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Abstract

Given a connected geometric graph G, we consider the problem of
constructing a t-spanner of G having the minimum number of edges.
We prove that for every t with 1 < t < 1

4 log n, there exists a con-
nected geometric graph G with n vertices, such that every t-spanner
of G contains Ω(n1+1/t) edges. This bound almost matches the known
upper bound, which states that every connected weighted graph with
n vertices contains a t-spanner with O(tn1+2/(t+1)) edges. We also
prove that the problem of deciding whether a given geometric graph
contains a t-spanner with at most K edges is NP-hard. Previously,
this NP-hardness result was only known for non-geometric graphs.

1 Introduction

Let G = (V,E) be a connected undirected graph in which every edge e has a
positive weight ω(e). We define the weight of a path in G to be the sum of
the weights of the edges on this path. For any two vertices u and v of G, we
denote the weight of a shortest path in G between u and v by δG(u, v). For
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a given subgraph G′ = (V, E ′) of G (hence, E ′ ⊆ E), we define the dilation
of G′ with respect to G to be the value

max

{
δG′(u, v)

δG(u, v)
: u, v ∈ V, u 6= v

}
.

For a given real number t > 1, we say that G′ is a t-spanner of G, if the
dilation of G′ with respect to G is at most t.

The problem of computing a “sparse” t-spanner of a given connected
weighted graph G and a real number t > 1 has been studied extensively in
the literature. Althöfer et al. [1] showed that for every connected weighted
graph G with n vertices and for every real number t ≥ 3, there exists a
t-spanner of G that contains O(n1+2/(t−1)) edges. This result was improved
by Baswana and Sen [2] and Roditty et al. [16], who showed that for every
integer t ≥ 3, any connected weighted graph with n vertices contains a t-
spanner with O(tn1+2/(t+1)) edges.

The following lower bound was proved by Althöfer et al. [1]: For every
real number t > 1, there exists a connected weighted graph G with n vertices,
such that every t-spanner of G contains Ω(n1+4/(3(t+2))) edges.

We remark that the corresponding problem for unweighted graphs has
been considered before by Peleg and Schäffer [15]; see also the book by Pe-
leg [14].

In this paper, we consider the above spanner problem for geometric graphs.
A graph G = (S, E) is called a geometric graph, if the vertex set S of G is a
set of points in Rd, and the weight of every edge {u, v} in E is equal to the
Euclidean distance |uv| between u and v.

Since the upper bounds in [1, 2, 16] mentioned above are valid for arbi-
trary connected weighted graphs, they also hold for geometric graphs. The
graph constructed in the proof of the lower bound in [1], however, is not a
geometric graph. The difficulty is in mapping the vertices to points in the
plane, such that the weight of each edge {u, v} is exactly equal to the Eu-
clidean distance |uv|. In Section 2, we prove the following theorem, which
states that the lower bound of Althöfer et al. can almost be achieved by
geometric graphs:

Theorem 1 For every sufficiently large integer n, and for every real number
t with 1 < t < 1

4
log n, there exists a connected geometric graph G with 2n

vertices, such that every t-spanner of G contains Ω(n1+1/t) edges.
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The proof of Theorem 1 uses an n × n connected bipartite graph with
Ω(kn) edges and whose girth is Ω(log n/ log k). The probabilistic method
has been used to prove the existence of a dense (not necessarily bipartite)
graph with high girth; see, for example, Mitzenmacher and Upfal [13]. This
existence proof can easily be extended to bipartite graphs. Lazebnik and
Ustimenko [12] used algebraic methods to give an explicit construction of a
dense bipartite graph with high girth. Chandran [7] used a purely combina-
torial approach to construct such a graph, which is, however, not bipartite.
In Section 3, we modify Chandran’s construction and obtain a simple deter-
ministic algorithm that produces a bipartite graph that we can use to prove
Theorem 1.

The spanner problem naturally leads to the following optimization prob-
lem: Given a connected weighted graph G with n vertices, and given a real
number t > 1, compute a t-spanner of G, having the minimum number of
edges.

Cai [4] proved that, for any fixed t ≥ 2, this optimization problem is NP-
hard for unweighted graphs (or, equivalently, for graphs in which all edges
have weight one). Cai and Corneil [5] considered the problem for weighted
graphs, and showed it to be NP-hard for any fixed t > 1. The problem
has also been shown to be NP-hard for restricted classes of graphs, such as
planar graphs (see Brandes and Handke [3]), chordal graphs, and bipartite
graphs (see Venkatesan et al. [20]).

However, the complexity of the optimization problem has not been consid-
ered for geometric graphs. In Section 4, we prove this version of the problem
to be NP-hard as well. Our proof of this result consists of modifying the
approach of Cai [4]: We show that any Boolean formula ϕ in 3-conjunctive
normal form can be transformed, in polynomial time, to a geometric graph
G and an integer K, such that ϕ is satisfiable if and only if G contains a
t-spanner with at most K edges. Again, the main difficulty is in defining G
in such a way that its vertices are points in the plane and the weight of each
edge {u, v} is exactly equal to the Euclidean distance |uv|. Recall that the
transformation from ϕ to the pair (G,K) has to be done on a Turing ma-
chine. Since Turing machines can only deal with finite strings, we take care
that the vertices of G are points in the plane having rational coordinates.
Thus, the decision version of the optimization problem for geometric graphs
is formally defined as follows, for any fixed rational number t > 1:
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Problem GeomMinSpanner(t):

Instance: A connected geometric graph G = (S, E), where S ⊆ Q2, and a
positive integer K.
Question: Does G contain a t-spanner with at most K edges?

In Section 4, we prove the following result:

Theorem 2 For any rational number t > 1, problem GeomMinSpanner(t)
is NP-hard.

We do not know if GeomMinSpanner(t) is in NP, because it is not
known how to decide, on a Turing machine and in polynomial time, if any
given subgraph G′ of a geometric graph G is a t-spanner of G. (The difficulty
is in determining whether a rational number is less than a sum of square roots
of rational numbers.)

1.1 Related work

The problem of constructing geometric spanners with few edges has been
considered for point sets. A graph G′, whose vertex set is a set S of points in
Rd, is said to be a t-spanner for S, if G′ is a t-spanner of the complete geo-
metric graph on S. Salowe [17], Vaidya [19], and Callahan and Kosaraju [6]
have shown that, for any set S of n points in Rd, and for any real constant
t > 1, a t-spanner for S with O(n) edges can be computed in O(n log n) time.
See also the survey papers by Eppstein [8], Gudmundsson and Knauer [9],
and Smid [18].

Gudmundsson et al. [10, 11] have shown that if S is a set of n points
in Rd, t > 1 is a real number, and G is a (1 + ε)-spanner for S, then G
contains a t-spanner with O(n) edges.

Thus, the problem of constructing sparse spanners of geometric graphs G
has been considered for the cases when G is the complete geometric graph
or when G itself is a spanner of its vertex set. The problem has not been
considered for arbitrary geometric graphs G.
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2 A geometric graph that contains only dense

spanners

In this section, we will prove Theorem 1. Consider a connected (not neces-
sarily geometric) graph G, in which every edge e has a positive weight ω(e).
Recall that the girth of G is the minimum number of edges on any cycle in G.
We denote by ω(C) the weight of any cycle C in G. Thus, ω(C) is equal to
the sum of the weights of the edges on C. We define the weighted girth of G
to be the quantity

min

{
ω(C)

ω(e)
: C is a cycle in G, e is an edge of maximum weight on C

}
.

The following lemma relates the girth of G to its weighted girth.

Lemma 1 Let G be a connected graph, in which every edge e has a positive
weight ω(e). Let g and gω be the girth and weighted girth of G, respectively.
Then g ≥ gω.

Proof. Let C be an arbitrary cycle in G, let e be an edge of maximum weight
on C, and let m be the number of edges on C. Then, ω(C) ≤ m · ω(e). By
the definition of weighted girth, we have ω(C)/ω(e) ≥ gω. It follows that
m ≥ gω. Hence, we have shown that every cycle in G contains at least gω

edges.

The next lemma relates the dilation of every proper subgraph of G to the
weighted girth of G.

Lemma 2 Let G be a connected graph in which every edge e has a positive
weight ω(e). Let gω be the weighted girth of G. Let f be an arbitrary edge of
G, and let G′ be the graph obtained by deleting f from G. Then the dilation
of G′ with respect to G is at least gω − 1.

Proof. Let u and v be the vertices of f , i.e., f = {u, v}, and let t denote the
dilation of G′ with respect to G. If there is no path in G′ between u and v,
then t = ∞ and the lemma holds. Otherwise, let P be a path of minimum
weight in G′ between u and v. Let C be the cycle in G obtained by adding f
to P , and let e be an edge of maximum weight on C. Then ω(f) ≤ ω(e) and

δG′(u, v)

δG(u, v)
=

ω(P )

ω(f)
=

ω(C)− ω(f)

ω(f)
=

ω(C)

ω(f)
− 1 ≥ ω(C)

ω(e)
− 1 ≥ gω − 1.
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(1 − ε, 0)

(1 − ε, ε/2)(0, ε/2)

(0, 0)

`2`1

Figure 1: Illustrating the construction in the proof of Lemma 3.

Since t ≥ δG′(u, v)/δG(u, v), the proof is complete.

The previous two lemmas are valid for arbitrary (i.e., not necessarily
geometric) connected weighted graphs. The next lemma shows that any
connected bipartite graph with girth g can be transformed to a connected
geometric graph whose weighted girth is Ω(g). We say that a graph G is an
n×n bipartite graph, if its vertex set can be partitioned into two sets L and
R, each having size n, such that every edge of G is between a vertex in L
and a vertex in R.

Lemma 3 Let G be a connected n×n bipartite graph with m edges and girth
g. Then for every real number ε with 0 < ε < 1, there exists a set S of 2n
points in the plane and a connected geometric graph with vertex set S that
consists of m edges and whose weighted girth is at least (1− ε)g.

Proof. Let the vertex set of G be L∪R, where L∩R = ∅, |L| = |R| = n, and
every edge of G is between some vertex of L and some vertex of R. Let `1

be the vertical line segment with endpoints (0, 0) and (0, ε/2), and let `2 be
the vertical line segment with endpoints (1− ε, 0) and (1− ε, ε/2), as shown
in Figure 1. We embed the graph G in the plane, by mapping the vertices
of L to a set SL of n points on `1, and mapping the vertices of R to a set
SR of n points on `2. Let S be the union of SL and SR, and let G′ denote
the embedded geometric graph. Since 0 < ε < 1, a simple calculation shows
that the length of each edge of G′ is in the interval [1 − ε, 1]. Consider an
arbitrary cycle C in G′, and let e be a longest edge on C. Since C contains
at least g edges, we have ω(C) ≥ (1 − ε)g. Thus, since ω(e) ≤ 1, we have
ω(C)/ω(e) ≥ (1− ε)g. Since this lower bound holds for any cycle in G′, the
lemma follows.
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The previous lemmas imply that we can prove Theorem 1, by constructing
a dense bipartite graph whose girth is large. The following lemma states that
such a graph exists; the proof will be given in Section 3.

Lemma 4 Let n and k be positive integers with n ≥ 3k+4 and k ≥ 2. There
exists a connected n × n bipartite graph with kn edges, in which the degrees
of all vertices are in {k − 1, k, k + 1}, and whose girth is at least

log(3n/8)

log(k + 1)
+ 1 = logk n−O(1).

Consider the bipartite graph of Lemma 4, and denote its girth by g.
By Lemma 3, we can transform this graph to a geometric graph G, whose
weighted girth is at least (1− ε)g. Then, Lemma 2 implies that every proper
subgraph of G has dilation at least (1−ε)g−1. Thus, we obtain the following
result.

Lemma 5 Let n and k be positive integers with n ≥ 3k + 4 and k ≥ 2, and
let ε be a real number with 0 < ε < 1. There exists a connected geometric
graph G with 2n vertices and kn edges, such that for every proper subgraph
G′ of G, the dilation of G′ with respect to G is at least

(1− ε)
log(3n/8)

log(k + 1)
− ε = (1− ε) logk n−O(1).

We are now ready to prove Theorem 1. Let n be a sufficiently large
integer, and let t be a real number with 1 < t < 1

4
log n. Define ε = 2t/ log n

and
k = (n/4)(1−ε)/(t+ε) − 1. (1)

Observe that, by our restriction on t, the exponent (1 − ε)/(t + ε) is in the
interval (0, 1). Therefore, since n is sufficiently large, we have k ≥ 2 and
n ≥ 3k + 4. Let G be the geometric graph in Lemma 5. We claim that this
graph has the properties stated in Theorem 1. Indeed, let G′ be an arbitrary
t-spanner of G. If G′ is a proper subgraph of G, then, by Lemma 5,

t ≥ (1− ε)
log(3n/8)

log(k + 1)
− ε.

However, our choice of k in (1) implies that

t = (1− ε)
log(n/4)

log(k + 1)
− ε < (1− ε)

log(3n/8)

log(k + 1)
− ε.
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Thus, G′ is equal to G and, therefore, the number of edges of G′ is equal to

kn = Ω
(
n1+(1−ε)/(t+ε)

)
.

Since 0 < ε < 1/2 and t > 1, we have

1− ε

t + ε
≥ 1− 2ε

t
=

1

t
− 4

log n
.

It follows that the number of edges of G′ is

Ω
(
n1+1/t−4/ log n

)
= Ω

(
n1+1/t

)
.

This completes the proof of Theorem 1.

3 Constructing a dense bipartite graph with

high girth

In this section, we prove Lemma 4. That is, we construct a connected n× n
bipartite graph with kn edges, in which the degrees of all vertices are in {k−
1, k, k + 1}, and whose girth is Ω(logk n). Our construction is a modification
of a construction due to Chandran [7], who proved the same result for general,
i.e., non-bipartite, graphs.

All graphs in this section are connected and unweighted. (Equivalently,
all edge weights are equal to one.) Thus, for any two vertices u and v of a
graph G, we denote by δG(u, v) the minimum number of edges on any path
in G between u and v.

The algorithm that constructs a dense bipartite graph with high girth
is denoted by BipartiteHighGirth(n, k) and is given in Figure 2. This
algorithm takes as input two integers n and k with n ≥ 3k + 4 and k ≥ 2.
As we will prove in Sections 3.1 and 3.2, the algorithm returns a connected
n× n bipartite graph G with kn edges and girth at least logk n−O(1), such
that each vertex has a degree in {k − 1, k, k + 1}.

The algorithm starts by initializing the graph G to be a Hamiltonian
cycle in the complete bipartite graph on L ∪ R. Then, it makes a sequence
of (k − 2)n iterations, which are numbered using a counter i which runs
from 2n + 1 to kn. In the i-th iteration, the algorithm takes an ordered pair
(u, v) in (L × R) ∪ (R × L), such that, in the current graph G, (i) u has
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Algorithm BipartiteHighGirth(n, k)
Input: Integers n and k, such that n ≥ 3k + 4 and k ≥ 2.
Output: A connected n×n bipartite graph G with kn edges and
girth at least logk n − O(1), such that the degree of each vertex
is in {k − 1, k, k + 1}.

let L and R be two disjoint sets, each having size n;
let V = L ∪R;
initialize G to be a Hamiltonian cycle in the complete bipartite graph
on L ∪R;
for i = 2n + 1 to kn
do let M be the set of all vertices in V having minimum degree in G;

let P = ((M ∩ L)×R) ∪ ((M ∩R)× L);
let T be the set of all ordered pairs (u, v) in P , such that {u, v} is
not an edge in G and degG(v) ≤ di/ne;
let (u, v) be any pair in T , such that δG(u, v) is maximum;
add the edge {u, v} to G

endfor;
return the graph G

Figure 2: The algorithm that constructs a dense bipartite graph with high
girth.

minimum degree, (ii) v has degree at most di/ne, (iii) the edge {u, v} is not
in G, and (iv) the distance between u and v is as large as possible. Then, it
adds the edge {u, v} to G. We will show in Lemma 8 that such a pair (u, v)
always exists. In particular, this will show that the set T is never empty and,
therefore, it is possible to choose the pair (u, v) in T for which δG(u, v) is
maximum.

3.1 Analyzing the size and the degree

We number the iterations of the for-loop according to the value of the variable
i. In other words, the iterations are numbered 2n + 1, 2n + 2, . . . , kn. In this
section, we will prove the following lemma.
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Lemma 6 Let d be an integer with 2 ≤ d ≤ k. At the moment when iteration
dn of the for-loop is completed, the following are true:

1. The graph G consists of dn edges.

2. The degree in G of every vertex of V is in {d− 1, d, d + 1}.
3. Let X and Z be the sets of vertices of V , whose degrees in G are equal

to d− 1 and d + 1, respectively. Then, |X| = |Z|.

Thus, for d = k, this lemma implies the claims in Lemma 4 about the
number of edges and the degrees of the vertices.

The proof of Lemma 6 is by induction on d. If d = 2, then we consider the
situation just before the for-loop starts. At that moment, G is a Hamiltonian
cycle in the complete bipartite graph with vertex set L∪R. Thus, G consists
of 2n edges, the degree of every vertex is equal to two, and the sets X and
Z in the third claim are both empty. As a result, Lemma 6 holds for d = 2.

We choose an integer d such that 2 ≤ d < k, and assume that Lemma 6
holds for d. We will prove in Lemmas 7–10 below that the lemma then also
holds for d+1. To prove this, we consider iterations dn+1, dn+2, . . . , (d+1)n
of the for-loop. We will refer to this sequence of n iterations as the current
batch. Observe that during the current batch, the value of di/ne is equal to
d + 1.

Lemma 7 At the end of the current batch, the degree in G of every vertex
of V is less than or equal to d + 2.

Proof. Let x be an arbitrary vertex in V . We have to prove that degG(x) ≤
d + 2 at the end of the current batch.

Consider any edge {u, v}, where v = x, that is added to G during the
current batch, because the algorithm chooses the pair (u, v) in T . It follows
from the algorithm that, prior to the moment this edge is added, degG(v) ≤
d + 1. Therefore, the addition of edges of this type cannot lead to a degree
of x that is larger than d + 2.

Consider any edge {u, v}, where u = x, that is added to G during the
current batch, because the algorithm chooses the pair (u, v) in T . Assume
that this addition makes the degree of x to be at least d + 3. It follows from
the algorithm that, prior to the addition of {u, v}, x has minimum degree
in G. In other words, just before {u, v} is added to G, the degree of every
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vertex is at least d + 2. In particular, the degree of v is at least d + 2 at that
moment. But this implies that, during the iteration in which {u, v} is added
to G, the ordered pair (u, v) is not in the set T . This is a contradiction.

Lemma 8 In each iteration of the current batch, exactly one edge is added
to the graph G.

Proof. By the induction hypothesis, the graph G consists of dn edges at
the beginning of the current batch. During this batch, at most n edges are
added to G. It follows that, at any moment during the current batch,

∑
v∈V

degG(v) ≤ 2(d + 1)n. (2)

Consider one iteration of the current batch, and let G′ be the graph G
at the start of this iteration. Let u be a vertex of V , whose degree in G′ is
minimum. We may assume without loss of generality that u ∈ L.

We claim that, at the start of this iteration, there exists a vertex v in R,
such that {u, v} is not an edge in G′ and degG′(v) ≤ d + 1. Assuming this
claim is true, it follows from the algorithm that, during this iteration, the
set T is non-empty and, therefore, an edge is added to G′. This edge need
not be {u, v} though.

It remains to prove the claim. Let d′ be the degree of u in G′, and let
v1, v2, . . . , vd′ be all vertices of R that are connected to u by an edge of G′.
It follows from the induction hypothesis that

d′∑
j=1

degG′(vj) ≥ d′(d− 1).

Moreover, by (2), we have

∑
v∈R

degG′(v) =
1

2

∑
v∈V

degG′(v) ≤ (d + 1)n. (3)

Assume that the claim does not hold. Then, we have degG′(v) ≥ d + 2
for each v ∈ R \ {v1, v2, . . . , vd′}. It follows that

∑
v∈R

degG′(v) ≥ d′(d− 1) + (n− d′)(d + 2). (4)
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By combining (3) and (4), we obtain

d′(d− 1) + (n− d′)(d + 2) ≤ (d + 1)n,

which can be rewritten as n ≤ 3d′. By Lemma 7, we have d′ ≤ d+2 ≤ k +1,
which implies that n ≤ 3k+3, contradicting our assumption that n ≥ 3k+4.

Lemma 9 At the end of the current batch, the degree in G of every vertex
of V is greater than or equal to d.

Proof. Consider the sets X and Z of vertices of V , whose degrees in G, at
the beginning of the current batch, are equal to d− 1 and d+1, respectively.
Since, by the induction hypothesis, |X| = |Z|, we have |X| ≤ n.

It follows from the algorithm and Lemma 8 that in each iteration of the
current batch, one edge {u, v}, where u has minimum degree in the current
graph G, is added to G. The induction hypothesis implies that, after this
edge has been added, the degree of u is at least d. Therefore, after the first
|X| iterations of the current batch, G does not contain any vertex of degree
at most d− 1.

Lemma 10 Let X ′, Y ′, and Z ′ be the sets of vertices of V , whose degrees
in G are equal to d, d + 1, and d + 2, respectively, at the end of the current
batch. Then, |X ′| = |Z ′|.

Proof. We observe that, by Lemmas 7–9,

|X ′|+ |Y ′|+ |Z ′| = 2n

and
d|X ′|+ (d + 1)|Y ′|+ (d + 2)|Z ′| = 2(d + 1)n.

By multiplying the first equation by d + 1, and subtracting the result from
the second equation, the lemma follows.

This completes the proof of Lemma 6.
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3.2 A lower bound on the girth

Let G be the graph that is returned by algorithm BipartiteHighGirth(n, k).
In this section, we will prove the claim in Lemma 4 about the girth of the
graph G.

Let g be the girth of G. Since G is a bipartite graph, g is even. We will
prove that

g ≥ log(3n/8)

log(k + 1)
+ 1. (5)

Let C be a cycle in G consisting of g edges, and let {u, v} be the last edge
of C that is added to G. Let j be the integer such that {u, v} is added to G
during iteration j of the for-loop. We may assume that j ≥ 2n + 1, because
otherwise, C is a Hamiltonian cycle in the complete bipartite graph on L∪R
and, therefore, g = 2n, in which case (5) obviously holds. Let d = dj/ne,
and let Gj be the graph G at the start of iteration j. Consider the ordered
pair (u, v) in T that corresponds to the edge {u, v}. We observe that

δGj
(u, v) ≤ g − 1.

We may assume without loss of generality that u ∈ L. Define

B = {x ∈ R : δGj
(u, x) ≥ g}.

Let x be an arbitrary element in B. Then {u, x} is not an edge in Gj, because,
otherwise, δGj

(u, x) = 1 < g. Also, we have

δGj
(u, x) ≥ g > g − 1 ≥ δGj

(u, v),

and since the edge {u, v} is added to Gj in iteration j, it follows from the
algorithm that (u, x) 6∈ T . Thus, the definition of T implies that degGj

(x) ≥
d + 1. In fact, by Lemma 6, we have degGj

(x) = d + 1. Hence, we have

B ⊆ {x ∈ R : degGj
(x) = d + 1}.

Let G′ be the graph G at the end of iteration dn, and define

ZR = {x ∈ R : degG′(x) = d + 1}.
Since dn ≥ j, and using Lemma 6, we obtain

B ⊆ ZR.
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Define
XR = {x ∈ R : degG′(x) = d− 1}

and
YR = {x ∈ R : degG′(x) = d}.

By Lemma 6, we have

|XR|+ |YR|+ |ZR| = n.

Also, the definitions of XR, YR, and ZR, together with Lemma 6, imply that

(d− 1)|XR|+ d|YR|+ (d + 1)|ZR| = dn.

It follows that |XR| = |ZR|, implying that |ZR| ≤ n/2. Thus, since B ⊆ ZR,
we have |B| ≤ n/2 and, hence,

|R \B| ≥ n/2.

Since
R \B = {x ∈ R : δGj

(u, x) ≤ g − 1},
and since, by Lemma 6, the degree of every vertex of Gj is at most d + 1, it
follows that

|R \B| ≤ (d + 1) + (d + 1)3 + (d + 1)5 + . . . + (d + 1)g−1

≤ (k + 1) + (k + 1)3 + (k + 1)5 + . . . + (k + 1)g−1

= (k + 1)
(k + 1)g − 1

(k + 1)2 − 1

≤ (k + 1)g+1

(k + 1)2 − 1

≤ (k + 1)g+1

3
4
(k + 1)2

≤ 4

3
(k + 1)g−1.

By combining the lower and upper bounds on the size of R \B, we obtain

n/2 ≤ 4

3
(k + 1)g−1.

The latter inequality is equivalent to (5). This completes the proof of Lemma 4,
and hence also Theorem 1.
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4 The NP-hardness proof

We now prove Theorem 2, i.e., the decision problem GeomMinSpanner(t)
is NP-hard. Throughout this section, we fix a rational number t > 1. Recall
that 3SAT is the problem of deciding whether or not any given Boolean for-
mula in 3-conjunctive normal form is satisfiable. It is well known that 3SAT
is NP-complete. To prove Theorem 2, it suffices to design a polynomial-time
reduction from 3SAT to GeomMinSpanner(t). Note that time refers to
the number of steps made by, say, a Turing machine. Alternatively, time ex-
presses the number of bit operations made in the reduction. In Section 4.2,
we present such a reduction, together with its correctness proof. Our ap-
proach is to modify Cai’s reduction in [4], which shows that constructing a
t-spanner with the minimum number of edges in any unweighted graph is
NP-hard. First, in Section 4.1, we introduce so-called forced paths, which
are paths in a geometric graph G that must be in any t-spanner of G.

4.1 Forced paths

Recall that we have fixed a rational number t > 1. We fix an even integer k,
such that k ≥ 4 and k ≥ t + 1.

Let ` > 0 be a rational number, and let x = (x1, x2) and y = (y1, y2) be
two distinct points in Q2. Let µ be a rational number, such that

1/|xy| ≤ µ ≤ 1/|xy|+ 1/`, (6)

and define the rational number λ as λ = `µ/k. Let v be the point in Q2

defined as
v = (λ(y2 − x2), λ(x1 − y1)) .

Observe that the vector from the origin to v is orthogonal to the line segment
joining x and y. For i = 0, 1, . . . , k/2, we define the points ai and bi in Q2 as

ai = x + iv

and
bi = y + iv.

Finally, we define P to be the path consisting of the edges

1. {a0, a1}, {a1, a2}, . . . , {ak/2−1, ak/2},
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Figure 3: (a) The forced path FP(x, y; `) of x and y. (b) Illustrating the
proof of Lemma 12.

2. {ak/2, bk/2}, and

3. {bk/2, bk/2−1}, . . . , {b2, b1}, {b1, b0}.
See Figure 3(a) for an illustration. We will refer to the path P as the forced
path of x and y (with respect to `), and denote it by FP(x, y; `). Lemma 12
explains this terminology. Before we state this lemma, we prove upper and
lower bounds on the length of the path P :

Lemma 11 The length |P | of the forced path P = FP(x, y; `) satisfies

` ≤ |P | ≤ ` + 2|xy|.
Proof. We first observe that, for each i with 0 ≤ i < k/2,

|aiai+1| = |v| = λ|xy| = (`µ/k)|xy| ≥ `/k,

where the inequality follows from the left inequality in (6), and, similarly,

|bibi+1| = |v| = λ|xy| = (`µ/k)|xy| ≥ `/k.

Since P consists of k edges, each having length at least `/k, plus one addi-
tional edge of length |ak/2bk/2| = |xy|, it follows that |P | ≥ `. To prove the
upper bound on the length of P , we first observe that |P | = (`µ + 1)|xy|. It
follows from the right inequality in (6) that `µ ≤ 1 + `/|xy|. Therefore, we
have

|P | ≤ (2 + `/|xy|) |xy| = ` + 2|xy|.
This completes the proof of the lemma.
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Lemma 12 Let G be a connected geometric graph, whose vertices are points
in Q2, and let x and y be two distinct vertices of G that are not connected by
an edge, such that |xy| ≤ `/(t− 1). Assume that G contains the forced path
P = FP(x, y; `). Also, assume that each vertex of P \ {x, y} has degree two
in G. Then, every t-spanner of G contains the path P .

Proof. Let G′ be an arbitrary t-spanner of G. Let i be any integer with
0 ≤ i < k/2, and assume that the edge {ai, ai+1} of P is not an edge in G′;
see Figure 3(b). Then,

δG′(ai, ai+1) > |P | − |aiai+1| > (k − 1)|aiai+1|.

Since k ≥ t + 1, it follows that

δG′(ai, ai+1) > t|aiai+1|,

contradicting the fact that G′ is a t-spanner of G. Thus, all edges {ai, ai+1},
with 0 ≤ i < k/2, are contained in G′. By a symmetric argument, all edges
{bi, bi+1}, with 0 ≤ i < k/2, are contained in G′.

Assume that the edge {ak/2, bk/2} of P is not an edge in G′. Then,

δG′(ak/2, bk/2) > |P | = (`µ + 1)|xy| ≥ (`/|xy|+ 1) |xy|.

Since |xy| ≤ `/(t− 1), it follows that

δG′(ak/2, bk/2) > t|xy| = t|ak/2bk/2|,

which is again a contradiction. Thus, G′ contains the edge {ak/2, bk/2}.

Lemma 13 Assume that ` > 0 is a rational constant. Given the distinct
points x and y in Q2, the path FP(x, y; `) can be constructed in time that is
polynomial in L, where L is the total number of bits in the binary represen-
tations of the numerators and denominators of the coordinates of x and y.

Proof. Given the points x = (x1, x2) and y = (y1, y2), we first have to
compute a rational number µ, such that

0 ≤ µ−
√

1

(x1 − y1)2 + (x2 − y2)2
≤ 1/`. (7)
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That is, we have to approximate the square root in (7) within an absolute
precision of 1/`. Since ` is a constant, we can compute, in time that is poly-
nomial in L, a rational number µ that satisfies (7) and for which the total
number of bits in the binary representations of its numerator and denomi-
nator is polynomial in L. Given µ, and using our assumption that ` and k
are constants, the rational number λ, the point v, and the points ai and bi

(0 ≤ i ≤ k/2) can all be computed in time that is polynomial in L.

4.2 The reduction

We are now ready to give the reduction from 3SAT to GeomMinSpanner(t).
Recall that t > 1 is a rational number, and k is an even integer, such that
k ≥ 4 and k ≥ t + 1. We define the rational number ` as

` = 2(t− 1)/3.

We consider t, k, and ` to be constants.
We need the following lemma, which will be used to obtain points on the

unit-circle that have rational coordinates and that are close together.

Lemma 14 Let ρ = min(2/3, `/4), let C be the circle of radius ρ/2 centered
at the point (1, 0), let i be an integer, such that i ≥ 4/ρ, and let Q(i) be the
point

Q(i) =

(
i2 − 1

i2 + 1
,

2i

i2 + 1

)
.

Then, Q(i) has rational coordinates, is on the unit-circle, and is contained
in the interior of the circle C.

Proof. It is obvious that Q(i) has rational coordinates and that this point
is on the unit-circle. A straightforward calculation shows that the distance
between Q(i) and the center (1, 0) of C is less than ρ/2. This proves that
Q(i) is in the interior of the circle C.

Let ϕ be a Boolean formula in 3-conjunctive normal form, with variables
x1, x2, . . . , xN , consisting of M clauses c1, c2, . . . , cM . Thus, for each j with
1 ≤ j ≤ M , the clause cj is of the form cj = y1 ∨ y2 ∨ y3, where each of y1,
y2, and y3 is either a variable or the negation of a variable.
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Figure 4: (a) The graph Gi (without the five forced paths), and (b) the graph
G′

j, where cj = (x1 ∨ x2 ∨ x3).

Our task is to map ϕ to an instance of GeomMinSpanner(t), i.e., a
connected geometric graph G, whose vertex set is a set of points in Q2, and
an integer K, such that ϕ is satisfiable if and only if G contains a t-spanner
having at most K edges.

Let z denote the origin in R2, and define

i∗ = d4/ρe =

⌈
4

min(2/3, `/4)

⌉
.

For each i with 1 ≤ i ≤ N , we define the following geometric graph Gi,
see Figure 4(a):

1. Let pi = Q(i∗ + 4i), p′i = Q(i∗ + 4i + 1), qi = Q(i∗ + 4i + 2), and
q′i = Q(i∗ + 4i + 3).

2. The graph Gi contains the four edges {z, pi}, {z, p′i}, {z, qi}, and {z, q′i}.
3. The graph Gi contains the five forced paths FP(pi, p

′
i; `), FP(pi, qi; `),

FP(pi, q
′
i; `), FP(p′i, qi; `), and FP(p′i, q

′
i; `).

For each j with 1 ≤ j ≤ M , we define the following geometric graph G′
j,

see Figure 4(b): Write the clause cj as cj = y1 ∨ y2 ∨ y3.

1. Let rj = Q(i∗ + 4N + 3 + j).
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2. The graph G′
j contains the edge {z, rj}.

3. For each m with 1 ≤ m ≤ 3, if ym is equal to the variable, say, xi,
then G′

j contains the forced path FP(rj, pi; `). On the other hand, if
ym is equal to the negation of the variable, say, xi, then G′

j contains
the forced path FP(rj, p

′
i; `).

We define G to be the union of the graphs Gi (1 ≤ i ≤ N) and the
graphs G′

j (1 ≤ j ≤ M). Observe that G is a connected geometric graph,
whose vertices are points in Q2. Recall that each forced path consists of
k +1 edges. The graph G consists of 1+ (5k +4)N +(3k +1)M vertices and
(5k + 9)N + (3k + 4)M edges. We define

K = (5k + 6)N + (3k + 3)M.

Let L be the number of bits in the representation of the Boolean formula
ϕ. Then, L is proportional to (N + M) log N . Since each vertex of G can be
represented by O(log N + log M) = O(log N) bits, it follows from Lemma 13
that the graph G can be constructed in time that is polynomial in L.

In the rest of this section, we will prove that the Boolean formula ϕ is
satisfiable if and only if the graph G contains a t-spanner with at most K
edges.

We first prove upper and lower bounds on the lengths of the forced paths
in G:

Lemma 15 The length of each forced path in the graph G is in the interval
[`, 3`/2].

Proof. By Lemma 14, the Euclidean distance between the two endpoints of
any forced path is less than ρ, which is at most `/4. The claim then follows
from Lemma 11.

The next lemma explains our choice for the integer K.

Lemma 16 Let G′ be an arbitrary t-spanner of G. Then, the following two
claims are true:

1. G′ contains at least K edges.

2. If G′ consists of exactly K edges, then, for each i with 1 ≤ i ≤ N ,
exactly one of the edges {z, pi} and {z, p′i} is in G′.
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Proof. We first observe that, by Lemma 14, the Euclidean distance between
the two endpoints of any forced path is less than ρ, which is at most 2/3.
Since `/(t − 1) = 2/3, it then follows from Lemma 12 that all forced paths
in G are contained in G′. The total number of edges in these forced paths is
equal to (5N + 3M)(k + 1) = K − N . We will prove below that, for each i
with 1 ≤ i ≤ N , the graph G′ contains at least one of the four edges {z, pi},
{z, p′i}, {z, qi}, and {z, q′i}. This will imply that G′ contains at least K edges
and, thus, prove the first claim.

Let i be any integer with 1 ≤ i ≤ N , and assume that none of the edges
{z, pi}, {z, p′i}, {z, qi}, and {z, q′i} is contained in G′. Then, any path in G′

between z and qi contains at least one edge of length one and at least two
forced paths. Since, by Lemma 15, the length of each forced path is at least
`, it follows that

δG′(z, qi) ≥ 1 + 2` = 1 + 2 · 2(t− 1)/3 > t = t · δG(z, qi),

contradicting the fact that G′ is a t-spanner of G.
To prove the second claim, assume that G′ consists of exactly K edges.

Let i be an integer with 1 ≤ i ≤ N . It follows from the argument above
that G′ contains exactly one of the edges {z, pi}, {z, p′i}, {z, qi}, and {z, q′i}.
If G′ contains {z, q′i}, then, by the same argument as above, we must have
δG′(z, qi) > t · δG(z, qi), contradicting our assumption that G′ is a t-spanner
of G. Similarly, if G′ contains {z, qi}, then δG′(z, q

′
i) > t · δG(z, q′i), which is

also a contradiction. Thus, G′ contains exactly one of the edges {z, pi} and
{z, p′i}.

In the next two lemmas, we prove the correctness of our reduction.

Lemma 17 If G contains a t-spanner with at most K edges, then the Boolean
formula ϕ is satisfiable.

Proof. Let G′ be a t-spanner of G consisting of at most K edges. Then, by
Lemma 16, G′ contains exactly K edges and, for each i with 1 ≤ i ≤ N , G′

contains exactly one of the edges {z, pi} and {z, p′i}.
For each i with 1 ≤ i ≤ N , if {z, pi} is an edge of G′, then we give the

variable xi the value true, otherwise, we give the variable xi the value false.
We claim that for this assignment of truth values, the Boolean formula ϕ
evaluates to true. To prove this, let j be any integer with 1 ≤ j ≤ M ,
and consider the clause cj in ϕ. For ease of notation, let us assume that
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cj = x1 ∨ x2 ∨ x3. To prove that cj evaluates to true, we have to show that
at least one of the edges {z, p1}, {z, p′2}, and {z, p′3} is in G′. Assume that
neither of these edges is in G′. Observe that {z, rj} is not an edge in G′,
because otherwise, G′ would contain more than K edges. Thus, every path
in G′ between z and rj contains at least one edge of length one and at least
two forced paths. Therefore, we have

δG′(z, rj) ≥ 1 + 2` > t = t · δG(z, rj).

This contradicts our assumption that G′ is a t-spanner of G.

Lemma 18 If the Boolean formula ϕ is satisfiable, then G contains a t-
spanner with at most K edges.

Proof. Assume that ϕ is satisfiable. We fix an assignment of truth values
for the variables x1, x2, . . . , xN for which ϕ evaluates to true. Define the
following subgraph G′ of G:

1. G′ contains all forced paths in G.

2. For each i with 1 ≤ i ≤ N , if xi = true, then G′ contains the edge
{z, pi}, otherwise, G′ contains the edge {z, p′i}.

We first observe that G′ contains exactly K edges. To show that G′ is a
t-spanner of G, it suffices to show the following claim: For each edge {a, b}
of G that is not in G′, we have δG′(a, b) ≤ t|ab|.

Let i be any index with 1 ≤ i ≤ N . We may assume without loss of
generality that {z, p′i} is an edge in G′. Consider the edge {z, pi} of G, which
is not an edge in G′. The edge {z, p′i} and the forced path FP(pi, p

′
i; `) form

a path in G′ between z and pi. Thus, using Lemma 15, we have

δG′(z, pi) ≤ 1 + 3`/2 = t = t|zpi|.

In a similar way, it can be shown that δG′(z, qi) ≤ t = t|zqi| and δG′(z, q
′
i) ≤

t = t|zq′i|.
Let j be any index with 1 ≤ j ≤ M . Write the clause cj as cj = y1∨y2∨y3,

and consider the edge {z, rj} of G, which is not an edge in G′. Since cj

evaluates to true, at least one of the literals in cj is true. We may assume

22



without loss of generality that y1 is true. If y1 = xi, for some i, then G′

contains the edge {z, pi} and the forced path FP(rj, pi; `). It follows that

δG′(z, rj) ≤ 1 + 3`/2 = t = t|zrj|.

On the other hand, if y1 = xi, for some i, then G′ contains the edge {z, p′i}
and the forced path FP(rj, p

′
i; `). Thus, in this case, we have

δG′(z, rj) ≤ 1 + 3`/2 = t = t|zrj|.

Hence, we have shown that G′ is a t-spanner of G.

This concludes the proof of Theorem 2.

5 Concluding remarks

We have shown that there exist connected geometric graphs that do not
contain sparse spanners. More specifically, we have constructed a connected
geometric graph G with n vertices, such that every t-spanner of G con-
tains Ω(n1+1/t) edges. This bound comes close to the known upper bound
of Baswana and Sen [2] and Roditty et al. [16], which states that every con-
nected weighted graph with n vertices contains a t-spanner with O(tn1+2/(t+1))
edges. The main idea in our proof is to construct a geometric bipartite graph
with kn edges and girth Ω(logk n). We leave as an open problem to close the
gap between our lower bound and the upper bound in [2, 16].

A t-spanner of a geometric graph G is a subgraph G′ that approximates
G, in the sense that distances in G are approximated (within a multiplica-
tive factor of t) by distances in G′. Thus, if G is dense and G′ is sparse,
then G′ can be regarded to be a “good” approximation of G. Our lower
bound implies that there exist geometric graphs G that do not contain such
a “good” approximation. We leave open the problem of finding classes of
geometric graphs that contain sparse t-spanners. It is known that (i) the
class of complete geometric graphs on sets of points in Rd and (ii) the class
of (1 + ε)-spanners on sets of points in Rd, have this property.

We also showed that computing a t-spanner with the minimum number
of edges of a given geometric graph G is NP-hard. It would be interesting
to prove the same result for the complete geometric graph G on any given
set of points in Rd.
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