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Abstract

Given a set P of points in the plane and a set L of non-crossing line segments whose end-
points are in P, a constrained plane geometric graph is a plane graph whose vertex set is P
and whose edge set contains L. An edge e has the a-visible diamond property if one of the
two isosceles triangles with base e and base angle o does not contain any points of P visible
to both endpoints of e. A constrained plane geometric graph has the d-good polygon property
provided that for every pair x,y of visible vertices on a face f, the shorter of the two paths
from x to y around the boundary has length at most d - |zy|. If a constrained plane geometric

graph has the a-visible diamond property for each of its edges and the d-good polygon property,
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of the result in Das and Joseph [3] to the constrained setting as well as a slight improvement
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angulations (namely the constrained Delaunay triangulation, constrained greedy triangulation
and constrained minimum weight triangulation) have the a-visible diamond property for some
constant «. In particular, we show that the greedy triangulation has the 7 /6-visible diamond

property, which is an improvement over previous results.

we show it is a -spanner of the visibility graph of P and L. This is a generalization

on their spanning ratio of We then show that several well-known constrained tri-

1 Introduction

A graph G whose vertices are points in the plane and edges are segments weighted by their length
is a t-spanner (for ¢ > 1) provided that the shortest path in G between any two vertices z,y does
not exceed t|xy| where |zy| is the Euclidean distance between z and y. The value ¢ is the spanning
ratio or stretch factor of the graph. The spanning properties of various geometric graphs has been
studied extensively in the literature (see Eppstein [7], Knauer and Gudmundsson [10], Narasimhan
and Smid [13], Smid [14] for several surveys on the topic). Our work is a generalization of the
result by Das and Joseph [3] to the constrained setting. Das and Joseph [3] showed that any graph
possessing the diamond property and the good polygon property is a t-spanner where the constant
t depends on parameters of each of the two properties.

Before we can state our results precisely, we outline what these properties are, what we mean by
the constrained setting and how the spanning ratio of a geometric graph is measured in this setting.
Throughout this paper, a graph will refer to a geometric graph whose vertex set is a set of points
in the plane, and whose edge set is a set of line segments joining pairs of vertices. The edges are
weighted by their length. Let P denote a set of points in the plane and L be a set of non-crossing
line segments whose endpoints are in P. Two points p and ¢ of P are visible with respect to L
provided the segment pq does not properly intersect any segment of L. Two line segments intersect
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properly if they share a common interior point. The visibility graph of P constrained to L, denoted
Vis(P, L), is a geometric graph whose vertex set is P and whose edge set contains L as well as one
edge for each visible pair of vertices (See Figure 1). A spanning subgraph of Vis(P, L) whose edge
set contains L is a geometric graph constrained to L. In such a graph, the set L is referred to as
the constrained edges and all other edges are referred to as unconstrained edges or visibility edges.

Figure 1: The visibility graph Vis(P, L) where segments of L are shown in bold.

Definition 1. Let ¢ > 1 be a real number. A constrained geometric graph G(P, L) is a constrained
t-spanner provided that for every visibility edge [pq] in Vis(P, L), the length of the shortest path
between p and ¢ in G(P, L) is at most ¢ times the Euclidean distance between p and q. We refer to
t as the spanning ratio or the stretch factor of G(P,L).

Note that if G(P, L) is a constrained t-spanner, then for every pair of points p, ¢ in P (not just
visible edges), the shortest path from p to ¢ in G(P, L) is at most t times the shortest path from p
to ¢ in Vis(P,L). We now define the two essential properties.

Definition 2. Refer to Figure 2. Fix aw € (0,7/2). A constrained graph G(P, L) is said to have the
visible a-diamond property if, for every unconstrained edge e in the graph, at least one of the two
isosceles triangles, with e as the base and base angle «, does not contain any points of P visible to
the endpoints of e. We label this empty triangle as A(e), and the apex of A(e) as a(e).

Figure 2: The edge e has the visible a-diamond property



Definition 3. A constrained plane graph G(P, L) has the d-good polygon property if for every
visible pair of vertices ¢ and b on a face f, the shortest distance from a to b around the boundary
of f is at most d times the Euclidean distance between a and b.

Our main results are the following:

Theorem 1. Given fized a € (0,7/2) and d > 1, if a constrained plane graph G(P, L) has both

the wvisible a-diamond property and the d-good polygon property, then its stretch factor is at most
8(r—a)?d
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This is a generalization of the result in Das and Joseph [3] to the constrained setting as well as
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a slight improvement on the spanning ratio from

Theorem 2. The Constrained Greedy Triangulation has the visible §-diamond property.

This is an improvement over the results of Das and Joseph [3], Dickerson et al. [4] and Drysdale
et al. [6] on this problem. In Das and Joseph [3], they showed that the Greedy Triangulation has
the 7 /8-diamond property. The results in Drysdale et al. [6], which is an extension of the results in
Dickerson et al. [4], imply that the Greedy triangulation has the arctan(1/+/5)-diamond property.
Note that arctan (1/v/5) ~ 24.1°.

2 Constructing Spanner Paths

The proof of the main result is constructive. Consider a constrained plane graph G(P, L) that has
the visible a-diamond property and the d-good polygon property. Given a pair of points a,b € P
that are visible with resp%ct to L, we show how to construct a path from a to b in G(P, L) whose

If [ab] is an edge of G(P, L) then such a path trivially exists. Therefore, assume that [ab] is
not an edge of the graph. In this case, either [ab] intersects some edges of the graph or intersects
no edges of the graph. In the latter case, this means that the segment [ab] is a chord in a face
of G(P,L). The d-good polygon property ensures that the required path exists in this case. In
the remainder of this section, we show that when [ab] intersects some edges of G(P, L), we can
construct a spanner path from a to b.

Re-orient the coordinate system such that [ab] lies on the z-axis. Let eq,eq, ..., e, be the edges
of G(P, L) that cross [ab] in order from a to b. For simplicity of exposition, assume that none of
these edges share a common endpoint. Sharing endpoints is a degenerate situation that only makes
the proof simpler. Label the endpoint of e; above [ab] as u; and the endpoint below [ab] as [;. The
fact that a and b are visible with respect to L ensures that each of these edges is an unconstrained
edge. Moreover, the visible a-diamond property implies that each of these edges is the base of a
visibly empty triangle A(e;) with apex a(i), 1 <i < k. Since G(P, L) is a plane graph, e; and e;1;
lie on a common face f. Let U; be the shortest path from w; to w;41 in the face f. Since a and b
are visible, this implies that U; is a convex path. Similarly, let L; be the shortest path from [; to
li+1 in f. Note that the d-good polygon property ensures that there is path in G(P, L) from u; to
u;+1 whose length does not exceed d times the length of U;. Define Uy (resp. Uj) to be the shortest
path from a to u; (resp. uy to b). Lo and Ly are defined symmetrically. See Figure 3.

We have two different construction methods depending on where the apices of the empty tri-
angles are with respect to [ab]. If all of the apices lie on the same side of the line through [ab], we

length is at most times the Euclidean distance between a and b.



Figure 3: Illustration of Structures.

construct a path called a one-sided path, otherwise, we construct a two-sided path. We first show
the construction of one-sided paths and bound their length.

2.1 One-sided paths

In this case, we assume that all the apices of the empty triangles lie below [ab]. The construction of
the one-sided path starts with the union of the U;. Now, each edge e in U; can be approximated by a
path in G(P, L) whose length is at most d-e. Therefore, the length of the one-sided path is at most
d(|Uo| + |Ui| + ...+ |Ug|). What remains to be shown is that this is a good approximation of |ab|
since a and b are visible. Let h be the line through [ab] and h~ be the closed half-plane below h. To
obtain a bound on |Up| + [U1] +. ..+ |Ug|, we consider the following structure T = h~ U{J¥_, A(e;)
(See Figure 4). Denote by T'(a,b) the portion of the boundary of T' between a and b. The fact that
each of the triangles A(e;) is empty of points visible to both endpoints of the edge e;, all the apices
of the empty triangles are below [ab] and each of the U; is formed by a shortest path imply that
no edge of T'(a,b) can intersect any of the upper chains U;. Since each of the upper chains U; is a
shortest path, we conclude the following:

Lemma 1. Y.F  |U;| < |T (a,b)|

Before proceeding, we need a simple property about triangles that essentially follows from the
sine law.

Lemma 2. Given a triangle A(u,v,w) such that angle at vertez v is «, we have that |uv|+ [vw| <
luw|/ sin(a/2).
We now show how to bound the length of the one-sided path in terms of |ab|.

Lemma 3. The length of a one-sided path from a to b in G(P, L) is at most |ab|jgn;(2%).



Figure 4: Using the shaded region T to approximate the length of the upper chains.

Proof. By Lemma 1, and the d-good polygon property, it suffices to show that |T" (a,b)| < %;;7%.
Note that since the apex a(e;) of every empty triangle A(e;) is below [ab], only two sides of A(e;)
lie in the upper half-plane h*. Hence, there is a well-defined left edge and right edge for the portion
of A(e;) that lies above [ab].

To simplify the exposition, we assume that 7 is a multiple of « (a condition that can be
easily removed). Partition the empty triangles A(ey), A(ea), ..., A(ex) into @ groups labelled
Go,Goy2, Gy, -+, Gr_3q/2, such that the left edges of the empty triangles in group Gy make
an angle in the range [9, 0+ %] with the z-axis. Since the base angle of the empty triangles is «,
we see that the right edges will be in the range [9 + a,0 + 370‘] with the z-axis. This is why the
last group ends at m — 3a;/2.

Let Ty be the union of all the triangles in Gy with the half-plane h~ below the z-axis. Recall T’
from Lemma 1. Note that 7' =Ty U T 5 U--- UT;_3,/2. Hence, it follows that the length of the
boundary of T' from a to b is bounded by |Ty (a,b)| + |To/2 (a,b)| + - -+ + | Tr—3a/2 (a,b)|

Consider the group Gy, as shown in Figure 5. The edges of the boundary Tj (a,b) are shown
in bold. Let p be the point such that £apb = 5, £pab =0+ 5, and p € h*. By construction, the
portion of the triangles in Gy that lie above the z-axis (and thus Ty (a, b)) are completely contained
inside Apab.

Ty (a,b) is a polygonal chain consisting of portions of left edges of empty triangles, portions of
right edges of empty triangles, and portions of [ab]. Note that the angle restriction implies that
the chain is monotone both in the direction pa and the direction pb. To bound the length of an
edge xy of Ty (a,b), project x and y onto pa by translating in a direction parallel to pb and denote
the projected vertices on pa by x; and y;, respectively. Similarly, project xy onto pb by translating
in a direction parallel to pa resulting in projected vertices x, and ., respectively. The triangle
inequality guarantees that |zy| < |z;y;|+|x,y,r|. Monotonicity guarantees that none of the projected

edges of Ty (a,b) overlap. Therefore, we have that |Ty (a,b)| < |pa| + |pb|.
|abd|

Using Lemma 2, it follows that |pa| + |pb| < S(a/0) regardless of the angle 6. Therefore, since
there are @ many groups, |1 (a,b) | < 205.7;;17((%. O



Figure 5: The triangles of Gy

2.2 Two-Sided Paths

We have seen that if every apex a(ey),a(e2),...,a(ex) lies on the same side of the z-axis, then a
one-sided path from a to b can be Constructed Whose length is %m o / 7y times the length [ab|. We
now outline the process of constructing a short path from a to b in tile case where some apices
a(e;) lie above the x-axis, while others lie below. The one-sided paths either followed the upper
chain or the lower chain. In two-sided paths, we may need to cross over from upper chains to lower
chains. Recall that U; is the shortest path from wu; to u; 11 and L; is the shortest path from I; to
li+1. For each pair of upper and lower chains, U; and L;, respectively, we add the unique edge on
the shortest path from u; to l;41 that is not on either chain and the unique edge on the shortest
path from [; to u;41 that is not on either chain. We refer to these two edges as tangents between
the upper and lower chains.

Divide the set of edges ey, ea, . . ., ex into two disjoint groups, U and L. U contains the edges that
have their apex below [ab], and L contains the edges whose apex is above [ab]. For the first group,
define the region Ty = h™ UJ ¢y A(e). Correspondingly, define the region Ty, = h* U, A(e).
Let Ty (a,b) denote the upper boundary of Ty between a and b and similarly 77, (a, b) for the lower
boundary. Note that the length of T (a,b) and T7, (a,b) are each less than \ab\ﬁ as shown
in Lemma 3. The two-sided path from a to b is constructed using disjoint portions of Ty, Tt and
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tangents. Since |Ty (a,b) | + |TL (a,b) | < 2]ab]m

tangents used.

The two-sided path from a to b is constructed as follows. Without loss of generality, assume that
e1 has its apex below [ab]. Let e;11 be the first edge whose apex is above [ab]. If no subsequent edge
has an apex below [ab], then the path follows the upper chains from a to w;, follows the path from
u; to lj+1 and follows the lower chains to b. This path has length at most |1y (a,b) | 4+ |17 (a,b) |
since each of the two paths is one-sided and the length of the tangent is subsumed by the unused
portions of the upper and lower chain.

The situation where a decision needs to be made on how to proceed is when there are two edges
e; and e; (with j > i+ 1) having apices a(e;) and a(ej) below the z-axis and at least one edge e,
(with ¢ < k < j) with apex a(ey) above the z-axis. We show how to construct a short path from
u; to uj in this case. There are two possibilities in this case, either the path from u; to u; follows
the upper chain, or it follows the path from wu; to l;41, continues on the lower chain until /;_; and
follows the path from /;_; to u;.

The decision whether or not to cross over from the upper chain to the lower chain depends on
the tangents. Let t, = [uq,ls] be the tangent on the path from w; to l;41 and t, = [up, lp] be the
tangent on the path from /;_; to u;. Extend the tangents ¢, and t; until they intersect. Label their
intersection point as C'. Note that C' may be below or above the z-axis. Label the smaller of the
two angles between the two extended tangents as 6. If t, and ¢, are parallel, then C is a point at
infinity, and # = 0. There are two cases to consider depending on the angle 6.

, we only need to bound the length of the

Uj

Up

Figure 6: Case 2: Construct an empty region

Case 1: 0 > «. In this case, the angle between the tangents is relatively wide. Follow the path
from w; to [;41 using the tangent ¢,. Continue on the lower convex chains L;y1--- L;_1 from
lq until I, and cross back up along t; to u;.

7



Case 2: 0 < a. Refer to Figure 6 for this case. Label the portion of Ty (a,b) between the upper
vertices u, and up of the tangents as Tj. Similarly, label the portion of T7, (a,b) between [,
and [l as T». Consider the region bounded by the tangents t, and ¢, and the boundaries T}
and T5. By definition, this region is empty of vertices of G. Bisect the angle § at C' with a
line labelled ¢. (If t, and t; happen to be parallel, then ¢ is defined as the line parallel to the
tangents, and halfway between them.) Let E be the point on 77 whose orthogonal projection
onto £ is lowest, and let F' be the point on 75 whose orthogonal projection onto ¢ is highest.
Define h to be the distance between the orthogonal projections of £ and F' onto £. Define
points J and M on t,, and K and N on t,, with JEK and M FN perpendicular to ¢. Let
w =max (|JK|,|MN|).

a) If h < #04/2)’ then follow the same path from u; to u; as in Case 1.
b) If h > ﬁa/?)’ then simply follow the upper chains U;, Uj41,...,Uj_1 from u; and u;.

We now bound the lengths of the paths constructed in the context of the different cases stated
above. Note that the main difficulty is in bounding the length of the tangents since we have a
bound on the length of the upper and lower chains.

Lemma 4. If 0 > «, the length of the portion of the two-sided path from a to b that is between u,
and uy is at most m( Ty |+ T3] ).

Proof. Consider the triangle A(uq, C,up). The path follows the two tangents and the lower chain.
The length of the lower chain is |T3|. We want to bound the length of the two tangents in terms
of |T1| and |Ts|. If C is below [ab], by Lemma 2, we have that |u,C| + |Cuy| < |T1|/sin(a/2). If
C' is above [ab], by Lemma 2, we have that |u,C| + |Cup| < |T2|/sin(a/2). Note that these above
bounds on the tangents only hold when C does not lie on one of the tangents. Should C' land on
one of the tangents then an extra |T| or |T%| term can bound the portion of the tangent that lies
outside the triangle by the triangle inequality. Putting all the inequalities together completes the
proof. O

Lemma 5 (Case 2a). If 0 < o, and h < #@/2) then the length of the portion of the two-sided
path from a to b that is between u, and wp is at most m( Ty |+ [T3]).

Proof. (Sketch): The path constructed in this case is identical to the path constructed in Case 1.
The path follows the two tangents and the lower chains. The length of the lower chains is |T2|. We
need to bound the length of the tangents. Refer to Figure 6.

Note that the tangent ¢, is decomposed into three segments: [u,J], [JM],[Ml,]. Similarly ¢ is
decomposed into three segments: [uy K], [KN],[Nlp]. Since the angle at J in triangle A(u,JE) is
obtuse, we have that |u,J| is shorter than the portion of T} from wu, to E. By this argument we
have that |ugJ|+ |upK| < |T1|+ |T2|. To bound |JM| and |K N|, we use the fact that h < Tan(a/a)”
This allows us to show that |JK|+ |KN| < 2h/cos(a/2) < |T1]/sin(a/2). Finally, by elementary
trigonometry, we have that |l M|+ [[,N| < (|l.F| + |bF|)/sin(a/2) < |T3|/sin(a/2). Combining
the inequalities, we have that the length of the two-sided path is at most 2(|T%| + |T5])/ sin(«a/2).

Note that this bound only holds when C' does not lie on one of the tangents. However, C' may
lie on one of the two tangents. In this case, an extra |T1|/sin(«/2) or |T3|/sin(a/2) term needs to
be added giving the stated bound*. O

*This is one of the cases that was omitted from the original proof by Das and Joseph [3].
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A fairly lengthy argument along the same lines allows us to bound the path when h > WT.

Lemma 6. If0 < «, and h > m, then the length of the portion of the two-sided path from

a to b that is between uq and up is at most %( T |+ |T2]).

2.3 The Final Spanning Ratio

We now have all the pieces to prove Theorem 1. From the above lemmas, we have that the maximum
length of the path between u, and wuy is at most:

oy p— 8 2m—a)) g
<Sin(§)’sin(§‘)’asin (f;)) (T3] +|T3])
2Ar—a)

a sin (Z)

(1] + |T2])

Since |Ty (a,b) | + |11 (a,b) | < 2]ab|2(La)d), we have that the path from a to b has length at

a-sin(a/4
most:
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proving Theorem 1.

3 Triangulations that have the Diamond Property

In this section, we note that three constrained versions of classical triangulations have the visible
a-diamond property, namely the constrained Delaunay triangulation, the constrained minimum
weight triangulation and the constrained greedy triangulation. Since they are all triangulations,
they satisfy the requirements for the d-good polygon property, for d = 1. Therefore, all three
triangulations are constant spanners where the constant depends on «a.

The first constrained triangulation considered is the constrained Delaunay triangulation (CDT),
also called the Generalized Delaunay triangulation [11], and the Obstacle triangulation [2]. One of
the important properties of the constrained Delaunay triangulation is that for every unconstrained
edge e in the graph, there exists a circle C, such that the endpoints of e lie on the boundary of this
circle, and there are no vertices of S that are visible to both endpoints of the edge e [11] [2]. For
such an edge e, we refer to C. as its visibly empty circle. The existence of the visibly empty circle

for each unconstrained edge implies that the edge has the visible §-diamond property.

TFull details of this proof are made available to the Program Committee in the version of this paper with appendix
which can be found at http://cg.scs.carleton.ca/~jit/CDiamond.pdf



Theorem 3. The Constrained Delaunay Triangulation (CDT ) has the visible 7 -diamond property.

We note that techniques exploiting additional properties of the Delaunay triangulation have
been used to reduce the spanning ratio from the one implied by the visible 7-diamond property
(see Dobkin et al. [5], Keil and Gutwin [9] for the unconstrained setting, and Karavelas [8], Bose and
Keil [1] for the constrained setting). Currently, the best known spanning ratio for the Constrained
Delaunay triangulation is % as shown by Bose and Keil [1]. It is conjectured that the spanning
ratio for the Delaunay and Constrained Delaunay triangulation is /2.

The second constrained triangulation that we consider is the constrained Greedy triangulation
(CGT), which is a generalization of the standard Greedy triangulation [12]. The algorithm for
computing such a triangulation is as follows: Sort the edges of Vis(P, L) by length. First insert all
the constrained edges to CGT. Next insert the unconstrained edges in sorted order into CGT as
long as they do not introduce a crossing. In order to prove the result for the Constrained Greedy

Triangulation (CGT), we make extensive use of the following.

Lemma 7. Let x and y be points of P such that xy € Vis(P, L), but xy is not an edge of CGT (P, L).
Let e be the edge of CGT (P, L) of shortest length that properly intersects the segment xy. Then
le| < |zyl.

Proof. Recall that the CGT is constructed by considering all possible edges of Vis(P, L) in non-
descending sorted order; an edge is inserted only if it does not intersect any previously inserted
edge. If the lemma were false, then at the point in the algorithm when xy would be considered
for insertion, none of the edges that intersect it would have been considered yet since they are
all longer than zy. Hence, with no edges yet crossing xy, the segment joining x and y would be
inserted C'GT’, which is in contradiction to the assumption that xy is not in the triangulation. [

Using this simple lemma, we can show that the Constrained Greedy Triangulation has the
visible g-diamond property. The main approach to proving this theorem is by contradiction. If an
edge ry of CGT does not have the visible g-diamond property, then both visible triangles adjacent
to xy contain at least one point visible to both = and y. We use those points to show that the
greedy process would have inserted a shorter edge intersecting xy, thereby contradicting that zy is
part of the greedy triangulation. The analysis is similar in approach to the one presented in Das
and Joseph [3], however, by carefully reviewing each of the 6 cases in their analysis, we are able
increase the angle from 7/8 to 7/6%.

Theorem 4. The Constrained Greedy Triangulation (CGT') has the visible §-diamond property.

The size of the diamond in the above proof is an improvement over the original value of & shown
by Das and Joseph [3]. It is also an improvement over the values shown by Dickerson et al. [4] and
Drysdale et al. [6]. Dickerson et al. [4], prove that every edge e of the Greedy triangulation has a

le|

disc-shaped exclusion region centered at the midpoint of e, of radius 5~ 0.447|e|. The size of this

region is extended in Drysdale et al. [6] to include the tangents to the region. By basic trigonometry,
it can be shown that the largest visible diamond inscribed in this region has o = arctan (1/v/5).
Therefore, & is currently the largest diamond for the Greedy and constrained Greedy triangulations.

Full details of this proof are made available to the Program Committee in the version of this paper with appendix
which can be found at http://cg.scs.carleton.ca/~jit/CDiamond.pdf
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If a circle is inscribed inside the diamond of an edge e, its radius is

le]

5+ = 0.5|e|, an improvement on

the size of a disc-shaped exclusion region for the Greedy triangulation.

An argument similar to the one for Theorem 4 shows that the constrained minimum weight

triangulation has the visible 7/8-diamond property.

Theorem 5. The Constrained Minimum Weight Triangulation has the visible g -diamond property.
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