex.
Each Voronoi edge e belongs only to the two Voronoi cells that contain e on their boundaries.
Observe that Voronoi cells are closed.

The Delaunay graph is defined to be the dual of the Voronoi diagram:

Definition 1 Let S be a finite set of points in the plane. The Delaunay graph DGC(S) of
S with respect to C is defined to be the dual of the Voronoi diagram VDC(S). That is, the
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Figure 2: The two parameters associated with C.

vertex set of DGC(S) is S and two distinct vertices p and q are connected by an edge in
DGC(S) if and only if the Voronoi cells VC(p) and VC(q) share a Voronoi edge.

For example, the Delaunay graph DGC(S) for the point set in Figure 1 consists of the
five edges (a, b), (a, d), (b, c), (b, d), and (d, e).

We consider the Delaunay graph DGC(S) to be a geometric graph, which means that
each edge (p, q) is embedded as the closed line segment with endpoints p and q.

Before we can state the main result of this paper, we introduce two parameters whose
values depend on the shape of the set C. Let x and y be two distinct points on the boundary
∂C of C. These points partition ∂C into two chains. For each of these chains, there is an
isosceles triangle with base xy and whose third vertex is on the chain. Denote the base
angles of these two triangles by αxy and α′

xy; see Figure 2 (left). We define

αC := min{max(αxy, α
′
xy) : x, y ∈ ∂C, x 6= y}.

Consider again two distinct points x and y on ∂C, but now assume that x, y, and the
origin are collinear. As before, x and y partition ∂C into two chains. Let ℓxy and ℓ′xy denote
the lengths of these chains; see Figure 2 (right). We define

κC,0 := max

{

max(ℓxy, ℓ
′
xy)

|xy| : x, y ∈ ∂C, x 6= y, and x, y, and 0 are collinear

}

.

Clearly, the convex distance function dC and, therefore, the Voronoi diagram VDC(S), de-
pends on the location of the origin in the interior of C. Surprisingly, the Delaunay graph
DGC(S) does not depend on this location; see Ma [11, Section 2.1.6]. We define

κC := min {κC,0 : 0 is in the interior of C} .

In this paper, we will prove the following result:
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Theorem 1 Let C be a compact and convex set in the plane with a non-empty interior, and
let S be a finite set of points in the plane. The stretch factor of the Delaunay graph DGC(S)
is less than or equal to

tC :=







2κC · max
(

3
sin(αC/2)

, κC

)

if DGC(S) is a triangulation,

2κ2
C · max

(

3
sin(αC/2)

, κC

)

otherwise.

We emphasize that we do not make any “general position” assumption; our proof of
Theorem 1 is valid for any finite set of points in the plane.

Throughout the rest of this paper, we assume that the origin is chosen in the interior of
C such that κC = κC,0.

The rest of this paper is organized as follows. In Section 2, we prove some basic properties
of the Delaunay graph which are needed in the proof of Theorem 1. In particular, we give
a formal proof of the fact that this graph is plane. Even though this fact seems to be well
known, we have not been able to find a proof in the literature. Section 3 contains a proof
of Theorem 1. This proof is obtained by showing that the Delaunay graph satisfies the
“diamond property” and a variant of the “good polygon property” of Das and Joseph [6].
The proof of the latter property is obtained by generalizing the analysis of Dobkin et al. [8]
for the lengths of so-called one-sided paths.

2 Some properties of the Delaunay graph

Recall that in the Euclidean Delaunay graph, if two points p and q of S are connected by an
edge, then there exists a disk having p and q on its boundary that does not contain any point
of S in its interior. The next lemma generalizes this result to the Delaunay graph DGC(S).
The proof shows that it holds for degenerate point sets as well.

Lemma 1 Let p and q be two points of S and assume that (p, q) is an edge in the Delaunay
graph DGC(S). Then, the following are true.

1. The line segment between p and q does not contain any point of S \ {p, q}.

2. For every point x in VC(p) ∩ VC(q), there exists a real number λ > 0 such that

(a) the homothet x + λC contains p and q on its boundary, and

(b) the interior of x + λC does not contain any point of S.

Proof. To prove the first claim, assume that the line segment between p and q contains a
point of S \ {p, q}. Then it follows from Ma [11, Lemma 2.1.4.2] that VC(p) ∩ VC(q) = ∅.
Thus, the Voronoi cells of p and q do not share an edge and, therefore, (p, q) is not an edge
in the Delaunay graph. This is a contradiction.

The second claim follows from the definition of DGC(S) as the dual of the Voronoi
diagram.
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As can be seen in Figure 1, Voronoi cells are, in general, not convex. They are, however,
star-shaped from the point defining the cell, as proved by Ma [11, Lemma 2.1.4.7].

It is well known that the Euclidean Delaunay graph is a plane graph; see, for example,
de Berg et al. [7, page 189]. The following lemma states that this is true for the Delaunay
graph DGC(S) as well.

Lemma 2 The Delaunay graph DGC(S) is a plane graph.

Proof. By the first claim in Lemma 1, DGC(S) does not contain two distinct edges (p, q)
and (p, r) that are collinear and overlap in a line segment of positive length. Again by the
first claim in Lemma 1, DGC(S) does not contain two distinct edges (p, q) and (r, s) such
that r is on the open line segment joining p and q.

It remains to show that DGC(S) does not contain two edges (p, q) and (r, s) that cross
properly. The proof is by contradiction. Thus, let p, q, r, and s be four pairwise distinct
points of S, no three of which are collinear, and assume that the line segments (p, q) and
(r, s) are edges of DGC(S) that have exactly one point in common.

Since (p, q) is an edge of DGC(S), there exists a point x in the relative interior of VC(p)∩
VC(q). Thus, by the second claim in Lemma 1, there exists a real number λ > 0, such that
the homothet x + λC contains p and q on its boundary and no point of S is in the interior
of this homothet. Observe that x is in the interior of x + λC. Let D be a Euclidean disk
centered at x that is contained in the interior of x+λC and that is contained in VC(p)∪VC(q).
We define B to be the set of all 2-link polygonal chains (p, z, q), with z ∈ D; see Figure 3.
Observe that B has a positive area. Since VC(p) and VC(q) are star-shaped from p and q,
respectively, (by [11, Lemma 2.1.4.7]), we have B ⊆ VC(p) ∪ VC(q). Since x + λC is convex,
we have B ⊆ x + λC; in fact, the convex hull of B is contained in x + λC. Thus, neither r
nor s is in the interior of the convex hull of B. Since pq and rs intersect in a point, the line
segment rs crosses the set B.

By a symmetric argument, since (r, s) is an edge of DGC(S), there exist a point y in
the relative interior of VC(r) ∩ VC(s) and a real number µ > 0, such that y + µC contains
r and s on its boundary and no point of S is in the interior of this homothet. Let D′ be a
Euclidean disk centered at y that is contained in the interior of y +µC and that is contained
in VC(r)∪VC(s). We define B′ to be the set of all 2-link polygonal chains (r, z, s), with z ∈ D′.
The set B′ has a positive area, the line segment pq crosses this set, B′ ⊆ VC(r)∪ VC(s), and
neither p nor q is in the interior of the convex hull of B′.

It follows that B and B′ overlap in a region of positive area. Since B ⊆ VC(p) ∪ VC(q)
and B′ ⊆ VC(r) ∪ VC(s), however, the area of the intersection B ∩ B′ is equal to zero. This
is a contradiction. It follows that the edges (p, q) and (r, s) do not cross.

3 The stretch factor of Delaunay graphs

In this section, we will prove Theorem 1. First, we show that the Delaunay graph DGC(S)
satisfies the diamond property and a variant of the good polygon property of Das and
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Figure 3: Illustrating the proof of Lemma 2.
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Figure 4: The α-diamond property.

Joseph [6]. According to the results of Das and Joseph, this immediately implies that the
stretch factor of DGC(S) is bounded. In fact, we will obtain an upper bound on the stretch
factor which is better than the one that is implied by Das and Joseph’s result.

3.1 The diamond property

Let G be a plane graph with vertex set S and let α be a real number with 0 < α < π/2. For
any edge e of G, let ∆1 and ∆2 be the two isosceles triangles with base e and base angle α;
see Figure 4. We say that e satisfies the α-diamond property, if at least one of the triangles
∆1 and ∆2 does not contain any point of S in its interior. The graph G is said to satisfy the
α-diamond property, if every edge e of G satisfies this property.

Lemma 3 Consider the value αC that was defined in Section 1. The Delaunay graph
DGC(S) satisfies the αC-diamond property.
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Figure 5: Illustrating the proof of Lemma 3.

Proof. Let (p, q) be an arbitrary edge of DGC(S) and let x be any point in the relative
interior of VC(p) ∩ VC(q). By Lemma 1, there exists a real number λ > 0 such that p and q
are on the boundary of the homothet x + λC and no point of S is in the interior of x + λC.
The points p and q partition ∂(x + λC) into two chains. For each of these chains, there is
an isosceles triangle with base pq and whose third vertex is on the chain. We denote the
base angles of these two triangles by β and γ; see Figure 5. We may assume without loss of
generality that β ≥ γ. Let a denote the third vertex of the triangle with base angle β. If
we translate x + λC so that x coincides with the origin and scale the translated homothet
by a factor of 1/λ, then we obtain the set C. This translation and scaling does not change
the angles β and γ. Thus, using the notation of Section 1 (see also Figure 2), we have
{β, γ} = {αpq, α

′
pq}. The definition of αC then implies that

αC ≤ max(αpq, α
′
pq) = β.

Let ∆ be the isosceles triangle with base pq and base angle αC such that a and the third
vertex of ∆ are on the same side of pq. Then ∆ is contained in the triangle with vertices p,
q, and a. Since the latter triangle is contained in x + λC, it does not contain any point of S
in its interior. Thus, ∆ does not contain any point of S in its interior. This proves that the
edge (p, q) satisfies the αC-diamond property.

3.2 The visible-pair spanner property

For a real number κ ≥ 1, we say that the plane graph G satisfies the strong visible-pair
κ-spanner property, if the following is true: For every face f of G, and for every two vertices
p and q on the boundary of f , such that the open line segment joining p and q is completely
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in the interior of f , the graph G contains a path between p and q having length at most
κ|pq|. If for every face f of G and for every two vertices p and q on the boundary of f , such
that the line segment pq does not intersect the exterior of f , the graph G contains a path
between p and q having length at most κ|pq|, then we say that G satisfies the visible-pair
κ-spanner property. Observe that the former property implies the latter one. Also, observe
that these properties are variants of the κ-good polygon property of Das and Joseph [6]: The
κ-good polygon property requires that G contains a path between p and q that is along
the boundary of f and whose length is at most κ|pq|; in the (strong) visible-pair spanner
property, the path is not required to be along the boundary of f .

In this subsection, we will prove that the Delaunay graph DGC(S) satisfies the visible-
pair κC-spanner property, where κC is as defined in Section 1. This claim will be proved by
generalizing results of Dobkin et al. [8] on so-called one-sided paths.

Let p and q be two distinct points of S and assume that (p, q) is not an edge of the
Delaunay graph DGC(S). Consider the Voronoi diagram VDC(S). We consider the sequence
of points in S whose Voronoi cells are visited when the line segment pq is traversed from p
to q. If pq does not contain any Voronoi vertex, then this sequence forms a path in DGC(S)
between p and q. Since, in general, Voronoi cells are not convex, it may happen that this
path contains duplicates. In order to avoid this, we define the sequence in the following way.

In the rest of this section, we will refer to the line through p and q as the X-axis, and we
will say that p is to the left of q. This implies a left-to-right order on the X-axis, the notion
of a point being above or below the X-axis, as well as the notions horizontal and vertical.
(Thus, conceptually, we rotate and translate all points of S , the set C, the Voronoi diagram
VDC(S), and the DGC(S), such that p and q are on a horizontal line and p is to the left
of q. Observe that VDC(S) is still defined based on the lexicographical order of the points
of S before this rotation and translation.) In the following, we consider the (horizontal) line
segment pq. If this segment contains a Voronoi vertex, then we imagine moving pq vertically
upwards by an infinitesimal amount. Thus, we may assume that pq does not contain any
Voronoi vertex of the (rotated and translated) Voronoi diagram VDC(S).

The first point in the sequence is p0 := p. We define x1 ∈ R
2 to be the point on the line

segment pq such that x1 ∈ VC(p0) and x1 is closest to q.
Let i ≥ 1 and assume that the points p0, p1, . . . , pi−1 of S and the points x1, . . . , xi in R

2

have already been defined, where xi is the point on the line segment pq such that xi ∈ VC(pi−1)
and xi is closest to q. If pi−1 = q, then the construction is completed. Otherwise, observe
that xi is in the relative interior of a Voronoi edge. We define pi to be the point of S \{pi−1}
whose Voronoi cell contains xi on its boundary, and define xi+1 to be the point on the line
segment pq such that xi+1 ∈ VC(pi) and xi+1 is closest to q.

Let p = p0, p1, . . . , pk = q be the sequence of points in S obtained in this way. By
construction, these k + 1 points are pairwise distinct and for each i with 1 ≤ i ≤ k, the
Voronoi cells VC(pi−1) and VC(pi) share an edge. Therefore, by definition, (pi−1, pi) is an
edge in DGC(S). Thus, p = p0, p1, . . . , pk = q defines a path in DGC(S) between p and q.
We call this path the direct path between p and q. If all points p1, p2, . . . , pk−1 are strictly
on one side of the line through p and q, then we say that the direct path is one-sided.
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Figure 6: Illustrating the proof of Lemma 4.

We will show in Lemma 5 that the length of a one-sided path is at most κC |pq|. The
proof of this lemma uses a geometric property which we prove first.

Let C ′ be a homothet of C whose center is on the X-axis, and let x and y be two points
on the boundary of C ′ that are on or above the X-axis. The points x and y partition the
boundary of C ′ into two chains. One of these chains is completely on or above the X-axis;
we denote this chain by arc(x, y; C ′). The length of this chain is denoted by |arc(x, y; C ′)|.

For two points x and y on the X-axis, we write x <X y if x is strictly to the left of y,
and we write x ≤X y if x = y or x <X y.

We now state the geometric property, which is illustrated in Figure 6. Recall the value
κC that was defined in Section 1.

Lemma 4 Let C1 = y1 + λ1C and C2 = y2 + λ2C be two homothets of C whose centers y1

and y2 are on the X-axis. Assume that λ1 > 0, λ2 > 0, and y1 <X y2. For i = 1, 2, let ℓi

and ri be the leftmost and rightmost points of Ci on the X-axis, respectively. Assume that
r1 ≤X r2 and ℓ1 ≤X ℓ2 <X r1. Let x be a point that is on the boundaries of both C1 and C2

and on or above the X-axis. Let L1 = |arc(x, r1; C1)| and L2 = |arc(x, r2; C2)|. Then

L2 ≤ L1 + κC |r1r2|.
Proof. We define L3 = |arc(ℓ2, x; C2)|. Let C ′ be the homothet of C whose center is on the
X-axis such that the intersection between C ′ and the X-axis is equal to the line segment
ℓ2r1, and let L′ = |arc(ℓ2, r1; C

′)|; see Figure 6. Observe that, for λ := |ℓ2r1|/|ℓ2r2|, C ′ is
obtained from C2 by a scaling by a factor of λ. Thus, since |arc(ℓ2, r2; C2)| = L2 + L3, we
have

L′ = λ(L2 + L3).

Let C ′′ be the homothet of C whose center is on the X-axis such that the intersection between
C ′′ and the X-axis is equal to the line segment r1r2, and let L′′ = |arc(r1, r2; C

′′)|. Since C ′′

is obtained from C2 by a scaling by a factor of 1 − λ, we have

L′′ = (1 − λ)(L2 + L3).
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Thus, we have
L′ + L′′ = L2 + L3.

By convexity, we have C ′ ⊆ C1 ∩ C2. Then it follows, again from convexity (see Benson [1,
page 42]), that

L′ ≤ L1 + L3.

Thus, we have
L2 + L3 = L′ + L′′ ≤ L1 + L3 + L′′,

which implies that
L2 ≤ L1 + L′′.

Since, by the definition of κC , L′′ ≤ κC |r1r2|, the proof is complete.

We are now ready to prove an upper bound on the length of a one-sided path.

Lemma 5 If the direct path between p and q is one-sided, then its length is at most κC |pq|.

Proof. As above, we assume that p and q are on the X-axis and that p is to the left of q.
Consider the direct path p = p0, p1, . . . , pk = q in DGC(S) and the sequence x1, x2, . . . , xk, as
defined above. Since the direct path is one-sided, we may assume without loss of generality
that the points p1, p2, . . . , pk−1 are strictly above the X-axis. We have to show that

k
∑

i=1

|pi−1pi| ≤ κC |pq|. (1)

Recall that, for each i with 1 ≤ i ≤ k, xi is in the relative interior of VC(pi−1) ∩ VC(pi)
and xi is on the line segment pq. Therefore, by Lemma 1, if we define λi := dC(xi, pi−1)
(which is equal to dC(xi, pi)), then the homothet Ci := xi + λiC contains pi−1 and pi on its
boundary and no point of S is in its interior.

For each i with 1 ≤ i ≤ k, let ℓi and ri be the leftmost and rightmost points of Ci that
are on the X-axis, respectively. We will prove that for each j with 1 ≤ j ≤ k,

j−1
∑

i=1

|pi−1pi| + |arc(pj−1, rj; Cj)| ≤ κC |prj|. (2)

For j = k, inequality (2) implies (1), because rk = pk = q.
Before we prove (2), we show that ℓ1 ≤X ℓ2 ≤X . . . ≤X ℓk. Observe that x1 <X x2 <X

. . . <X xk. Assume that there is an index i such that ℓi <X ℓi−1. Since ℓi <X ℓi−1 <X

xi−1 <X xi, it follows that λi−1 < λi. If ri−1 <X ri, then ℓi <X ℓi−1 <X ri−1 <X ri and,
therefore, Ci−1 is completely contained in the interior of Ci. This is a contradiction, because
pi−1 is on the boundary of Ci−1, but no point of S is in the interior of Ci. Thus, we have
ri ≤X ri−1. Since xi−1 <X xi <X ri ≤X ri−1, we have λi−1 > λi, which is a contradiction.

Thus, we have shown that ℓ1 ≤X ℓ2 ≤X . . . ≤X ℓk. By a symmetric argument, it follows
that r1 ≤X r2 ≤X . . . ≤X rk.
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Now we are ready to prove (2). The proof is by induction on j. For the base case, i.e.,
when j = 1, we have to show that

|arc(p0, r1; C1)| ≤ κC |pr1|.

Since p0 = p = ℓ1, this inequality follows from the definition of κC .
Let 1 ≤ j < k and assume that (2) holds for j. We have to show that (2) holds for j + 1,

i.e.,
j
∑

i=1

|pi−1pi| + |arc(pj , rj+1; Cj+1)| ≤ κC |prj+1|. (3)

By the induction hypothesis, we have

j
∑

i=1

|pi−1pi| + |arc(pj, rj+1; Cj+1)|

=

j−1
∑

i=1

|pi−1pi| + |pj−1pj| + |arc(pj, rj+1; Cj+1)|

≤ κC |prj| − |arc(pj−1, rj ; Cj)| + |pj−1pj| + |arc(pj , rj+1; Cj+1)|
= κC (|prj+1| − |rjrj+1|) − |arc(pj−1, rj; Cj)| + |pj−1pj| + |arc(pj, rj+1; Cj+1)|.

Thus, (3) holds if we can show that

|pj−1pj | + |arc(pj, rj+1; Cj+1)| ≤ |arc(pj−1, rj; Cj)| + κC |rjrj+1|. (4)

We distinguish two cases.

Case 1: rj ≤X ℓj+1.
By the triangle inequality, we have

|pj−1pj | ≤ |pj−1rj| + |rjℓj+1| + |ℓj+1pj|.

Since pj is on the boundary of Cj+1 and strictly above the X-axis, we have

|ℓj+1pj | + |arc(pj, rj+1; Cj+1)| ≤ |arc(ℓj+1, pj ; Cj+1)| + |arc(pj, rj+1; Cj+1)|
= |arc(ℓj+1, rj+1; Cj+1)|
≤ κC |ℓj+1rj+1|.

It follows that

|pj−1pj| + |arc(pj , rj+1; Cj+1)| ≤ |pj−1rj| + |rjℓj+1| + κC |ℓj+1rj+1|
≤ |arc(pj−1, rj; Cj)| + κC |rjℓj+1| + κC |ℓj+1rj+1|
= |arc(pj−1, rj; Cj)| + κC |rjrj+1|.

Thus, (4) holds.
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Case 2: ℓj+1 <X rj.
Since pj is on the boundaries of both Cj and Cj+1 and strictly above the X-axis, we can

apply Lemma 4 with x = pj and obtain

|arc(pj, rj+1; Cj+1)| ≤ |arc(pj , rj; Cj)| + κC |rjrj+1|.

Thus,
|pj−1pj | + |arc(pj, rj+1; Cj+1)| ≤ |pj−1pj | + |arc(pj, rj; Cj)| + κC |rjrj+1|.

We claim that pj ∈ arc(pj−1, rj, Cj). Assuming this is true, it follows that

|pj−1pj | + |arc(pj, rj+1; Cj+1)| ≤ |arc(pj−1, pj; Cj)| + |arc(pj, rj; Cj)| + κC |rjrj+1|
= |arc(pj−1, rj; Cj)| + κC |rjrj+1|,

i.e., (4) holds.
It remains to prove that pj ∈ arc(pj−1, rj, Cj). Since p0 = ℓ0 and p1 is strictly above the

X-axis, this is true for j = 1. Assume that 2 ≤ j < k and pj 6∈ arc(pj−1, rj, Cj). Then, since
pj is strictly above the X-axis, pj−1 is in the relative interior of arc(pj, rj, Cj).

By the definition of the point xj, there is a point y on the X-axis such that y <X xj and
the line segment yxj is contained in the Voronoi cell VC(pj−1). Using the additional fact that
the cell is star-shaped, the triangle ∆ with vertices pj−1, y, and xj is contained in VC(pj−1).

Again by the definition of the point xj , there is a point z on the X-axis such that xj <X z
and the line segment xjz is contained in the Voronoi cell VC(pj), which is star-shaped. Thus,
the triangle ∆′ with vertices pj, xj , and z is contained in VC(pj).

Since pj−1 and pj are strictly above the X-axis and since pj−1 is in the relative interior of
arc(pj, rj, Cj), the intersection of ∆ and ∆′ has a positive area and is contained in the inter-
section of VC(pj−1) and VC(pj). This is a contradiction, because the area of the intersection
of any two Voronoi cells is zero.

We are now ready to prove that the Delaunay graph satisfies the visible-pair spanner
property:

Lemma 6 The Delaunay graph DGC(S) satisfies the visible-pair κC-spanner property.

Proof. Recall from Lemma 2, that the graph DGC(S) is plane. It suffices to prove that
DGC(S) satisfies the strong visible-pair κC-spanner property. Let f be a face of G and let p
and q be two vertices on f such that the open line segment between p and q is contained in
the interior of f . We have to show that there is a path in DGC(S) between p and q whose
length is at most κC |pq|.

As before, we assume that p and q are on the X-axis and that p is to the left of q.
Consider the direct path p = p0, p1, . . . , pk = q in DGC(S) and the sequence x1, x2, . . . , xk,
as defined in the beginning of this section. We will show that the direct path is one-sided.
The lemma then follows from Lemma 5.

Since the open line segment between p and q is in the interior of f , none of the points
p1, . . . , pk−1 is on the closed line segment pq. Assume that for some i with 1 ≤ i < k, pi is
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on the X-axis. Then pi is either strictly to the left of p or strictly to the right of q. We may
assume without loss of generality that pi is strictly to the right of q. Consider the point xi

and the homothet Ci = xi + λiC as in the proof of Lemma 5. Since xi is on pq and in the
interior of Ci, and since pi is on the boundary of Ci, it follows from convexity that q is in
the interior of Ci, which is a contradiction. Thus we have shown that none of the points
p1, . . . , pk−1 is on the X-axis.

Assume that the direct path is not one-sided. Then there is an edge (pi−1, pi) on this
path such that one of pi−1 and pi is strictly below the X-axis and the other point is strictly
above the X-axis. Let z be the intersection between pi−1pi and the X-axis. By assumption,
z is not on the open line segment joining p and q, and by Lemma 1, z 6= p and z 6= q. Thus,
z is either strictly to the left of p or strictly to the right of q. We may assume without loss of
generality that z is strictly to the right of q. Consider again the point xi and the homothet
Ci = xi + λiC as in the proof of Lemma 5. This homothet contains the points xi, pi−1 and
pi. Thus, by convexity, Ci contains the triangle with vertices xi, pi−1, and pi. Since q is in
the interior of this triangle, it follows that q is in the interior of Ci, which is a contradiction.

3.3 The proof of Theorem 1

Das and Joseph [6] have shown that any plane graph satisfying the diamond property and
the good polygon property has a bounded stretch factor. The analysis of the stretch factor
was slightly improved by Bose et al. [2]. A close inspection of the proof in [2] shows that the
following holds: Let G be a geometric graph with the following four properties:

1. G is plane.

2. G satisfies the α-diamond property.

3. The stretch factor of any one-sided path in G is at most κ.

4. G satisfies the visible-pair κ′-spanner property.

Then, G is a t-spanner for

t = 2κκ′ · max

(

3

sin(α/2)
, κ

)

.

We have shown that the Delaunay graph DGC(S) satisfies all these properties: By Lemma 2,
DGC(S) is plane. By Lemma 3, DGC(S) satisfies the αC-diamond property. By Lemma 5,
the stretch factor of any one-sided path in DGC(S) is at most κC . By Lemma 6, DGC(S)
satisfies the visible-pair κC-spanner property. If DGC(S) is a triangulation, then obviously,
DGC(S) satisfies the visible-pair 1-spanner property. Therefore, we have completed the proof
of Theorem 1.
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4 Concluding remarks

We have considered the Delaunay graph DGC(S), where C is a compact and convex set
with a non-empty interior and S is a finite set of points in the plane. We have shown
that the (Euclidean) stretch factor of DGC(S) is bounded from above by a function of two
parameters αC and κC that are determined only by the shape of C. Roughly speaking, these
two parameters give a measure of the “fatness” of the set C.

For instance, if C is the disk of radius one in the Lp-metric, with 1 ≤ p ≤ ∞, then
αC = π/4 and κC ranges from π/2 (for p = 2) to 2 (for p = ∞ in which case C is an
axes-parallel square). Note that κC = 2 for p = 1 as well, as the L1-disk is the same as the
L∞-disk up to an affine transformation. This implies that the stretch factor will be similar
for all Lp-unit disks. For general sets C, the stretch factor can, however, be arbitrarily big,
for instance when C is a rectangle of infinitesimal width.

Our analysis provides the first generic bound valid for any compact and convex set C. In
all previous works, only special examples of such sets C were considered. Furthermore, our
approach does not make any “general position” assumption about the point set S, while most
related works on Delaunay graphs do not consider the case when four points are cocircular.

Note that for the Euclidean Delaunay triangulation (i.e., when the set C is the disk of
radius one, and with no four cocircular points), we have αC = π/4 and κC = π/2, and we
derive an upper bound on the stretch factor of 3π

sin(π/8)
≈ 24.6.

Observe that this is much worse than the currently best known upper bound (as proved

by Keil and Gutwin [9]), which is 4π
√

3
9

≈ 2.42. We leave open the problem of improving our
upper bound. In particular, is it possible to generalize the techniques of Dobkin et al. [8] and
Keil and Gutwin [9], from the Euclidean metric to an arbitrary convex distance function?
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