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ABSTRACT. Layered Manufacturing is a technology that allows physical proto-
types of three-dimensional models to be built from their digital representation,
as a stack of two-dimensional layers. One of the key problems is the choice
of a suitable direction in which the model should be oriented and built, so as
to minimize the number of layers, the stair-stepping effect, the volume of the
support structures that are generated during the build, or the area of con-
tact between the prototype and the support structures, or a combination of
these measures. Other problems of interest include orienting the model so that
one or more prescribed facets are not in contact with supports, determining
a direction to fill in the individual layers, and decomposing the model into
two or more submodels and building them independently so as to reduce the
amount of support structures. In this survey, we give an overview of efficient
geometric algorithms for these problems. The algorithms use a large variety
of techniques from computational geometry, such as convex hulls, Voronoi di-
agrams, spherical sweep, ray-shooting, Boolean operations on polygons, and
arrangements.

1. Introduction

Layered Manufacturing is a fast-growing technology with significant impact on
the efficiency of the design process in a broad range of industries; see Jacobs [Jac92],
Kai and Fai [KF97], and Chua et al. [CLLO3]. Layered Manufacturing offers a
flexible and cost-effective alternative to traditional methods used in the design phase
of physical prototypes. Currently, this technology produces high-quality prototypes
in a matter of hours and at low cost. The prototypes can be inspected for flaws
and if necessary the design can be modified and the process repeated until the final
design has reached the desired quality.

Stereolithography is a widely-used Layered Manufacturing process. The Stereo-
lithography Apparatus consists of a vat of light-sensitive liquid resin, a platform,
and a laser; see Figure 1. The input to the process is a surface triangulation of the
digital model of the part to be built, in the industry-standard STL-format. This
format consists of an unordered list of triangles, each specified by the coordinates
of its vertices, and the unit outer-normal of each triangle. (Thus, the digital model
is a polyhedron.) The model is sliced into horizontal two-dimensional layers, which
are then sent over a network to the Stereolithography Apparatus. The laser traces
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FI1GURE 1. The Stereolithography Apparatus.
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FIGURE 2. Illustrating support structures. The model is in dark
gray, whereas the supports are in light-gray.

out the contour of each layer (which is a polygon) and then scans the interior in a
zig-zag pattern. The exposure to the laser causes the scanned portion of the liquid
to harden and form the physical layer. The platform is then lowered by an amount
equal to the layer thickness (typically a few thousandths of an inch) and the next
layer is then built on top of the previous one. Thus, the three-dimensional pro-
totype is realized eventually as a vertical stack of two-dimensional layers. Ideally
each new layer should rest completely on top of the previous one, so that the pro-
totype is self-supporting during the build phase. The complex shape of real-world
prototypes, however, often prevents them from being self-supporting. Therefore,
during a preprocessing step, the model is analyzed and additional structures called
supports are created and merged with the description of the model; see Figure 2.
These support structures are built simultaneously with the prototype and removed
later.
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FiGURE 3. Illustrating stair-stepping. For ease of depiction, the
underlying model is assumed to be a prism of uniform cross-section
perpendicular to the plane of the paper. The polygon shown is the
cross-section of the prism.

The Layered Manufacturing process consists of three phases: preprocessing,
building, and postprocessing. Preprocessing includes repairing flaws in the STL file
(e.g., gaps between facets, geometric singularities, etc.), deciding upon a suitable
initial orientation for the model, computing support requirements, generating and
merging a description of the supports into the STL file, and slicing the model and
supports. The building phase involves tracing and filling in each layer. Postpro-
cessing includes removal of supports and improving part finish and accuracy.

1.1. Geometric issues. A key step in Layered Manufacturing is choosing an
orientation for the model, i.e., the build direction. Its choice can impact critically
the efficiency and cost of the build process as well as the surface quality of the
physical prototype. Below, we mention several competing criteria that need to be
addressed when choosing a build direction. Throughout the paper, we denote by
P the (polyhedral) digital model to be built.

1.1.1. Number of layers. In the Layered Manufacturing process, the layer thick-
ness is typically measured in thousandths of an inch. Because of this, the number of
layers needed to build P can run into the thousands if P is oriented along its longest
dimension. If we assume the layer thickness to be fixed, then the number of layers
for a given build direction, d, is proportional to the smallest distance between two
parallel planes that are normal to d and that enclose P. Hence, orienting P so as to
minimize the number of layers is equivalent to determining a direction d for which
the distance between the enclosing planes is minimum; this minimum distance is
called the width.

1.1.2. Stair-stepping effect. Due to the non-zero layer thickness, the physical
prototype will have a stair-stepped finish on each facet f that is not parallel to the
build direction d. The degree of stair-stepping on f depends on the angle between
the normal of f and d, and it can be mitigated by a suitable choice of d. Bablani
and Bagchi [BB95] introduce the notion of an error-triangle as a way of quantifying
the amount of stair-stepping; see Figure 3. They argue that a good build direction
is one for which the maximum height of any error-triangle (over all facets of P) is
minimized.
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Fi1GURE 4. Illustrating support structures, shown in 2D for convenience.

1.1.3. Support structures. If d is a direction and f is a facet of P, then we say
that f is a back facet with respect to d, if the angle between the outer unit-normal
ny of f and d is greater than m/2. If this angle is less than /2, then we say that
f is a front facet with respect to d. Finally, if this angle is equal to 7/2, then we
say that f is a parallel facet with respect to d.

All back facets of P will need to be supported. Consider such a back facet f
with respect to a build direction d. The support polyhedron for f is the closure of
the set of all points p € R® such that p is not in the interior of P and the ray shot
from p in direction d first enters P through f. Informally, the support polyhedron
of f is bounded from above by f, on the sides by vertical facets that “drop down”
from the edges of f, and from below by the platform on which P rests and/or
portions of front facets of P. (Observe that if P is convex, then it is bounded from
below by only the platform.) The supports of P with respect to a build direction
is the collection of support polyhedra for all back facets; see Figure 4.

The contact-area is the total surface area of P that is in contact with supports.
It includes the area of all the back facets of P and the areas of those portions of
front facets and parallel facets that are in contact with supports.

Observe that for a convex polyhedron, the support structures are relatively
simple, in that only back facets are in contact with supports and every point on a
back facet is in contact with supports. Furthermore, the support structures extend
all the way down to the platform. For a general polyhedron, however, the situation
is more complex: In addition to back facets, some front and parallel facets can also
be in contact with supports, and the latter two types of facets may be only partially
in contact. In addition, supports need not extend all the way down to the platform,
but may instead terminate on other parts of the polyhedron. This is illustrated in
Figure 4 for the supports for the sixth layer.

A build direction that minimizes the total volume of all supports will translate
into a faster build time and less waste of material. Similarly, a build direction that
minimizes the contact-area will minimize the portions of the prototype that are
affected during the postprocessing stage and help minimize damage to the surface
of the prototype during support removal.

1.1.4. Protecting a facet from being in contact with supports. The removal of
supports from a facet affects the surface quality and accuracy adversely, thereby
impacting the functional properties of critical facets, such as, for instance, facets



GEOMETRIC ALGORITHMS FOR LAYERED MANUFACTURING 5

on gear teeth. Therefore, a good build direction is one for which one or more
prescribed facets are not in contact with supports.

1.1.5. Decomposing the model. Traditionally, a process-planning algorithm for
Layered Manufacturing works by viewing the model as a single, monolithic unit.
As aresult, large models that cannot be accommodated in the workspace cannot be
constructed. A possible approach is to decompose the model into a small number of
pieces, build each piece separately, and then glue the built pieces together to obtain
the physical prototype. Besides the advantage that larger models can be built, the
amount of time needed to build a model is reduced in this way. Another crucial
advantage is that the support requirements of this decomposition-based approach
are often much less than those of the conventional approach. For instance, if a
hollow sphere is built the conventional way, supports will be needed in the interior
void and below the lower hemisphere. However, if it is decomposed by a horizontal
plane through the equator and built as two hemispherical shells, with the upper
(resp. lower) shell built in the upward (resp. downward) direction, then supports
will be needed only in the region below (resp. above) the upper (resp. lower) shell;
this results in an overall reduction in both support volume and contact-area. This
motivates the problem of how to decompose a model and build it so that the overall
support requirements are minimized.

1.1.6. Hatching. The process of printing the layers is called hatching. This is
essentially a two-dimensional problem, since each layer is a polygon (possibly with
holes). The hatching process depends on the specific Layered Manufacturing process
being used. In Stereolithography, the tool (i.e., the laser) traces out the boundary
of the polygon and then fills in the interior by following paths along equally-spaced
parallel lines, switching itself on (resp. off) when it is in the interior (resp. reaches
the boundary) of the polygon, and stopping and reversing direction when it reaches
the exterior face of the polygon. The path followed by the tool consists of a set of
parallel line segments in the interior of the polygon, called hatching segments, where
each segment has a fixed width determined by the tool-tip. (This width is very small
compared to the segment length.) The speed of the hatching process and the life of
the tool can be impacted adversely if the number of hatching segments is large. The
number of hatching segments is a function of the direction (in the plane) followed
by the laser; this direction is called the hatching direction. This motivates the
problem of computing a hatching direction that minimizes the number of hatching
segments.

1.2. Geometric optimization problems. The geometric issues introduced
above lead to the problem of computing a build direction (or hatching direction)
that optimizes one or more of the criteria. In this paper, we show that, for each of
the criteria, the optimization problem can be formulated in purely geometric terms.
We then show how techniques from computational geometry can be used to solve
these problems efficiently. In particular, we use techniques such as convex hulls,
Voronoi diagrams, spherical sweep, ray-shooting, Boolean operations on polygons,
and arrangements.

1.3. Notation. Throughout this paper, we denote by P the polyhedral model
of interest, and by n the number of its facets. We assume that the facets of P are
triangles and that its boundary is represented in some standard form, such as,
for instance, a doubly-connected edge list (see de Berg et al. [dBvKOSO00]) or a
winged-edge structure (see Baumgart [Bau75]). If necessary, such a representation
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can be computed easily from the standard STL representation of P; see McMains
and Séquin [MS99].

In the problems considered in this paper, we want to compute a build direction
d that optimizes one or more criteria. We will represent directions as points—or
unit-vectors—on the unit-sphere S2, i.e., the boundary of the three-dimensional ball
centered at the origin and having radius one. The upper hemisphere is defined as

S% :=8*N{(z,y,2) € R’ : z > 0}.
Similarly, we define the lower hemisphere as
S2 :=8’N{(z,y,2) € R® : 2 < 0}

Finally, the equator is the intersection of S? with the plane z = 0.

2. Minimizing the number of layers

Assuming that the layer thickness is fixed, the number of layers for a given build
direction d is proportional to the smallest distance between two parallel planes that
are normal to d and that enclose the model P. We call this smallest distance the
width of P in direction d, and denote it by W (d). Observe that W(d) = W(-d).
The width W (P) of the polyhedron P is defined as the minimum distance between
any two parallel planes that enclose P, i.e.,

W(P) = min{W(d) : d € S?}.

We consider the problem of computing a build direction d for which W(d) =
W (P). The problem of computing the width of P was considered by Houle and
Toussaint [HT88]. We outline their approach.

First observe that the width of the polyhedron P is equal to the width of the
convex hull CH(P) of P. Therefore, it suffices to consider the convex polyhedron
CH(P).

Let v be any vertex and let f be any facet of CH(P). We say that (v, f) is
an antipodal vertez-facet pair (or VF-pair), if the two parallel planes containing v
and f, respectively, enclose CH (P). Similarly, two non-parallel edges eg and e; of
CH (P) are said to be an antipodal edge-edge pair (or EE-pair), if the two parallel
planes containing ey and e, respectively, enclose CH (P).

Houle and Toussaint prove that any direction d that is not associated with
some VF- or EE-pair can be rotated to a direction d' such that W(d') < W(d).
In other words, any direction minimizing the width of P is perpendicular to the
parallel planes associated with some VF- or EE-pair. Therefore, the width of P
can be obtained by first computing all VF- and EE-pairs, and then for each of them
computing the distance between the corresponding supporting parallel planes. The
smallest distance found is equal to the width W (P) of the polyhedron P.

In order to compute all VF- and EE-pairs, we consider the dual graph G of
CH (P), which is the planar graph on the unit-sphere S? that is defined as follows.
The vertices of G are the outer unit-normals of the facets of CH(P). Two of these
vertices define an edge in G if the corresponding facets of CH(P) share an edge.
Edges of this dual graph are drawn as great arcs on S2. Observe that edges (resp.
faces) of G are in one-to-one correspondence with edges (resp. vertices) of CH (P).
It turns out to be convenient to transform the graph G into a planar graph G’ on
S2, by cutting all edges that cross the equator, and “adding” the equator to it.
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Let G., be the subgraph of G' consisting of all vertices and edges that are in
the upper hemisphere S%. Let GY be the subgraph of G' consisting of all vertices
and edges that are in the lower hemisphere S?. Finally, let G} be the inverse image
of GY, i.e., the graph obtained by mapping each vertex v of G9 to the vertex —v.
Both graphs G, and G/, are in the upper hemisphere S3 .

We now show how the graphs G, and G}, can be used to obtain all VF- and
EFE-pairs.

2.1. Computing VF-pairs. Consider an arbitrary VF-pair (v, f). Let f, be
the face of GG that corresponds to v, and let dy be the vertex of G' that corresponds
to f. There are two cases to consider. The first case is when dy is on or above the
equator. Then d; is a vertex of G),. Let f0 be the face of GY that is contained in
fu, and let f} be the face of G that corresponds to f0. Since the unique planes
that support CH(P) at v and f are parallel, vertex dy of G, is contained in face
fi, of G;. The second case is when d; is below the equator. In this case, dy is a
vertex of GY, and —d; is a vertex of G). Let f} be the face of G, that is contained
in f,. Then vertex —dy of G is contained in face f] of G). We have proved the
following result.

LEMMA 2.1. We can obtain all VF-pairs by performing a point location query
with each vertex of G, in the graph G, and by performing a point location query
with each vertex of G, in the graph G.,. In both these point location problems, all
query points are known in advance.

2.2. Computing EE-pairs. Consider two arbitrary edges ey and e; of CH (P)
that form an EFE-pair. Let go and g; be the edges of G that correspond to e¢ and
e1, respectively. We may assume without loss of generality that go is (completely
or partially) contained in the upper hemisphere. Hence, g; is (again, completely or
partially) contained in the lower hemisphere. Let gj be the part of go that is con-
tained in S3. Then g is an edge of G,. Let g{ be the part of g; that is contained
in S2, and let g} be its inverse image. Then g} is an edge of G). Since the unique
planes that support CH (P) at ey and e; are parallel, the edges g{, and g} intersect.
Hence, we have proved the following result.

LEMMA 2.2. We can obtain all EE -pairs by computing all intersections between
edges of G, and edges of G.

2.3. The algorithm. Lemmas 2.1 and 2.2 imply that all VF- and EE-pairs
can be obtained from the overlay of the graphs G, and G). Since this overlay is
defined by O(n) great arcs, it can be computed in O(n?) time. For details, see
Houle and Toussaint [HT88]. Below, we give an alternative algorithm and express
its running time in terms of (i) the number n of facets of P, (ii) the number h of
facets of CH(P), and (iii) the number k of intersections between edges of G, and
edges of . Observe that, in the worst case, h = ©(n) and k = ©(n?).

The convex hull of the polyhedron P can be computed in O(nlogn) time,
see, e.g., de Berg et al. [dBvKOSO00]. Observe that the graphs G, and G} have
total size O(h). Based on Lemmas 2.1 and 2.2, we obtain all VF- and EE-pairs
by (i) computing for each vertex of one of these graphs, the face of the other
graph that contains the vertex, and (ii) computing all intersections between edges
of these graphs. Both these problems can be solved in O(hlogh + klogh) time,
using the Bentley—Ottmann sweep algorithm [BO79], adapted to great arcs on the
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unit-sphere. The overall running time of the algorithm is thus O(nlogn + klogh),
which is O(n?logn) in the worst case.

THEOREM 2.3. Let P be a polyhedron with n facets. A build direction that
minimizes the number of layers can be computed in O(min{n?,nlogn + klogh})
time, where h is the number of facets of the convex hull of P and k is the number
of intersections between edges of the graph G, and edges of the graph G),. In the
worst case, h = O(n) and k = O(n?).

An implementation of the algorithm described above, together with extensive
experimental results, can be found in Schwerdt et al. [SSMJ99]. These experiments
show that the value of k is usually less than h. That is, the running time on practical
instances is much less than the theoretical near-quadratic worst-case upper bound.

Gartner and Herrmann [GHO1] present an implementation of an alternative
algorithm that finds all VF- and EFE-pairs without using the Bentley—Ottmann
sweep technique. They reformulate the width problem as an optimization problem
with linear constraints and a non-convex objective function. This new algorithm
has a worst-case running time of ©(n2?). Experimental results show that it usually
outperforms the implementation of [SSMJ99].

We finally remark that the asymptotically fastest known algorithm for comput-
ing the width of a three-dimensional point set is due to Agarwal and Sharir [AS96];
its expected running time is close to O(n'-?). The disadvantage of their algorithm
is that it computes only one direction that minimizes the width and that it is prob-
ably extremely difficult to implement. By contrast, the algorithm described in this
section finds all such directions. (Houle and Toussaint [HT88] have shown that
there can be ©(n?) many such directions.) Knowing all directions that minimize the
width is useful in situations where one is interested in reconciling multiple design
criteria, as in Section 6.

3. Minimizing the stair-stepping effect

In this section, we consider the problem of computing a build direction that
minimizes the maximum height of any error-triangle.

Let L denote the layer thickness and, for each facet f of the polyhedron P,
let hy(d) denote the height of the error-triangle ¢7(d) for facet f; see Figure 3.
Our problem is that of computing a build direction d that minimizes the maximum
error-triangle height ETH(d) := maxys hy(d). We will transform this min-max
problem into a max-min problem.

Let 0%(d) be the angle between d and the outer unit-normal ny of f, and let
¢'7(d) be the angle between d and —n;. We define 6¢(d) := min{6};(d), 6} (d)}.
Since hg(d) = Lcosfs(d), the problem of minimizing ETH(d) is equivalent to
computing a build direction d that maximizes the value of ming 6¢(d). Let us see
how the latter problem can be solved. Consider the set

S :={ny : f is a facet of P} U {—ny : f is a facet of P}.

Maximizing the value of miny ;(d) means that we want to compute a direction d
for which the minimum angle between d and the elements of S is maximized.

A cap on S?, with pole d and radius 0, is the set of all points on S? whose
distances from d are less than or equal to 8, as measured along the surface of
S2. Hence, our problem is equivalent to computing a cap whose interior does not
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contain any element of S and whose radius is maximum, i.e., a largest empty cap.
The pole of this cap is the desired optimal direction.

Since a largest empty cap must have at least three elements of S on its boundary,
it is easy to compute such a cap in O(n®) time. However, it is possible to derive
a significantly faster algorithm, with a running time of O(nlogn), based on the
following properties.

1. Let ¢ be the circle bounding a cap C and let H(C) be the plane such that

c = H(C)NS2 If C is empty, then all elements of S lie on the same side

of H(C). Conversely, every plane H that intersects S? and for which all

elements of S lie on the same side of H corresponds to an empty cap.

The larger the cap C is, the closer is H(C') to the origin.

3. A largest empty cap C must have at least three elements of S on its bound-
ary, i.e., H(C) contains a facet of the convex hull of S.

N

The discussion above suggests the following algorithm. First compute the set
S and its convex hull CH(S). For each facet g of CH(S), determine the plane H,
through g. Among all these planes Hy, compute one that is closest to the origin.
Finally, compute the normal d from the origin to this closest plane. This direction
d has the property that when P is built in direction d, the maximum error-triangle
height ETH(d) is minimized. Observe that the running time of this algorithm
is dominated by the O(nlogn) time needed for the convex hull computation; see
de Berg et al. [dBVKOSO00].

THEOREM 3.1. Let P be a polyhedron with n facets. A build direction that
minimizes the mazimum error-triangle height can be computed in O(nlogn) time.

As we saw, the correctness of the algorithm follows from the fact that a direction
d minimizing ETH (d) must be the normal vector of some facet of the convex hull of
S. This is equivalent to saying that d is a vertex of the spherical Voronoi diagram
of S. (In this Voronoi diagram, distances are measured along S2.)

The algorithm presented in this section is due to Majhi et al. [MISG99]. These
authors show how the algorithm can be extended to the case when each facet of
P is assigned a positive weight, to reflect its importance in the model, and the
objective is to minimize the maximum weighted error-triangle height. This version
of the problem can also be solved in O(nlogn) time. They also show how the sum
of the weighted error-triangle heights, taken over all facets, can be minimized in
O(n?) time.

4. Optimization of support structures

Asberg et al. [ABB197] give an algorithm that decides, in O(n) time, if there
exists a build direction d for a given polyhedron with n facets, such that no support
structures are needed. In this section, we consider the more general problem of
minimizing the support structures. For simplicity, we restrict ourselves to the
case when we want to minimize the contact-area of the supports. The approach
presented here can be generalized to the case when the goal is to minimize the
volume of the support structures.

Let P be a polyhedron with n facets and let d € S? be a direction. Recall that
the contact-area for build direction d is defined as the total area of all points on
the boundary of P that are in contact with supports, when P is built in direction
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d. The problem we consider is that of computing a build direction d for which the
contact-area is minimum.

4.1. The convex case. We first show how the case when P is a convex poly-
hedron can be solved. The algorithm is due to Majhi et al. [MJSG99]. Recall
the definition of back facets and front facets, see Section 1.1.3. Observe that the
contact-area for build direction d is equal to the total area of all back facets.

The set of all directions d for which a facet f is a back facet can be represented
by an open hemisphere Cy on S?, whose pole is the point —ny. We associate with
this hemisphere a weight that is equal to the area of f. Our problem is now equiv-
alent to computing a point on S? such that the total weight of all hemispheres C
containing this point is minimized. This problem can be solved by computing and
traversing the arrangement defined by the boundaries of all these hemispheres; the
time and space requirements will both be O(n?). Using the topological sweep algo-
rithm of Edelsbrunner and Guibas [EG89], the space requirement can be reduced

to O(n).

THEOREM 4.1. Let P be a convex polyhedron with n facets. A build direction
that minimizes the total surface area of P that is in contact with supports can be
computed in O(n?) time using O(n) space.

The time bound in Theorem 4.1 is probably optimal, because, as shown in
Majhi et al. [MJISG97], the following closely related problem belongs to the class
of 8SUM-hard problems (see Gajentaan and Overmars [GO95]): Given a convex
polyhedron, compute a direction with a positive z-component that minimizes the
number of back facets.

In related work, Agarwal and Desikan [ADOO] consider the problem of ap-
proximating the minimum contact-area. They show that, for a convex polyhedron,
the minimum contact-area can be approximated to within a factor of 1 + ¢, in
O((n/€®) log® n) expected time.

When a three-dimensional model is built using Layered Manufacturing, usually
an entire facet is in contact with the platform, because it provides more stability to
the part. Majhi et al. [MISG99] show how to transform the contact-area problem
for this special case to a halfplane range counting problem on weighted points in
two-dimensional space. Using a result of Matousek [Mat93], they show that, for a
convex polyhedron P, a build direction for which a facet rests on the platform and
that minimizes the total surface area in contact with supports, can be computed in
close to O(n*/?) time. Agarwal and Desikan [ADO00] show that the approximation
version of this problem can be solved in O((n/€?)log® n) expected time.

As a final remark, Agarwal and Desikan [ADOO] show the following: Given a
(possibly non-convex) polyhedron P and a build direction d, the total area of all
facets that are in contact with supports can be computed in close to O(n*/3) time.
Observe, however, that this is not the same as the total contact-area. It is possible
that only a portion of a facet is in contact with supports, as discussed in the section
below; in this case, only the area of that portion (not the area of the entire facet)
should be included in the contact-area.

4.2. The general case. We now consider the contact-area minimization prob-
lem for a general (i.e., not necessarily convex) polyhedron P. We remark that this
problem is highly non-trivial, even in the two-dimensional case (i.e., when P is a
simple polygon and the two-dimensional equivalent of supports is considered); an
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FIGURE 5. A support polygon on facet f. n is the outer normal
of f. u, v and w illustrate the three different types of vertices of
a support polygon. e} and e}, are edges and v' is a vertex of the
polyhedron P.

(inefficient) algorithm for this case can be found in Majhi et al. [MJS*99]. In fact,
Agarwal and Desikan [ADOO] argue that it is unlikely that the three-dimensional
version can be solved in o(n?) time. In this section, we outline an algorithm due to
Schwerdt [Sch01].

The basic approach for solving the problem is by subdividing the unit-sphere S2
into regions such that for each region I, the combinatorial structure of the supports
is the same for all directions d € I. (This is related to the notion of the aspect graph
of P, see Bowyer and Dyer [BD90] and Plantinga and Dyer [PD90].) Given this
subdivision of S2, we derive an expression (as a function of d) for the contact-area
for each region I. Finally, for each region I, we minimize the expression over all
directions d € I. The minimum value over all regions gives the minimum contact-
area over all d € S

Recall that, for any given build direction d, a back facet of P is completely in
contact with supports. On the other hand, a front facet is either not in contact
with supports, or is completely or partially in contact. It turns out that the partial
contact case is the most difficult to handle.

4.2.1. Subdividing S2. Let f be a front facet that is partially in contact with
supports. The boundary of the region on f that is in contact with supports consists
of one or more polygons. We call each such polygon a support polygon; see Figure 5.
Each vertex of a support polygon is either (i) the projection in direction —d onto f
of a vertex of P (see vertex v in Figure 5), or (ii) the intersection of the projections
in direction —d onto f of two edges of P (see vertex w in Figure 5). Vertex u in
Figure 5 corresponds to a special case of (ii): For this vertex, one of the edges is
not a projection, but an edge of f.

As mentioned already, our approach is to subdivide S2 into regions such that
within each region, the expression for the total contact-area does not “change”.
Directions for which the expression does change will be called critical directions;
these will form the boundaries of the regions.



12 RAVI JANARDAN AND MICHIEL SMID

Assume we move the build direction d along S2. Then d becomes a critical
direction if a front facet becomes a back facet (or vice versa) or the combinatorial
structure of some support polygon changes. A facet f changes from front facet to
back facet (or vice versa) if d crosses the great circle on S2 consisting of all directions
that are parallel to f. The combinatorial structure of the support polygons on facet
f can change in any one of the following situations:

1. d is parallel to f.

A new support polygon appears.

An existing support polygon disappears.

Two support polygons combine into one support polygon.
A support polygon splits into two support polygons.

A new vertex appears on a support polygon.

A vertex on a support polygon disappears.

N otk W

We now derive necessary conditions for each of these seven cases to occur. If d
is parallel to facet f (case (1) above), then a new support polygon may appear on
f or an existing support polygon on f may disappear. Therefore, we consider the
plane through f and translate it to the origin. The intersection of this translated
plane with S? gives all directions that are parallel to f. This covers case (1).
Cases (2)—(7) are covered by Cases A and B below.

Case A: The projection in direction —d onto f of a vertex of P is on the projection
in direction —d onto f of an edge of P.

In order to obtain all directions in this case, we do the following. For each vertex
v and each edge e of P, we consider the wedge consisting of all rays emanating
from v that contain some point of e. The directions of all these rays are the critical
directions for Case A. In this way, we obtain for each vertex-edge pair of P a great
arc on S2.

Case B: The projections in direction —d onto f of three edges of P intersect in
one single point.

The critical directions for this case are obtained as follows. We want those
directions d such that a line with direction d exists that intersects three edges of
P. Let (a1,b1), (az,b2), and (as, b3) be three edges of P, and let p be a point on one
of these edges. Let us assume that p is a point on (a1,b1). Then p = a; +A(by—ay),
for some A with 0 < A < 1. Let E be the plane through p and (asz,b2), and let
E' be the plane through p and (as,bs). Then d is a critical direction if E and E'
intersect in a line having direction d. The planes E and E' have normal vectors
(p—az2) x (b2 —a2) and (p — ag) x (bg —ag), respectively. The direction d of the
intersection of these planes is given by

d =[(p —az) x (b2 —az2)] x [(p —a3) x (b3 —a3)].

Since each coordinate of the direction d is a quadratic function in A, d is contained
in a curve on S% (This curve will not be a great arc.)

Over all facets f of P, case (1) gives rise to n great circles on S?, whereas
Case A gives O(n?) great arcs. For the critical directions in Case B, we obtain
O(n?®) curves on S?, one curve for each triple of edges of P. It can be shown that
any two of these curves intersect only O(1) times, and any such curve has only O(1)
intersections with any great circle.
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The arrangement on S? of all these n great circles, O(n?) great arcs, and O(n?)
curves, subdivides S? into O(n®) regions. The total number of vertices and edges
of all these regions is O(n®). Moreover, the boundary of each such region consists
of O(n?®) edges.

4.2.2. The expression for the contact-area. We start by deriving expressions for
the vertices of the support polygons. Let I be one of the regions in the arrangement
of Section 4.2.1, and let f be a facet of P that is a front facet for all directions in I.
Let n be the outer unit-normal of f, and let S be a support polygon on f. Recall
that for all d € I, the polygon S has the same combinatorial structure. Consider
an arbitrary vertex v of S. As we saw before, there are two cases to distinguish.

Case 1: v is the projection in direction —d onto f of a vertex v’ of P.

We can write v = v’ — Ad, for some A > 0. Since the plane through f has
the form n - x = ¢, for some constant ¢, we obtain n - (v' — Ad) = ¢, which can be
rewritten as

Hence, we have written v as
(4.1) v=v — —— d.

Case 2: v is the intersection of the projections in direction —d onto f of two edges
of P.

Let €] = (u},v}) and e} = (uh, v}) be two edges of P whose projections e; and
e, respectively, onto f in direction —d intersect in v. Let E; be the plane through
e} and eq, and let E» be the plane through e}, and e;. Observe that E; contains the
points u}, v} and v} — d; hence, E; has a normal vector d x (v; —u}). Therefore,
FE; is given by the equation

[d x (vp —uy)]-x = e,
for some constant ¢;. Since u} is contained in E;, we have
o1 = [d x (v} — )] -y = [d x v}] - u}.
Hence, we have obtained the following equation for the plane E:
[d x (v — )] - x = [d x v}] - .
In a similar way, we obtain the following equation for the plane FE,:
[d > (05— up)] - x = [d x v} - .

Since v is the intersection of E;, Fs, and the plane through f, we obtain the system
of equations Aqv = bgq, where Aq is a 3x 3 matrix and bq is a vector. The coefficients
of Aq and bgq are polynomials in d of degree at most one. Hence, we can write v as

(4.2) v=A;3"ba,

i.e., each coordinate of v is the quotient of two polynomials in d, each having degree
at most three. This concludes Case 2.
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To summarize, using (4.1) and (4.2), each vertex v of the support polygon S
on f can be written in the form

a1(d)/b1(d)
(4.3) o= ax(@/ba(a) |,
az(d)/bs(d)
where each of aq, as, as, b1, b2, and bs is a polynomial in d of degree at most three.

We are now ready to express the area of the support polygon S as a function

of the build direction d. If the vertices of S are sg, s1,...,8r_1, then the area of S
is equal to
k—1
(4.4) > Alp, s, sit1),
i=0
where s, = so, p is an arbitrary point on f, and A(p,s;, s;+1) is the signed

area of the triangle having vertices p, s;, and s;+1. The sign is positive (resp.
negative), if the points p, s;, and s;;1 form a left-turn (resp. right-turn). (See
O’Rourke [O’R98].) Since

1
A(p, iy si41) = +5 I(si —p) x (si+1 = D),

and since the cross-product on the right-hand side is collinear with n, we can rewrite
the expression in (4.4) as

k—1
53 Billsi = p) X (si1 —p)] m,
1=0

where each §; has the appropriate value plus or minus one.

In (4.3), we have shown how to express each vertex s; of the support polygon.
Hence, we can write each term [(s; — p) X (s;+1 — p)] - n as a quotient of two poly-
nomials in d, each having degree at most six. In conclusion, we obtain the following
expression for the area A%(d) of the support polygon S:

s _ ci(d)
A (d) - P dz(d)’

where each of the ¢;’s and d;’s is a polynomial in d of degree at most six.

k—1

Until now, we considered the area A%(d) of only one support polygon S on one
facet f of P. We have to consider this area for each support polygon on each front
facet of P. Let I be one of the regions in the arrangement on S2, and let K be the
total number of all vertices of all support polygons on all facets of P for directions
d in I. Then the total area Ar(d) of all support polygons can be written as

Ky )
(45) A =30 29,

— 9

where each of the f;’s and g;’s is a polynomial in d of degree at most six. Observe
that Kr = O(n?).

The algorithm computes the minimum of the expression (4.5) over all directions
d € I, for each of the O(n®) regions I. The boundary of each such region I is
described by O(n?) curves on S2. If we denote by Q(n) the time needed to minimize
the expression (4.5) within one region I, then we obtain the following result.
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THEOREM 4.2. Let P be a polyhedron with n facets. A build direction that min-
imizes the total surface area of P that is in contact with supports can be computed
in O(n® - Q(n)) time, where Q(n) is the time needed to minimize the expression

(4.5)-

It should be clear that the algorithm described in this section is not practical.
Therefore, in the next section, we present a heuristic approach for approximating
the minimum contact-area.

5. Approximating contact-area of suppports for general polyhedra

Let d* be a direction that minimizes the contact-area for P. As seen in the
previous section, d* appears to be difficult to compute. In this section, we give a
simple heuristic to compute a build direction d which approximates d*. This result
is due to Hlinkin et al. [IJS104].

Let CA(d) denote the contact-area of P for a given direction d. We first show
how to upper-bound the ratio CA(d)/CA(d*). Let BFA(d) be the total area of
the back facets with respect to d and let d’ be a direction that minimizes the total
area of the back facets of P. Observe that BFA(d*) < CA(d*), since CA(d*) also
includes possible contact-area on front and parallel facets. Also, by definition of d’,
BFA(d') < BFA(d*). Therefore,

CA(d) < CA(d) < CA(d)
CA(d*) = BFA(d*) — BFA(d')’
This result allows us to mea,sureAthe quality of the approximation provided by
our heuristic, for various choices of d. In the rest of this section, we show how to
compute efficiently CA(d) and BFA(d"). We also discuss ways to choose candidate

directions d and describe briefly our experimental results. Our emphasis here will
be on practical algorithms rather than on the asymptotically most efficient ones.

5.1. Computing contact-area for a fixed direction. The contact-area for
a given direction d includes contact-area on front facets, on parallel facets, and on
back facets. Handling front and parallel facets is tricky since only parts of these
facets may be in contact with supports; handling back facets is straightforward,
since they are completely in contact with supports. We describe an algorithm for
front facets only; the algorithm for parallel facets is similar.

Our approach is a heuristic based on ray-shooting. Consider a front facet f
and let p be a point on f. Point p will be in contact with supports if and only if
the ray emanating from p in direction d intersects some other facet of . The idea
is to pick a set of points in the interior of f and identify those points that will be in
contact with supports by shooting rays in direction d. Let H # (resp. My) denote
the set of rays, originating at points on f, that hit a facet of P (resp. miss all facets
of P). Then the area of f that is in contact with supports can be approximated
as |Hy|/(|Hf| + |My|) times the area of f. As the density of the sample points is
increased, the accuracy of the approximation improves.

The sample points are selected through a subdivision process, where each facet
is subdivided into two triangular patches and placed at the end of a queue of
unprocessed patches. Thus, the subdivision proceeds in a breadth-first fashion and
all facets are subdivided to the same depth. Each patch is processed by shooting
a ray from its centroid in direction d and recording the result. An iteration of the
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algorithm corresponds to a complete subdivision of the patches. The algorithm
terminates after a predefined number d of iterations or when the change in contact-
area from one iteration to the next is not significant, e.g., less than 1%. The running
time can be shown to be O(29n?).

To verify the accuracy of the heuristic, we also implemented an exact algorithm;
however, it is very slow and we use it only for a one-time verification of the heuristic.
(This algorithm involves intersecting the projections of pairs of front and back facets
and runs in O(n®) time.) Our experiments on real-world models showed that the
heuristic produced answers that were very close to the exact one, and did so in a
fraction of the time. (We used d = 10 in our experiments.) Details may be found
in [LJS*04].

5.2. Minimizing the total area of back facets. In Section 4.1, we showed
how to minimize the contact-area when P is convex; in the convex case, this is
equivalent to minimizing the total back facet area. It turns out that this algorithm
can also be used to minimize the total back facet area for a general polyhedron P.
The algorithm runs in O(n?) time and uses O(n) space (when topological sweep is
used). We describe here a simpler algorithm, which runs in O(n?logn) time and
uses O(n) space.

Each facet f of P defines a great circle Cy on S? consisting of all points that
are at distance 7/2 from the outer unit-normal of f. It can be shown [IJS*04] that
a direction d’ that minimizes the total back facet area coincides with some vertex
of the arrangement 4 of these great circles. This vertex can be found, without
explicitly computing A, as follows.

We pick a great circle Cy, compute its intersection with the other great circles,
and sort the intersection points (which are vertices of 4) in their circular order
around Cy. We pick one of these intersection points and compute the total back
facet area for the corresponding direction. We then visit the other intersection
points in order and update the total back facet area incrementally. Specifically,
suppose that we visit intersection point ds from intersection point d;, and assume
that BFA(d;) has been computed already. Let ABFA(d;) be the total area of the
facets that are parallel facets with respect to d; but are back facets with respect
to dp. Similarly, let ABFA(d3) be the total area of the facets that are parallel
facets with respect to ds but are back facets with respect to d;. Then we compute
BFA(d2) as BFA(d;) + ABFA(d;) — ABFA(d2). The optimum direction d’ is
obtained after all great circles C'y have been thus processed.

The running time for each great circle Cy is dominated by the O(n logn) time to
sort the O(n) intersection points. The walk around Cy takes O(n) additional time.
Observe that, for each intersection point d; on Cy, the facets that are parallel with
respect to d; can be identified from the great circles that intersect at d;. Thus,
ABFA(d;) can be computed in time proportional to the number of great circles
that contain dj, so the time for all intersection points on Cy is O(n). It follows
that the running time is O(n?logn). The space used is O(n).

5.3. Choosing candidate directions. We have implemented and tested the
following choices for a build direction d. Ineach case, the quality of the heuristic was
upper-bounded using the ratio CA(d)/BFA(d'), where d' is computed (just once),
as in Section 5.2. A detailed discussion of these choices can be found in [IJS*04].
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Our choices for d included: (i) a direction which minimizes the total back facet
area (i.e., d'); (ii) a direction which maximizes the total area (or, alternatively, the
number) of parallel facets; (iii) the principal components of P; and (iv) a direction
corresponding to the negation of the outer normal of that facet of the convex hull
of P which contains facets of P of maximum total area; intuitively, this direction
provides high stability to the part as it is built. We tested these choices on several
real models obtained from industry and found savings in contact-area ranging from
9% to 83%, when compared to the contact-area for randomly chosen directions.

In related work, Allen and Dutta [AD95] also describe heuristics for contact-
area minimization. They choose a subset of the normals of the convex hull as
candidate build directions. For each orientation, they compute the needed supports
and contact-area approximately and pick the one that is smallest. No analysis of
the quality of the heuristic is given, however. Support optimization has also been
addressed previously by Frank and Fadel [FF94] in the framework of an expert
system.

6. Multi-criteria optimization

In the previous sections, we have considered different design criteria that are
important to optimize. It is not difficult to see that a single build direction will,
in general, not optimize multiple design criteria simultaneously. In this section, we
consider the problem of computing a build direction that reconciles multiple mea-
sures in a meaningful way. The results we present are due to Majhi et al. MJSSO01].
These authors present several algorithms that optimize different combinations of
measures. Their algorithms incorporate the results of the previous sections as build-
ing blocks. Moreover, their algorithms are modular in the sense that solutions for
different combinations of criteria can be derived quickly by combining the appro-
priate single-criterion algorithms.

We will consider three types of multi-criteria optimization problems. For
each type, we will give one specific example. Further applications can be found
in [MJSSO01].

6.1. Threshold formulation. Let C; and Cy be two generic design criteria.
Given two designer-specified values p; and p,, our goal is to compute a build di-
rection d such that C;(d) < p; and Ca(d) < po.

Let us assume that C;(d) is the maximum error-triangle height ETH (d) for
direction d (see Section 3) and Cy(d) is the width W(d) of the polyhedron P in
direction d (see Section 2).

We start by computing a description of all build directions d for which ETH (d)
is less than or equal to p;. Recall from Section 3 that the error-triangle height hz(d)
for facet f satisfies hy(d) = Lcosfs(d). Hence we require that 8;(d) > 6 for all
facets f, where 6 := arccos(p1/L).

For each facet f of P, the set of all directions d such that 6;(d) > € can be
represented by the complement of the union of two open caps of radius # and poles
ny and —ny, where n; is the outer normal of f. This complement, which we call
a band, consists of two parallel small circles at a distance of 7/2 — 6 on either side
of the great circle defined by ny.

Thus, the set of all build directions d for which ETH (d) < p; is the intersection
of these bands, over all facets f of P. This is a set of regions bounded by arcs of
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small circles. The total size of the regions is O(n) and they can be computed in
O(nlogn) time.

After having computed the intersection of all bands, we proceed as follows. For
each region I in the intersection, we want to decide if there is a build direction
d in T for which W(d) < p2. This can be done by solving the constrained width
problem within I, i.e., computing a direction d € I that minimizes W(d), and then
checking if this width is less than or equal to p2. Majhi et al. [MJISS01] show how
this problem can be solved in O(n?) total time for all regions I.

THEOREM 6.1. Let P be a polyhedron with n facets. Given any two real num-
bers p1 and pa, we can decide in O(n?) time, if there exists a build direction d for
which the mazimum error-triangle height ETH (d) is less than or equal to p1 and
the width W (q) is less than or equal to ps.

6.2. Weighted formulation. Again, let C; and Cy be two generic measures.
In the weighted formulation, we are given two designer-specified weights w; and
wa, reflecting the relative importance of the two criteria, and we want to compute
a build direction d such that w; - C1(d) + ws - C2(d) is minimized.

We again illustrate this type of problem for the case when C;(d) is the maxi-
mum error-triangle height ETH (d) for direction d and C»(d) is the width W (d) in
direction d.

Let S be the set of directions on S2 corresponding to the facet normals (and their
inverse images) of P, as defined in Section 3, and consider the spherical Voronoi
diagram VD(S) of S, where distances are measured along S2. Also, consider the
graphs G, and G, on the upper hemisphere S that were defined in Section 2. We
define the graph G on S? to be the overlay of G, G/, and their inverse images.
Finally, let A be the arrangement on S? obtained by overlaying VD(S) and G.

It can be shown that for each face I in the arrangement .4, the expression
for the maximum error-triangle height, for directions d € I, can be written as
ETH(d) = ajx +bry + crz, where ay, by, and ¢y are constants (that depend on the
face I) and d = (z,y, z). Similarly, the expression for the width of P, for directions
d € I, can be written as W(d) = ajz + bjy + ¢z, where a}, b}, and ¢} are again
constants that depend on I, and d = (z,y,2). Hence, within the face I of A, we
have to minimize the expression

wy (arr + bry + crz) + ws (ahx + by + ¢4 2).

Since the face I is bounded by great arcs, its boundary is given by a collection
of linear constraints on the variables z, y, and 2, together with the constraint
z? + y? + 22 = 1. As shown in Majhi et al. [MJISG99], the optimization problem
for I can be solved using Lagrange Multipliers, in time that is proportional to the
number of great arcs on the boundary of I. Since the total size of all faces I sums
up to O(n?), we obtain the following result.

THEOREM 6.2. Let P be a polyhedron with n facets. Given any two real num-
bers wy and wa, we can compute, in O(n?) time, a build direction d for which
wy - ETH(d) 4+ wy - W(d) is minimum.

6.3. Sequential formulation. As before, let C; and Cs be two generic mea-
sures. In the sequential formulation, we want to compute, among all build directions
d that minimize C; (d), a direction d that minimizes Ca(d).

Assume again that Ci(d) is the maximum error-triangle height ETH (d) for
direction d, and C2(d) is the width W(d) in direction d.
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Consider again the set S of directions on S? corresponding to the facet normals
(and their inverse images) of P. As we saw in Section 3, the set of all directions
d € S? that minimize ETH (d) is equal to the set of poles of all largest empty caps.
Moreover, each such pole is the normal of some facet of the convex hull of S. It
follows that the directions d that minimize ETH (d) (there are O(n) of these), can
be computed in O(nlogn) time. For each of these directions d, we have to compute
the value of W(d). We can do this by computing and preprocessing the convex hull
of P into the hierarchical data structure of Dobkin and Kirkpatrick [DK85]; this
takes O(nlogn) time. Using this data structure, we can, given any query direction
d, compute the extreme vertices in that direction, and hence the value of W(d), in
O(logn) time.

THEOREM 6.3. Let P be a polyhedron with n facets, and let D be the set of
all build directions d for which ETH(d) is minimum. In O(nlogn) time, we can
compute o build direction d in D that minimizes the width of P in direction d.

7. Protecting facets

Let P be a polyhedron with n facets, and let f be a fixed facet of P. In this
section, we consider the problem of computing a description of all build directions
for which facet f is not in contact with supports. Observe that this problem is
equivalent to computing all directions in which f can be translated to infinity
such that no collision occurs with the rest of the polyhedron. The approach that
we sketch in this section is due to Schwerdt et al. [SSIT00]; see also Nurmi and
Sack [NS89].

For any point z € R® and for any direction d € S2, we denote by r,q the
ray emanating from z having direction d. For any facet g of P and for any point
z € R®, we define

Ryg:={d €S?%: (rzang) \ {z} # 0}
For any facet g of P, we define
Cyg = U R,y.
zEf
Hence, for each direction d € Cyg, facet f is in contact with supports for build

direction d “because of” facet g. That is, there is a point z on f, such that the ray
rzd emanating from x and having direction d intersects facet g.

LEMMA 7.1. Ignoring degenerate cases, the complement of the union of the sets
Cyq, where g ranges over all facets of P (except for f), is equal to the set of all
directions for which facet f is not in contact with supports.

Lemma 7.1 implies that our problem can be solved in the following way.
Step 1: For each facet g of P with g # f, compute a description of the set Cp,.
Step 2: Compute the boundary of the union of the sets Cyg4, g # f.

We first consider Step 1. It turns out that there is a simple way to compute a
set Cygy:

LEMMA 7.2. Let g be a facet of P. Assume that f and g are disjoint or intersect
in a single point. Let

Dy, :={dy € S?: s is a vertex of f, t is a vertex of g, s # t},
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where dg; is the point on S? having the same direction as the line segment from s
tot. Then Cyg is the spherical convex hull of the directions in Dy,.

Chen and Woo [CW92] present an efficient algorithm for computing the spher-
ical convex hull of a finite set of directions. Observe that, since f and g are triangles,
the set Dy, in Lemma 7.2 consists of at most nine elements.

Next, we consider Step 2. Observe that after Step 1, we have a collection of at
most n — 1 spherically convex polygons Cy,, each having at most nine edges. Each
edge of such a polygon is a great arc. For each such edge e, let K, be the great circle
that contains e. Using an incremental algorithm, we compute the arrangement on
S2 of the O(n) great circles K,. (This can be done by adapting the algorithm in,
e.g., de Berg et al. [dBvKOSO00], for computing the arrangement of lines in R?.)
By traversing this arrangement, we then remove all vertices and edges that are
inside some set C'y,.

THEOREM 7.3. Let P be a polyhedron with n triangular facets and let f be a
facet of P. In O(n?) time and using O(n?) space, we can compute a description of
all build directions for which f is not in contact with supports.

Implementing the algorithm described above is a highly non-trivial problem.
Part of the difficulty comes from degenerate configurations and numerical problems.
Observe that if the facets g; and go share an edge, then the spherically convex
polygons Cy,, and Cy,, will probably also share an edge. In other words, degenerate
configurations are very likely to occur. Details about an implementation, based
on LEDA [MN99] and its exact rational arithmetic to solve geometric predicates
exactly, can be found in Schwerdt et al. [SSJJ03] and Schwerdt [Scho01].

The result of Theorem 7.3 is optimal in the sense that there exists a polyhedron
‘P that contains a facet f such that the set of all build directions for which f is not
in contact with supports has Q(n?) connected components.

The algorithm presented in this section can be extended to the case when k
facets fi, f2, ..., fr have to be protected from being in contact with supports.
Then, both the running time and the space requirement become O(k?n?).

8. A decomposition-based approach

Given a polyhedron P with n facets, our goal is to decompose it into a small
number of pieces and then build these pieces individually so that the total support
requirements (support contact-area or volume) is minimized. Our notion of a de-
composition is to cut P with a plane H normal to some direction d and build the
pieces lying in each halfspace of H in the direction of the normal of H (d or —d)
lying in that halfspace. The quality of the solution depends on d and, ideally, we
would like to find the direction d which minimizes the support requirements. As
a first step towards this challenging goal, we consider the “fixed-direction” version
of this problem, where we assume that the direction d is a given direction. We
show how to compute a plane H, perpendicular to d, which cuts P into polyhedra
Pt and P, lying above and below H, respectively, such that the total support
contact-area, or support volume, when P+ and P~ are built in directions d and —d,
respectively, is minimized. (See Figure 6.) Since P+ and P~ can consist of several
connected components, an additional requirement is that the number of connected
components in the optimal decomposition be at most a user-specified integer K.
We assume for simplicity that d is the vertical direction.
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build direction for P+

build direction for P~

FI1GURE 6. The decomposition-based approach, shown in 2D for
convenience. The polyhedron P is decomposed by a plane H into
polyhedra Pt and P~, which are then built in the indicated di-
rections.

This problem is considered in Ilinkin et al. [IJM™02], where an O(n log n)-time
algorithm is given for a convex polyhedron and it is shown how this solution can be
incorporated into an algorithm for a general polyhedron that runs in O(n?logn)
time. Experiments on real-world models show significant reductions in support
requirements, e.g., 30% to 86% for contact-area. In what follows, we describe these
algorithms briefly, focusing on contact-area minimization, since the approach for
support volume minimization is similar.

8.1. Decomposing a convex polyhedron to minimize contact-area.
For any position of the plane H, each facet of P can be classified as active or
inactive, depending on whether or not it is cut by H. An inactive facet is com-
pletely contained in either P+ or P~ and its contribution to the contact-area is
unaffected by small movements in H. An active facet is contained partially in P+
and partially in P~ and any movement in H affects its contribution to the contact-
area. It can be shown that the contribution of an active facet f to the contact-area
is a quadratic function ef(h) = afh? + bgh + c¢¢, where h is the height of H above
the zy-plane and ay, by, and ¢y are constants depending only on the coordinates of
the vertices of f. (However, the expressions for these coefficients depend on which
edges of f are intersected by H.)

The algorithm begins by sorting the vertices of P from bottom to top. It then
sweeps a horizontal plane H over P, stopping at each vertex in turn. The total
area contributed by the inactive facets (the inactive-area) is initialized to the total
area of the back facets of P, and the area contributed by the active facets (the
active-area) is set to zero; the total contact-area is the sum of these two terms. At
the current vertex v, the following actions are taken for each facet f incident to v.

If v is the lowest vertex of f, then f changes from inactive to active. An
expression of the form ey (h) is added to the active-area term and, if f is a back facet
of P, then the area of f is also subtracted from the inactive-area term. (Parallel
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facets play no role in the convex case and are ignored.) If v is the highest vertex
of f, then f changes from active to inactive. An expression of the form es(h)
is subtracted from the active-area term and, if f is a front facet of P, then the
area of f is added to the inactive-area term (f will henceforth be in P~ which is
built in direction —d, so f will be in contact with supports). If v is the middle
vertex of f, then f will continue to be active. The active-area term is updated by
subtracting and adding terms of the form e¢(h) (the two terms will be different
since H intersects a different edge of f above v than it did below v).

After v is thus processed, a new expression is obtained for the total contact-
area. This expression is quadratic in h and does not change for any position of H
between v and its successor. The expression is minimized using standard techniques
from calculus to obtain the optimum plane in this range. Once all vertices have
been processed, the overall optimum plane is known. The total time to process
a vertex is proportional to its degree, so the total time for all vertices is O(n).
Including the initial sorting, the overall time is O(nlogn).

8.2. Decomposing general polyhedra. The algorithm of Section 8.1 for
convex polyhedra cannot be applied directly to a general polyhedron P because of
the complex nature of supports here (see Section 1.1.3). Nevertheless, it is possible
to solve the problem by applying the algorithm for the convex case to a carefully
selected set of triangles derived from the facets of P.

The main idea is to partition each front or back facet of P into two classes
of triangles, called black and gray triangles; one of these classes may be empty.
A black triangle will always be completely in contact with supports, regardless
of the position of the decomposition plane H; therefore, it always contributes a
fixed amount, i.e., its area, to the total contact-area. However, a gray triangle will
contribute anywhere between zero and its area to the total contact-area, depending
on the position of H. Parallel facets are partitioned into three classes of triangles,
called black, gray, and white; up to two of these classes may be empty. Black and
gray triangles are defined as before; a white triangle will never be in contact with
supports, regardless of the position of H. It follows that only gray facets need
to be considered for support minimization purposes. These are handled using the
approach in Section 8.1, as discussed later.

We discuss how to identify black and gray triangles for a front facet f. Suppose
that P is built without decomposition in direction d. The footprint of the supports,
if any, that are in contact with f is a collection of disjoint polygons. Let b be
any triangle in a triangulation of the footprint and let g be any triangle in the
triangulation of the region that is the complement of the footprint. We claim that
b and g satisfy the definition of a black and a gray triangle, respectively.

Suppose that P is built with decomposition in direction d. If the decomposition
plane H intersects b, then the part bt of b above H will be in contact with supports
since the portion of P+ that is above b is the same as the part of P that was above
bt if P were built without decomposition. The part b~ of b that is below H functions
as a back facet in P~ and will also be in contact with supports. Thus, all of b will
be in contact with supports. If H is above b, then b* = () and b~ = b; if H is below
b, then b~ = 0 and bT = b. In either case, the same argument applies. It follows
that b is indeed a black triangle.

Next consider g. If H intersects g, then the part g~ of g that is below H will be
in contact with supports since it functions as a back facet in P~. Since no part of
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g is in contact with supports when P is built in direction d, it follows that the part
gt of g, which is in PT and also built in direction d, will also not be in contact with
supports. If H is below or above g, then g is either not in contact or completely
in contact with supports. Thus, the contribution of g to the contact-area will be
a function of the position of H, so g is indeed a gray triangle. It is easy to check
that this contribution has the same form as in the convex case: if g is inactive, it
is zero or the area of g; if g is active, it is a quadratic function of the height of H.

A symmetric discussion applies for back facets. To identify black, gray, and
white triangles for a parallel facet f, we build P without decomposition in directions
d and —d and identify three types of regions on f: (i) those consisting of points that
are in contact with supports for both directions, (ii) those in contact for exactly
one direction, and (iii) those not in contact for either direction. These points
define three sets of disjoint polygons that partition f. It is easy to argue as before,
that the triangles resulting from triangulating the polygons of types (i)—(iii) are,
respectively, black, gray, and white triangles on f.

We can compute the black and gray triangles on the front and back facets
simultaneously using the well-known cylindrical decomposition method [Mul94].
This method in essence partitions the space that is outside P and “in between” its
facets into triangular prisms that are oriented in direction d. From these prisms the
footprints of the supports can be inferred easily and the different types of triangles
can be computed. The algorithm runs in O(n?logn) time. Parallel facets are
handled somewhat similarly. For each parallel facet, the points of types (i)—(iii) are
identified by doing a trapezoidal decomposition on a set of line segments obtained
by intersecting each non-parallel facet with the plane containing the parallel facet.
(Details on these algorithms may be found in [IJM*02].)

At this point, we have computed the black, gray, and white triangles for
all facets. Recall that only gray triangles are relevant for support minimiza-
tion. We store the gray triangles from all the facets in a doubly-connected edge
list [dBvKOSO00] and perform a sweep over them, as in Section 8.1, to compute the
optimum plane H. Observe that although the algorithm in Section 8.1 is described
for convex polyhedra, it does not really rely on convexity and, in fact, is applicable
to any set of triangles.

8.3. Controlling the size of the decomposition. Recall that we assumed
that d is the vertical direction. To ensure that there are at most K connected
components in the polyhedra PT and P~, a preprocessing step is applied, where
the z-axis is partitioned into a sequence Z of disjoint intervals I, I, . .., defined by
the z-coordinates of the vertices of P, such that for any position of H within each
interval I;, the number of connected components is the same (say k;). The above
algorithm is then run as before, but the minimization is done only within intervals
Ij for which k’j S K.

The sequence 7T is identified via a two-step process. First, a sequence 7' of
intervals I{, 15, ..., is found such that for any position of H within each interval
I ]’., the number of connected components of P~ is the same. This is done by
sweeping a horizontal plane upwards over the sorted sequence of vertices of P and
maintaining the connected components of P~ using a Union-Find-Makeset data
structure; see Cormen et al. [CLRSO01]. Specifically, the vertices of the connected
components are maintained as disjoint sets and when a new vertex is encountered
its incident edges are examined and used to merge components together; a count of
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these components is maintained with the interval defined by the z-coordinates of the
current vertex and its successor. The key observation is that during this process,
the connected components of P~ can only merge, never split, so the above data
structure suffices. The second step is symmetric and it identifies, via a downward
sweep, a sequence Z" of intervals I, I}, ..., such that for any position of H within
each interval I, the number of connected components of P+ is the same. The
desired sequence 7 is inferred by scanning and combining the intervals of Z' and 7"
suitably. This preprocessing adds only O(nlogn) time to the running time of the
overall algorithm. (Details may be found in [IJM102].)
We summarize the discussion in this section in the following theorem.

THEOREM 8.1. Let P be a polyhedron with n facets. Given a direction d and
an integer K, it is possible to compute a plane H which decomposes P into at
most K connected components such that when the components in the halfspace of
H containing d (resp. —d) are built in directions d (resp. —d), the total contact-
area is minimized. The algorithm runs in O(n?logn) time. A similar result also
applies for support volume minimization.

This result assumes a fixed decomposition direction d. A natural, but chal-
lenging, extension is finding an optimium decomposition over all directions. Some
progress has been made on a two-dimensional version of the problem. A simple
polygon is a terrain if each point on its boundary and interior can be connected to
a single edge, called a base, by a line segment which is contained completely inside
the polygon. Ilinkin et al. [IJS02] present algorithms to decompose a simple poly-
gon with a line into two terrains. Their algorithm runs in O(n logn) time if the two
terrains have a common base and in O(n?logn) time otherwise. The motivation
for this is that it allows certain classes of polyhedra to be built without supports—
specifically, those that are generated by extruding (and possibly scaling) such a
decomposable polygon. It is natural to also consider decompositions that minimize
the number of terrains. However, Fekéte and Mitchell [FMO01] have proved that it
is NP-complete to decide if a polygon with holes, or a polyhedron of genus zero,
can be decomposed into K terrains, where K is part of the input.

Related problems also arise in the context of casting and injection molding.
Rosenbloom and Rappaport [RR94] give an efficient algorithm to decompose a
simple polygon into two terrains with a common base. Bose et al. [BBVK97]
consider the problem of decomposing a polyhedron by a plane and building mold-
halves for the two pieces such that the cast polyhedron can be de-molded without
obstruction. This is equivalent to deciding if the polyhedron can be decomposed
into two polyhedra that are terrains with respect to the common base formed by the
dividing plane. Decomposition problems at the interface of Layered Manufacturing
and injection molding have been considered recently by McMains [McMO02].

9. Computing an optimal hatching direction

In this section, we consider the problem of printing, i.e., hatching, the individual
layers. Unlike the other problems considered in this paper, this is essentially a two-
dimensional problem since each layer is a polygon. We give an overview of an exact
algorithm, due to Schwerdt et al. [SSHJ02], and an efficient heuristic, due to Hon
et al. [HJSS03].



GEOMETRIC ALGORITHMS FOR LAYERED MANUFACTURING 25

9.1. An exact algorithm. Let P be an n-vertex polygon in the plane, pos-
sibly with holes. Let d be a hatching direction, specified as a unit-vector in the
plane. Let ¢ be the width of the tool-tip (e.g., the laser in Stereolithography). Let
£y(d) be the line through the origin in direction d and let £(d) be the set of all
lines that are parallel to £o(d) and whose distances to £y(d) are integer multiples
of 6. Let Sy be the set of line segments of positive length in the intersection of any
line £ € £(d) with P and let H(d) = 3 ,cz(q)|S¢|- Thus, H(d) is the number of
hatching segments for direction d. Our goal is to find a direction d such that H(d)
is minimized.

Observe that H(d) = H(—d), so it suffices to consider directions d = (di, d2)
for which ds > 0. The algorithm performs a sweep around the unit-circle, starting
from the direction d = (—1,0) and going clockwise to d = (1,0). During this
sweep, the value of H(d) changes at certain directions d, called critical directions,
and we update H(d) at these points. At the end of the sweep, we will have found
the optimal hatching direction.

We now state necessary conditions for a direction d to be critical, i.e., for which
the value of H(d) changes. There are two cases:

e d is such that the subset of lines in £(d) that intersect P changes. This
happens if there is a vertex v of P such that (a) v is extreme in a direction
orthogonal to d, and (b) v lies on a line of £(d), i.e., the distance between
v and £o(d) is an integer multiple of 4.

e d is such that for some line £ € £(d), the set of segments in S; changes.
This happens if there is a vertex v of P such that (a) both neighbors of v
are on the same side of the line through v that is parallel to £y(d), and (b) v
lies on a line of £(d).

Define the set D to consist of all directions d for which there is a vertex v of P
lying on a line of £(d). Clearly, D contains all critical directions.

We begin by computing the set D, for directions d = (d;, d2) for which ds > 0,
and sort these in clockwise order starting from the direction (—1,0). Let d° < d! <
- < d™" ! be the m distinct directions in D. Observe that H(d') = H(d") for
any directions d’ and d” that are strictly between d? and d**!.

Next we compute H(d?®) for some direction d® such that d*—! < d* < d.
We then consider the elements of D in the order d*, d*+1,... d™~1 d°% ..., d*!.
For each such d¢ that is a critical direction, we first compute H (d?) from H(d), for
di~-! < d < d?, and then compute H(d) from H(d?), for d* < d < d**1. After all
directions d* have been processed in this way, the minimum H (d) found is reported
along with the corresponding d.

Further details on this algorithm can be found in Schwerdt et al. [SSHJ02].
We summarize the main result in the following theorem.

THEOREM 9.1. Let P be an n-vertex polygon, possibly with holes. A direction
d which minimizes the number of hatching segments H(d) can be computed in time
O(Cnlog(Cn)). Here C =1+ L/6, where L is the mazimum distance of any vertex
of P from the origin.

Although the algorithm is conceptually simple, care must be taken to handle
many special cases. Indeed there are seventy-two different cases to be considered!
Nevertheless, the algorithm has been implemented and tested on layers generated
from real-world models. Owing to the use of exact arithmetic based on the LEDA
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number type real [MN99], and the dependence on L/§, the algorithm is fairly
slow. However, this algorithm turns out to be crucial in verifying the performance
of a fast heuristic which we describe next.

9.2. An efficient heuristic. The idea behind this approach is as follows. Let
d be any hatching direction and let e be any edge of P. The number of times the
tool-tip runs into e is roughly equal to the length of the projection of e normal to
d divided by 4, i.e., |n. - d|/d, where n. is the outer normal to e whose length is
the same as that of e. (The error in this bound depends on how far away the first
and last lines of £(d) are from the endpoints of e. The smaller the value of §, the
smaller is the error.) Since each such intersection of the tool-tip with e creates an
endpoint of a hatching segment, the total number of hatching segments in direction
d is one-half the sum of the projected lengths of the edges divided by 6. Let S
be the set of outer normals of the edges of P, where each normal has the same
length as the corresponding edge and begins at the origin. It then follows that
an approximate solution to the hatching problem can be obtained by computing a
direction d such that ) s [n. - d| is minimized.

The key observation is that )  s|ne - d| depends only on the lengths and
the orientations of the edges of P and not on how the edges connect to form P.
This suggests the possibility of connecting the edges of P in a different order to
produce a new polygon @ for which the desired direction can be computed more
easily. Indeed, the solution outlined below replaces P with a convex polygon () and
shows that the desired direction d can be obtained by computing the width of Q).

We first replace all vectors in S that point in the same direction by a single
vector equal to their sum. We then sort these vectors in circular order around the
origin and walk through this list to build a chain of vectors as follows; see also
Figure 7. Initially, the chain is empty; when we reach the current vector in the
walk, we update the chain by adding the current vector so that its tail is at the
head of the chain. The chain obtained at the end of the walk will be a closed
polygon since P is a closed polygon and each edge of the chain is a vector that is
rotated ninety degrees (say, counterclockwise) from an edge of P and has the same
length. Moreover, the polygon will be convex since the edges are added in sorted
angular order. Denote this convex polygon by Q.

For any direction d, the boundary of () can be partitioned into two chains
by cutting at the two vertices u and v that are extreme in directions d and —d,
respectively; see Figure 7. The projections of the chains in a direction perpendicular
to d will be non-overlapping (except at u and v). Let £, and £, be, respectively, the
lines through u and v that are perpendicular to d. It follows that ), g |n.-d| is
simply twice the distance between £,, and £,,. Thus, the direction d which minimizes
> -n.cs e - d| is one which realizes the minimum distance between two parallel
lines that enclose @, i.e., the width of (). We can, therefore, solve the problem
by computing the width of @, which can be done in O(nlogn) time and using
O(n) space; see Houle and Toussaint [HT88]. We note that a similar approach
was proposed independently by Sarma [Sar99] in the context of path-planning for
milling.

THEOREM 9.2. Let P be a simple n-vertex polygon, possibly with holes. Let n,
be the outer normal of edge e € P, where n, has the same length as e and begins
at the origin. Let S be the set of such outer normals for all edges of P. Then a
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width in the direction
perpendicular to d

FIGURE 7. A set of vectors and the resulting convex polygon. The
sum of the absolute values of the dot products of the vectors with
respect to direction d is twice the width of the convex polygon in
the direction perpendicular to d.

direction d such that )  q|n. - d| is minimized can be found in O(nlogn) time
and using O(n) space.

We next describe an alternative algorithm which does not require explicit con-
struction of (). It works for more general sets of vectors than those derived from
the normals of P—a fact that will be useful in some other applications that we
mention at the end of the section. The algorithm can also be generalized to higher
dimensions.

Henceforth, we assume that & is a set of n arbitrary vectors in the plane,
where each vector begins at the origin. We wish to compute a direction d such
that ), .|V -d|is minimized. We pick an arbitrary unit-vector d as a candidate
direction and draw a line perpendicular to d through the origin. This line cuts
the plane into two half-planes. The vectors v € S that are in the same closed
half-plane as d generate a non-negative dot-product with v. However, those in the
the complement of the above half-plane generate a negative dot product with d.
We can correct for this by reflecting these vectors through the origin. Let this new
set of vectors be S.

All the vectors ¥ in & lie in the same closed half-plane as d. Thus, s |v-d|
reduces to Y ;. V - d, which can be rewritten as (3> ;.5V) - d. If no vector of
S is on the cutting line, we can rotate d away from Y wc§ Vv, thereby decreasing
(> ¢csV) -d. We can do this until one of the vectors ¥ is on the cutting line
perpendicular to d. Any further movement of d will cause v to go to the other side
of the cutting line. Thereafter, the contribution of (the reflection of) v will cause
(>_¢es V) - d to increase. Thus, the position of the cutting line that coincides with
one of the input vectors must be a local minimum for (} ;. 5V) - d.

We update ) ;s V efficiently by visiting the vectors in a circular order, from d
to —d. Specifically, each vector v has associated with it two regions, separated by
the line perpendicular to v. In the walk, whenever we pass this line, the associated
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vector’s contribution to the sum changes sign. If ¥; is the associated vector, we
subtract 2v; from ) ;s V: one copy to take it off from the sum, and another copy
to insert it back in with a negative sign. At each event, we use the newly updated
vector sum to re-calculate (3 ;c5V) -d. Since the update can be done in O(1)
time, we can find the minimum in O(n) time given the circular list of vectors. The
total running time is dominated by the time to prepare the list itself, in this case
the O(nlogn) time for sorting. This yields the following result, which generalizes
Theorem 9.2.

THEOREM 9.3. Let S be a set of n arbitrary vectors in the plane, where each
vector begins at the origin. A direction d which minimizes ) |V - d| can be
computed in O(nlogn) time and using O(n) space.

This algorithm has been implemented and tested on layers obtained from real-
world models (using a pessimistically large value of 0.1 inches for §) and the results
have been compared to those obtained by the exact algorithm from Section 9.1.
It was found that in all cases, the number of hatching segments found by the
heuristic was within a small additive constant of the number found by the exact
algorithm; moreover, the heuristic was about three to five orders of magnitude
faster. A conservative analysis of the heuristic shows that under some reasonable
assumptions, the number of hatching segments produced by the heuristic is at most
1+43/k times the minimum number, for some integer k > 1. (Details of this analysis
and the experiments may be found in [HJSS03].)

We note that it is straightforward to extend the above method to compute an
approximation to an optimal hatching direction for all layers of a three-dimensional
model: We simply run the algorithm on the set of normals of the edges of the
polygons from all layers.

We close by mentioning some other applications of the projection-minimization
technique [HJSS03]. Each of these problems can be solved using the second algo-
rithm described above in O(nlogn) time and using O(n) space.

Weighted hatching: The idea here is to assign weights to different edges of the
polygons, where the weights reflect the importance of the edge to the form or
function of the part. The goal then is to find a direction d which minimizes the
sum of the weights of the edges of P that are hit by the lines in £(d).

Hatching in two directions: The idea here is to improve the strength of the part by
hatching it along two prescribed directions that have some fixed angular relationship
to one another. The goal is to find a pair of such directions which minimizes the
total number of hatching segments.

Minimizing stair-step error in 2D: The non-zero width ¢ of the tool-tip implies that
the hatched polygon is not an exact replica of the original polygon P; instead it
has a stair-stepped appearance. Analogous to the three-dimensional case discussed
in Section 3, one can define an error-triangle on each edge of the polygon and then
minimize the sum of the stair-step errors on all edges of P by finding a suitable
hatching direction d.

Finally, we note that Theorem 9.3 can be generalized to d > 2 dimensions,
using time O(n?~'logn) (resp. O(n*')) and space O(n) (resp. O(n?~1)).
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10. Final remarks

We have presented an overview of recent work on the application of techniques
from computational geometry to several design optimization problems in Layered
Manufacturing. Our goal has been to cover the topics in sufficient depth, so that
the interested reader can use this as a starting point for further research.

There are several interesting avenues for further research. For instance, can
the minimum support volume for general polyhedra be approximated? A challenge
in extending the approach presented for contact-area is the absence of a suitable
criterion for evaluating the quality of any proposed heuristic for support volume
minimization. Another challenging problem is to compute a decomposition of a
general polyhedron which is globally optimal, i.e., one which minimizes the contact-
area or support volume, when taken over all possible directions d € S2. Similarly, it
would be interesting to compute a hatching direction that is optimal over all possible
orientations of the model. Also useful would be other decomposition modalities; for
instance, decomposing the model with three planes that are spaced 120° apart. Yet
another problem is stair-step error minimization in the presence of adaptive slicing,
where the layer thickness is varied dynamically in the vicinity of fine features in the
model. The methods presented in this paper assume a fixed layer thickness and it
would be interesting to generalize them to the case where the layer thickness lies in
some prescribed range. Finally, since the STL format is inherently redundant and
error-prone, it would be interesting to consider alternatives (e.g., analytic surfaces
such as quadrics, see Farouki and Konig [FK96]) and the effect of these formats
on the algorithms presented here.

We close with a partial list of other interesting aspects of Layered Manufactur-
ing that we have not discussed here. This includes automatic repair of STL files (see
Bghn [Bgh95] and Barequet [Bar97]), methods for support structure elimination
through selective thickening of walls of the model (see Allen and Dutta [AD98]),
new modeling techniques based on voxels (see Chandru et al. [CMP95]), and design
issues associated with building a complete software front-end for Layered Manufac-
turing (see Barequet and Kaplan [BK98]). We refer the reader to Jacobs [Jac92],
Kai and Fai [KF97], Chua et al. [CLLO3], and Stucki et al. [SBE95] for more
information on these and related topics.
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