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Given an arbitrary real constant ε > 0, and a geometric graph G in d-dimensional Euclidean space
with n points, O(n) edges, and constant dilation, our main result is a data structure that answers
(1 + ε)-approximate shortest path length queries in constant time. The data structure can be
constructed in O(n log n) time using O(n log n) space. This represents the first data structure
that answers (1 + ε)-approximate shortest path queries in constant time, and hence functions as
an approximate distance oracle. The data structure is also applied to several other problems.
In particular, we also show that approximate shortest path queries between vertices in a planar
polygonal domain with “rounded” obstacles can be answered in constant time. Other applications
include query versions of closest pair problems, and the efficient computation of the approximate
dilations of geometric graphs. Finally, we show how to extend the main result to answer (1 + ε)-
approximate shortest path length queries in constant time for geometric spanner graphs with
m = ω(n) edges. The resulting data structure can be constructed in O(m + n log n) time using
O(n log n) space.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—Computations on discrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Shortest paths, geometric graphs, approximation algorithm,
computational geometry, spanners

1. INTRODUCTION

The shortest-path (SP) problem for weighted graphs is a fundamental problem for which efficient solutions
can now be found in any standard algorithms text. In the query version of the problem, one is allowed to
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preprocess the graph, so that the shortest path (either the length, or the actual path itself) between two
given vertices can be efficiently reported. In numerous algorithms, the query versions of the problem appear
as subroutines. Furthermore, in many applications, it is sufficient to solve the problem approximately. The
approximation version of the shortest path problem has been studied extensively; for example, see Aingworth
et al. [1999], Cohen [1998], Dor et al. [2000].

For the approximate query version on undirected weighted graphs with n vertices and m edges, Thorup
and Zwick [2001] present an algorithm that computes (2k− 1)-approximate solutions to the query version of
the SP problem in O(k) time, using a data structure that can be constructed in O(kmn1/k) expected time
with O(kn1+1/k) space. Since the query time is essentially bounded by a constant, Thorup and Zwick refer
to their queries as approximate distance oracles. It is not an approximation scheme in the true sense because
the value k needs to be a positive integer. For the unweighted case, Baswana and Sen [2004] solved the same
problem by showing a new algorithm with a preprocessing time of O(n2 log n), which is an improvement
over the result of Thorup and Zwick if km is asymptotically greater than n log n. Experimental studies on
practical algorithms for shortest path problems were studied by Wagner and Willhalm [2003], Wagner et al.
[2004] and Pyrga et al. [2004]. A related result on answering distance queries in weighted planar graphs is a
result from Arikati et al. [1996], where they showed that given an n-vertex planar graph G with non-negative
real edge weights and an arbitrary number 1 ≤ ρ ≤ √

n, after preprocessing with O(n2/ρ) time and space,
a distance query between any two vertices can be answered in O(ρ) time. For approximate distance queries
in planar graphs, the best result can be found in Thorup [2004], where it was shown that given an n-vertex
planar graph G with non-negative real edge weights and an arbitrary real number ε > 0, after preprocessing
with near-linear time and space, a (1 + ε)-approximate distance query can be answered in O(1/ε) time.

We focus on the geometric version of the approximate distance query problem. A geometric graph has
vertices corresponding to points in Rd and edge weights from a Euclidean metric. Throughout this paper,
we will assume that d is constant. We do not assume that the geometric graphs are planar. There are
no known results for answering shortest path queries in geometric graphs that are better than what is
known for weighted graphs (i.e., the non-geometric cases mentioned above). In particular, for approximation
factors less than 3, only the trivial solutions were known; namely, either computing and storing a complete
distance matrix, or leaving the graph untouched and answering each query with a single source shortest path
computation from scratch.

In the geometric case, good surveys can be found in Mitchell [1997], Mitchell [1998], Suri [1997]. However,
most of the work reported are on variants of the problem. The main variants considered include answering
shortest path queries in polygonal domains, where the paths have to lie within a polygonal region, which
may or may not include obstacles. Other variants include answering shortest path queries on polyhedral
surfaces. All these variants have been considered in a number of papers, including the ones by Guibas and
Hershberger [1989] (simple polygons), Chen [1995] (polygonal domains with polygonal obstacles), Mitchell
[1996], Kapoor et al. [1997], Hershberger and Suri [1999], and Chen et al. [2001] (polygonal domains with
polygonal obstacles). Work on the approximate version of these variants can be found in Clarkson [1987],
Chen [1995], Arikati et al. [1996], Chen et al. [2000], Har-Peled [1997], Agarwal et al. [1997], and Agarwal
et al. [2000].

Note that while the problem of finding shortest paths in polygonal domains can be modeled as a problem
on geometric graphs, it is not clear whether the problem of finding shortest paths in geometric graphs can
be reduced to a corresponding problem in polygonal domains. Thus the geometric variants mentioned above
do not appear to be useful to solve the distance query problem in geometric graphs. More importantly, note
that none of the existing algorithms for these geometric variants answer shortest path length queries (either
approximate or exact) in constant time with subquadratic space and preprocessing time. In this paper we
optimally solve the approximate distance oracle problem for geometric spanners.

We consider geometric graphs that are t-spanners for some constant t > 1. A graph G = (V, E) is said to
be a t-spanner for V , if for any two points p and q in V , there exists a path in G between p and q of length at
most t times the Euclidean distance between p and q. The minimum value t such that G is a t-spanner for V
is called the dilation of G. Given a geometric t-spanner G = (V, E) on n vertices and m edges, we consider
the problem of constructing a data structure that supports (1 + ε)-approximate shortest path queries, for
any given real constant ε > 0. Assuming that m = O(n), our main result is an algorithm that preprocesses
G in O(n log n) time and space, after which shortest path length queries can be answered in constant time.
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We remark that many “naturally occurring” geometric graphs are t-spanners, thus justifying the interest
in the problem considered in this paper. Many theoretical geometric graphs as well as practical networks
are known to be t-spanners. For example, for any point set in the plane, the Delaunay triangulation, the
greedy triangulation, and the minimum weight triangulation are t-spanners for some constant t > 1, see
Das and Joseph [1989], Keil and Gutwin [1992]. As a more practical example, the section of the southern
Scandinavian railroad network shown in Figure 1 of Narasimhan and Smid [2000] is a 1.85-spanner. As a
further motivation, many algorithms for constructing t-spanners of point sets have been published. Even
though any pair of points is connected by a t-spanner path in such a spanner, it is often far from obvious
how to actually compute such a path.

In a preliminary conference version (Gudmundsson et al. [2002a]), we showed the basic ideas of this
algorithm as applied to point sets with the additional constraint that the interpoint distances be within a
polynomial ratio of each other. In a follow-up conference version (Gudmundsson et al. [2002b]), we showed
how to eliminate the above constraint. This current paper is an archival version that combines both those
results.

The main result of this paper is stated in the following theorem:

Theorem 1.1. Let t > 1 and ε > 0 be real constants. Let V be a set of n points in Rd, and let G = (V, E)
be a t-spanner for V with O(n) edges. The graph G can be preprocessed into a data structure of size O(n log n)
in time O(n log n), such that for any pair of query points p, q ∈ V , we can compute a (1 + ε)-approximation
of the shortest-path distance in G between p and q in O(1) time. Note that all the big-Oh notations hide
constants that depend on d, t and ε.

The main data structure used is a series of “cluster graphs” of increasing coarseness each of which helps
answer queries for pairs of points with interpoint distances of different scales. The idea of using cluster
graphs to speed up geometric algorithms was first introduced by Das and Narasimhan [1997] and later used
by Gudmundsson et al. [2002] to design an efficient algorithm to compute (1 + ε)-spanners. More recently,
similar ideas have been used by Gao et al. [2003].

Another important contribution of this paper is a technical tool to “bucket” edge lengths in constant time,
without using the floor function. This tool is used in our algorithm to quickly determine the approximate
distance between points in Euclidean space, which in turn is used to decide which cluster graph to perform
our search in. We believe that this tool is of independent interest as a general device to speed up geometric
algorithms. The heart of this bucketing tool is the use of a constant-time lowest common ancestor (LCA)
computation. The idea of using LCA to estimate distances between points has perhaps been used in some
indirect form in the work of Bartal [1996] on probabilistic embeddings of metric spaces in trees. Bartal
defined the concept of a k-HST (hierarchically well-separated tree), which is a probabilistic hierarchical
clustering produced with the property that vertices that are closer to each other have a higher probability of
having a LCA that is closer. Other related data structures include Arora’s randomly translated quadtrees,
see Arora [1997], Arora [1998], and the quadtree-based data structure used by Chan [1998] (also see the
survey Indyk [2001]), both of which had properties similar to that of k-HSTs, but in the geometric context.
We provide the simplest deterministic method to use LCA for the purpose of distance estimation or rounding
in the geometric context.

We also show that the main data structure presented has many applications. We consider the problem
of approximating a shortest obstacle-avoiding path between two vertices in a planar polygonal domain with
obstacles, having a total of n vertices. In accordance with the spanner constraints imposed above, we consider
restricted planar polygonal domains, which we will refer to as t-rounded domains. A polygonal domain P is
said to be t-rounded if for any two vertices p and q, the length of the shortest obstacle-avoiding path between
p and q is at most t times the Euclidean distance between them. The concept of t-roundedness is similar
in spirit to that of domains with fat obstacles or with bounded aspect ratio obstacles, a concept that was
introduced in Overmars and van der Stappen [1996] and de Berg et al. [2002]. It is clear that skinny obstacles
force long paths around them and it was argued in these two papers that for most practical situations, it
is enough to be able to handle fat obstacles. We show how to preprocess a planar t-rounded domain in
O(n log n) time, such that approximate shortest path length queries can be solved in constant time for any
two vertices of the domain, and in O(log n) time for any two points in the plane. Other applications include
several query versions of closest pair problems, and a significant improvement in the time complexity of an
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algorithm to compute the approximate dilation of geometric graphs.
Finally, using a recent result of Gudmundsson et al. [2005], we show in Corollary 6.1 that the result of

Theorem 1.1 can be extended to geometric spanner graphs with superlinear edges.
Our model of computation is the traditional algebraic computation tree model with the added power of

indirect addressing. In particular, our algorithms do not use the non-algebraic floor function as a unit-time
operation. (Recall, that by adding the floor function, we obtain a strictly stronger model of computation.
For example, the MAXGAP-problem can be solved in O(n) time if the floor function is available, whereas
this problem has an Ω(n log n) lower bound in the algebraic model; see Gonzalez [1975], Lee and Wu [1986],
and Preparata and Shamos [1988].)

We will use the following notation. For points p and q in Rd, let |pq| denote the Euclidean distance between
p and q. For a geometric graph G, let δG(p, q) denote the Euclidean length of a shortest path in G between
p and q. Given a constant t > 1, G is a t-spanner for V if δG(p, q) 6 t|pq| for any two points p and q of V .
If P is a path in G between p and q having length ∆ with δG(p, q) 6 ∆ 6 (1 + ε)δG(p, q), then P is said to
be a (1 + ε)-approximate shortest path for p and q. We say that a subgraph G′ of G is a t′-spanner of G, if
δG′(p, q) 6 t′ · δG(p, q) for any two points p and q of V . Finally, if L > 0 is a real number, then we say that
the graph G = (V,E) is an L-partial t-spanner for the point set V , if for any two points p and q of V with
|pq| < L, we have δG(p, q) 6 t · |pq|.

In Section 2, we start with an easier version of the problem. We present a data structure that answers
approximate distance queries in a spanner G for pairs of points that are “sufficiently separated” from each
other. In Section 3, the result is extended to the case when there is no restriction on how close the query
points p and q are. In Section 4, we discuss various applications of our data structure, including answering
approximate shortest path-length queries in polygonal domains with obstacles, computing dilations of geo-
metric graphs, and answering closest pair queries. In Section 5, we present a tool for bucketing edge lengths
without using the floor function, thus completing the proof of Theorem 1.1. This tool is used repeatedly in
Sections 2 and 3. Finally, in Section 6, we extend Theorem 1.1 to geometric spanner graphs of arbitrary size.

2. APPROXIMATE DISTANCE QUERIES FOR “SUFFICIENTLY SEPARATED” POINTS

Let V be a set of n points in Rd, and let G = (V,E) be a t-spanner for V , for some real constant t > 1. We
assume that |E| = O(n). Let D be the length of the longest edge in G, We fix a positive constant ε. We also
fix a real number C > 2, which may depend on n. In this section, we solve the (1 + ε)-approximate distance
oracle problem for pairs of points p, q ∈ V such that |pq| > D/C.

2.1 Preprocessing for approximate distance queries

The preprocessing of graph G, which is performed before approximate shortest path queries can be answered,
is described below.

Preprocessing algorithm: Run the ImprovedGreedy algorithm (see Gudmundsson et al. [2002]) with
modifications as discussed below. The ImprovedGreedy algorithm maintains a graph G′, which is a partial
(1+ε)-spanner of G. During the process it creates a sequence of cluster graphs of the partial spanner, one in
each iteration. These cluster graphs constitute the data structure for answering shortest path length queries.

Below we provide details on how the ImprovedGreedy algorithm from Gudmundsson et al. [2002] is
modified for the preprocessing algorithm. In the process, we also summarize the cluster graph data structure
and its properties. The cluster graph data structure used here was first introduced by Das and Narasimhan
[1997] and later used in Gudmundsson et al. [2002] to design an efficient, cluster-based algorithm to compute
(1 + ε)-spanners.

2.1.1 Generating the cluster graphs. First, as described in Gudmundsson et al. [2002], the Improved-
Greedy algorithm takes as input a set of points in Rd and computes a t-spanner of the set of points. In order
to achieve this, Step 1 of algorithm ImprovedGreedy (see Figure 2 of Gudmundsson et al. [2002]) constructs
a linear-sized

√
t/t′-spanner graph, of which a

√
tt′-spanner is output by the rest of its computation.

In contrast, the input to the preprocessing algorithm is a linear-sized t-spanner graph of the set of points
and we intend to end up with a (1+ε)-spanner of this graph (besides a sequence of cluster graphs). Thus, we
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can skip Step 1 of ImprovedGreedy and proceed directly to Step 2 of the ImprovedGreedy algorithm
by assuming that the value of

√
tt′ used in that algorithm is replaced in the preprocessing algorithm by 1+ε.

Second, we assume that the length D of the longest edge in G is equal to C. If this is not the case, then
we scale the coordinates of the points of V so that this is true. This makes some of our later discussions
more convenient. This implies that for the query points p and q, we must have |pq| > D/C = 1.

Continuing with the steps of the ImprovedGreedy algorithm, a graph G′ is initialized to (V, ∅), and the
edges of E are sorted according to their lengths. Then, the algorithm, acting in a greedy fashion, examines
the edges of E one by one, in increasing order of length. When it examines an edge (p, q), it checks if there is
a path between p and q in the current graph G′ whose length is at most (1 + ε)|pq|; the edge (p, q) is added
to G′ if and only if there is no such path.

The resulting graph G′ is a (1 + ε)-spanner of G and, therefore, a t(1 + ε)-spanner of the set V of points.
In fact, it was also shown in Gudmundsson et al. [2002] that after processing all edges of length at most L,
the graph G′ at that time is a (L/t)-partial t(1 + ε)-spanner of the point set, which means that it contains
a t(1 + ε)-spanner path between all pairs of points whose interpoint distance is at most L/t.

In order to speed up the above computation, the edges are batched together and then processed in phases.
We partition the edge set E into subsets

E0 := {(p, q) ∈ E : |pq| 6 1}, and

Ei := {(p, q) ∈ E : 2i−1 < |pq| 6 2i}, 1 6 i 6 1 + blog Cc.
The graph G′ is initialized to (V,E0), and the remaining subsets Ei, i > 1, are processed in 1 + blog Cc

phases. At the beginning of phase i in which Ei is processed, the algorithm constructs a cluster graph H of
the current partial spanner graph G′, which is dynamically maintained during this phase. Informally, the
cluster graph H approximates the current graph G′, in the sense that for any two points p and q for which
|pq| is approximately equal to 2i, the value of δH(p, q) approximates δG′(p, q). Moreover, for two such points
p and q, the value of δH(p, q) can be computed in O(1) time, since the degree in H is bounded by a constant
and the number of edges in H on the shortest path between p and q is also bounded by a constant. When
the algorithm processes edge (p, q) of Ei, it uses the current cluster graph H to decide whether or not to add
this edge to the current graph G′. That is, (p, q) is added to G′, if and only if δH(p, q) > (1 + ε)|pq|. If this
edge is added, then H is updated so that it is a valid cluster graph for the new graph G′. Gudmundsson et
al. proved that the final graph G′ (i.e., after all subsets Ei, i > 1, have been processed) is a (1 + ε)-spanner
of G. They also showed that for each i, 1 6 i 6 1+blog Cc, the algorithm spends O(n+ |Ei|) time to process
the edge set Ei. Hence the overall algorithm runs in

O


n log n +

∑

i>1

(n + |Ei|)

 = O (n log n + n log C + |E|) = O(n log n + n log C) (1)

time. We now present some properties of the cluster graph in more detail.

2.1.2 The cluster graph and its properties. The cluster graph (of a given input graph with respect to a
certain radius W ) is a critical data structure used in the previous work and is also crucial for the algorithm
in this paper. We start with a simple description of this structure. The detailed definition can be found in
Section 3 of Das and Narasimhan [1997]. The basic idea is to construct a different graph (the cluster graph)
whose vertex set is the same as the input graph, but some of the vertices are marked as cluster centers. A
cluster center forms a cluster with all vertices that are within distance W from it in the input graph. The
clusters cover the input graph, but no cluster center is in more than one cluster. The reader is encouraged
to refer to further details in Das and Narasimhan [1997] on the edges in the cluster graph and their weights.
A key property shown in Das and Narasimhan [1997] was that if the input graph is a partial spanner graph
(such as the one maintained in the algorithm), then the cluster graph has a linear number of edges and its
degree is bounded by a constant.

The following lemmas are important properties of the spanner graph and cluster graph maintained in
each of the phases. Consider an arbitrary phase j of the modified ImprovedGreedy algorithm used in the
preprocessing algorithm.
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Lemma 2.1. After processing all edges in phase j, the spanner graph G′ maintained at that time is a
(1 + ε)-spanner of the original graph G, for all pairs of vertices x and y, such that (x, y) ∈ Ek, k 6 j.

Proof. For every edge (x, y) ∈ Ej , the modified ImprovedGreedy algorithm used in the preprocessing
algorithm makes a call to algorithm ShortPath(H, x, y, (1 + ε)|xy|) (see Figure 3 in Das and Narasimhan
[1997], where the term

√
tt′ appearing in the ImprovedGreedy algorithm was replaced in our modified

algorithm by 1+ε). This call, as described in detail in Das and Narasimhan [1997], initiates a naive Dijkstra’s
shortest path algorithm from x in the cluster graph H (maintained in that phase) until all vertices within
distance (1+ε)|xy| are reached. If vertex y is not one of the vertices reached, algorithm ShortPath returns
false and edge (x, y) is added to G′ (the spanner graph maintained in that phase). Else, it reports true, and
edge (x, y) is not added to G′. If the edge (x, y) is added to G′, then clearly δG′(x, y) = δG(x, y) = |xy|. If
it is not added, then because of the test in algorithm ShortPath, we know that δH(x, y) 6 (1 + ε)|xy| =
(1+ ε)δG(x, y). Since δG′(x, y) 6 δH(x, y) (by Lemma 3 of Das and Narasimhan [1997]), we have shown that
δG′(x, y) ≤ (1 + ε)δG(x, y). Consequently, after phase j, the graph G′ is a (1 + ε)-spanner for all pairs of
points corresponding to edges in Ej . In fact, it is a (1 + ε)-spanner for all pairs of points corresponding to
edges in Ek, k 6 j.

We define the constant a to be

a := max{dlog te, 1}.
Let p and q be two points of V such that |pq| > 1 (i.e., they are sufficiently separated), and let i = dlog |pq|e.
Consider the graph G′ and the corresponding cluster graph H computed in the preprocessing algorithm at
the moment when the greedy algorithm has just processed all edges of Ei+a. Thus graphs G′ and H are
considered after all edges of weight at most 2i+a have been considered.

Lemma 2.2.

δG(p, q) 6 δG′(p, q) 6 (1 + ε) · δG(p, q).

Proof. Graph G′ is a subgraph of G and hence the first inequality.
Since G is a t-spanner of V , we know that there exists a path in G between p and q, whose length is at

most t|pq|. In other words, δG(p, q) 6 t|pq| 6 t2i 6 2i+a, implying that each edge on the shortest path in G
between p and q has length at most 2i+a. Thus each edge on the shortest path must have been considered
by phase i + a of our modified ImprovedGreedy algorithm. By Lemma 2.1, for each edge (x, y) on the
shortest path, we have δG′(x, y) 6 (1 + ε)|xy|, thus proving that G′ contains a (1 + ε)-approximation to the
shortest path between p and q in G.

Lemma 2.3.

δG(p, q) 6 δH(p, q) 6 (1 + ε)2 · δG(p, q)

Proof. Lemma 2.2 shows that δG(p, q) 6 δG′(p, q). Lemma 3 of Das and Narasimhan [1997] proves that
δG′(p, q) 6 δH(p, q). Putting the two statements together gives us the first inequality.

To prove the second inequality, choose a positive constant α such that α < 1/4 and

1 + 6α

1− 2α
6 1 + ε.

Then we know that

δG′(p, q) > |pq| > 2i−1 > (1− 2α)2i−1.

By replacing the symbol δ in Lemma 4 of Das and Narasimhan [1997] by α, we know that

δH(p, q) 6
(

1 + 6α

1− 2α

)
· δG′(p, q) 6

(
1 + 6α

1− 2α

)
(1 + ε) · δG(p, q) 6 (1 + ε)2δG(p, q),

where the second inequality follows from Lemma 2.2.

2.1.3 Complexity analysis. As shown in (1), the entire preprocessing can be performed in O(n log n +
n log C) time. Finally, by Lemma 7 of Das and Narasimhan [1997], each cluster graph has n vertices and
O(n) edges. Since we compute and save O(log C) cluster graphs, one for each phase, the space complexity
of the preprocessing is O(n log C).
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2.2 Answering approximate distance queries

The two lemmas above prove that distances between vertices in the graphs G′ and H are approximately the
same as that in G, for pairs of points at least distance one apart. (Recall that we defined a to be the larger
of dlog te and 1.) The important point to note is that if the queried pairs of points have interpoint distances
that would have been processed in phase i of Step 2 above, then the graphs G′ and H are those that are
computed by the algorithm a phases later (in phase i+a). This implies that to answer approximate shortest
path length queries in G, it is sufficient to perform the search in graphs G′ or H. All three graphs share
the same vertex set V and are sparse (i.e., have O(n) edges). What we will show next is that the cluster
graph H has the appropriate properties making it the ideal candidate to be used for the required search. As
before, we consider two points p and q in V with |pq| > 1, and the positive integer i = dlog |pq|e.

Lemma 2.4. For any real number ` with 0 < ` 6 (1+ε)22i+a, it takes O(1) time to decide if δH(p, q) 6 `.
If this is the case, then δH(p, q) can be computed in O(1) time. The constants in the big-Oh notation depend
only on d, t, and ε.

Proof. Recall that H is the cluster graph obtained at the end of phase i+a, i.e., after all edges of length
at most 2i+a have been processed. The lemma follows from the discussion following algorithm Short-Path
in Das and Narasimhan [1997] and from Section 3.3 in Gudmundsson et al. [2002].

The intuition for the above proof comes from the fact that graph H has constant degree with regard to
“long” edges, and it can be shown that if there is a path between p and q in H of length at most `, then it
cannot use a sequence of “short” edges, and that if it uses a sequence of “long” edges, there can only be a
constant number of them. Thus the queries are answered by searching in a constant-sized subgraph of H.
For further details, we refer the reader to the earlier papers Das and Narasimhan [1997], Gudmundsson et al.
[2002].

In order to facilitate answering approximate distance queries, our data structure simply consists of the
collection of cluster graphs Hi, for 1 6 i 6 1 + blog Cc, where Hi is the cluster graph at the moment when
the greedy algorithm has just processed all edges of the subset Ei. Let us now see how this data structure
can be used to answer approximate shortest path queries. Let p and q be two points of V with |pq| > 1.

Query algorithm: Compute i = dlog |pq|e, and output δHi+a(p, q).

It follows from Lemmas 2.3 and 2.4 that ∆ := δHi+a(p, q) can be computed in O(1) time and satisfies
δG(p, q) 6 ∆ 6 (1 + ε)2 · δG(p, q). What remains is to show how to compute i. This discussion is deferred to
Section 5, where we use a second data structure to show in Corollary 5.3 that the integer i can be computed
in O(1) time.

Thus, our data structures allow us to answer (1+ε)2-approximate shortest path length queries in constant
time, for pairs of points with interpoint distance at least 1. If we replace ε by ε/3 in the entire construction,
and observe that (1 + ε/3)2 6 1 + ε, then we have proved the following result:

Theorem 2.5. Let V be a set of n points in Rd, and let G = (V,E) be a t-spanner for V (for some real
constant t > 1) with O(n) edges. Let D be the length of the longest edge in G, let ε be a positive real constant,
and let C > 2 be a real number. In O(n log n + n log C) time, we can preprocess G into a data structure of
size O(n log C), such that for any two points p and q in V with |pq| > D/C, we can compute, in O(1) time,
a (1 + ε)-approximation to the length of the shortest path in G between p and q.

In the next section, we will need a generalization of Theorem 2.5. The following theorem states that
Theorem 2.5 remains true even for partial spanners.

Theorem 2.6. Let V be a set of n points in Rd, let L > 0 be a real number, and let G = (V,E) be an
L-partial t-spanner for V (for some real constant t > 1) with O(n) edges. Let C > 2 be a real number, and
let ε be a positive real constant. In O(n log n + n log C) time, we can preprocess G into a data structure of
size O(n log C), such that for any two points p and q of V with L/C 6 |pq| < L, we can compute, in O(1)
time, a (1 + ε)-approximation to the length of the shortest path in G between p and q.

Proof. Consider two points p and q in V , such that |pq| < L. Since G is an L-partial t-spanner, we have
δG(p, q) 6 t|pq| < tL, and, therefore, each edge on a shortest path in G between p and q has length less than
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tL. Thus, in order to answer (1 + ε)-approximate distance queries for points p and q with L/C 6 |pq| < L,
we only have to consider the edges in G whose lengths are less than tL. Let G0 denote the subgraph of G
consisting of these edges, and let D = tL. Then, we want to answer (1 + ε)-approximate distance queries in
G0, for pairs p, q of points in V with D/(tC) 6 |pq| < L. The proof of the theorem is now identical to that
of Theorem 2.5.

3. EXTENDING THE STRUCTURE TO SUPPORT ARBITRARY QUERIES

The main drawback with the query structure presented in the previous section is that one is limited to
perform only “long queries”. In this section we show how to extend Theorem 2.5 to query points that may
not be “sufficiently separated”. For the preprocessing to support arbitrary queries, an obvious approach is
to construct a sequence of graphs that approximates G and fulfills the requirements of Theorem 2.6. In this
section, we will show how this can be done.

The construction of the query structure consists of several steps. First we construct a hierarchy of so-called
component graphs, denoted G1, . . . , G`. The general idea is to partition E into subsets E1, . . . , E` such that
the edge lengths within each subset differ by a factor of nO(1) of each other. For each index i, we consider
each connected component in (V,E1 ∪ E2 ∪ . . . ∪ Ei) as a supervertex, the set of supervertices is denoted
Vi. Then Gi is the graph with vertex set Vi and edge set E′

i where (x, y) is an edge of E′
i between two

supervertices x and y if and only if there exists an edge (p, q) ∈ Ei−1 ∪ Ei such that x is the supervertex
representing the connected component containing p and y is the supervertex representing the connected
component containing q. This step will be described in more detail in Section 3.1, and then analyzed in
Section 3.2. The next step of the construction is needed to fulfill the condition in Theorem 2.6 that requires
the graph to be a partial spanner. This condition is satisfied by adding a set of short edges to Gi, and we
obtain a graph G′′i .

As we will see, the sequence of graphs G1, . . . , G` defines a natural hierarchical representation of G. This
representation will allow us to find, for any two query points p and q of V , an index i and two vertices x and
y in G′′i such that:

(1) the pair of points p and x (and also the pair q and y) are much closer to each other than the pair p and
q, and

(2) |xy| is within a factor of nO(1) more than the edge lengths in Ei.

These two properties imply that δG′′i (x, y) approximates δG(p, q), as shown in Section 3.4.

3.1 Constructing a hierarchy of component graphs

Let V be a set of n points in Rd, where n is a sufficiently large integer. Let t > 1 be a real constant, and
let G = (V, E) be a t-spanner for V with O(n) edges. We fix a real constant ε > 0 and an integer constant
c > 6. The following algorithm partitions the edge set E into subsets (some of which are empty).

Algorithm PartitionEdges
E′ := E;
L := length of a shortest edge in E′;
L1 := ncL; L2 := ncL1; L3 := ncL2;
E1 := set of all edges in E′ whose lengths are less than L1;
E′ := E′ \ E1;
E2 := set of all edges in E′ whose lengths are less than L2;
E′ := E′ \ E2;
E3 := set of all edges in E′ whose lengths are less than L3;
E′ := E′ \ E3;
i := 3;
while Ei 6= ∅ or E′ 6= ∅
do if Ei 6= ∅

then Li+1 := ncLi

else L := length of a shortest edge in E′;
Li+1 := ncL

8



endif;
Ei+1 := set of all edges in E′ whose lengths are less than Li+1;
E′ := E′ \ Ei+1;
i := i + 1

endwhile;
` := i

Consider the sequence L1, L2, . . . , L` of real numbers and the sequence E1, E2, . . . , E` of edge sets that are
computed by this algorithm. For each i with 1 6 i 6 `, we define the interval Ii by

Ii := [Li/nc, Li).

The following lemma follows immediately from the above algorithm, and our assumption that the edge set
E has size O(n).

Lemma 3.1. The following properties hold.

(1 ) For each i with 1 6 i 6 `− 1, for each L ∈ Ii, and for each L′ ∈ Ii+1, we have L < L′.
(2 ) For each i with 1 6 i 6 `, and for each edge (p, q) in Ei, we have |pq| ∈ Ii, i.e., Li/nc 6 |pq| < Li.
(3 ) For each edge (p, q) ∈ E, there is a unique index i with 1 6 i 6 ` such that |pq| ∈ Ii.
(4 ) For each i with 1 6 i 6 `− 1, we have Li+1 > ncLi.
(5 ) L2 = ncL1 and L3 = ncL2.
(6 ) For each i with 1 6 i 6 `− 1 and for which Ei 6= ∅, we have Li+1 = ncLi.
(7 ) E` = ∅.
(8 ) 3 6 ` 6 2|E|+ 1 = O(n).

We now define a sequence Gi = (Vi, Fi), 1 6 i 6 `, of Euclidean graphs, and a sequence Ui, 1 6 i 6 `, of
forests over V . Observe that there may be an edge e in the edge set Ei and an edge e′ in the neighboring
edge set Ei+1, such that e and e′ have almost the same length. Each edge in the next set Ei+2, however,
has a length that is at least nc times the length of e. In other words, edges in Ei and edges in Ei+2 have
lengths that differ by a factor of at least nc. This property is crucial for the analysis that will be presented
in the next subsections. Because of this, our recursive construction of the forest Ui will be in terms of the
forest Ui−2.

Let V1 := V , F1 := E1, V2 := V , and F2 := E1 ∪ E2, so that G1 = (V1, F1) and G2 = (V2, F2). For each
connected component C of G1, let TC be the tree whose root stores the index 1 and an arbitrary point of
C, and that has |C| children (which are leaves), each leaf storing a unique point of C. The forest U1 is the
collection of trees TC , where C ranges over all connected components of G1. We define the forest U2 in the
same way with respect to the graph G2. The root of each tree in this forest stores the index 2.

Let i be such that 3 6 i 6 ` and assume that the graphs G1, G2, . . . , Gi−1 and the forests U1, U2, . . . , Ui−1

have been defined already. The following algorithm defines the graph Gi = (Vi, Fi) and the forest Ui.

Algorithm ComputeComponentGraphs

Step 1: Initially, Fi = ∅ and Vi = ∅.
Step 2: For each edge (p, q) in Ei−1 ∪Ei, do the following. Let x be the point stored at the root of the tree
in Ui−2 in which p is stored as a leaf. Let y be the point stored at the root of the tree in Ui−2 in which q
is stored as a leaf. If x 6= y, then insert x and y into the vertex set Vi, and insert the edge (x, y) into the
edge set Fi. This situation is illustrated in Figures 1(a) and (b). After this step, we have obtained the graph
Gi = (Vi, Fi).
Step 3: For each connected component C of Gi, choose an arbitrary point z in the vertex set of C. Consider
all trees T in Ui−2 such that the points stored in their roots form the vertex set of C. Construct a tree whose
root stores the index i and the point z and that has the roots of all these trees T as its children. This situation
is illustrated in Figures 1(b) and (c).
Step 4: The forest Ui consists of all trees that are obtained from Step 3 and all trees in Ui−2 whose roots
store a point that is not in Vi.

The following lemma states that the connected components of Gi correspond to the trees in Ui.
9
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Fig. 1. Illustrating the construction of Gi and Ui.

Lemma 3.2. For each i with 1 6 i 6 `, the trees in the forest Ui are in one-to-one correspondence with
the connected components of the graph with vertex set V and edge set E1 ∪E2 ∪ . . . ∪Ei. Both U` and U`−1

consist of one single tree.

Proof. The first claim follows immediately from the way the forest Ui is defined. The second claim
follows from the facts that E` is empty and the spanner G is a connected graph.

3.2 Properties of the component graphs

The aim of this section is to prove that if x and y are two vertices of Gi such that |xy| is within a factor of
nO(1) of the longest edge in Ei then δGi(x, y) closely approximates δG(x, y).

We start by showing two crucial properties in the following lemma:

Lemma 3.3. The following properties hold.

(1 ) For any i with 1 6 i 6 `, let T be a tree in the forest Ui, let x and p be arbitrary points stored in T .
Then |px| < nLi.

(2 ) For each i with 1 6 i 6 `, every edge in Gi has length less than 2Li.

Proof. Let Gi be the graph with vertex set V and edge set E1 ∪E2 ∪ . . .∪Ei. If p and x are in the same
tree of the forest Ui, then, by Lemma 3.2, they are in the same connected component of Gi. Since the length
of each edge in Gi is less than Li, and since any path between p and x in Gi contains less than n edges, it
follows that |px| 6 δGi(p, x) < nLi. This proves the first claim.

The second claim clearly holds if i ∈ {1, 2}. Assume that 3 6 i 6 `, and let (a, b) be an arbitrary edge of
Gi. Then a 6= b and there is an edge (p, q) in Ei−1 ∪Ei such that the forest Ui−2 contains two distinct trees
T ′ and T ′′ such that (i) the root of T ′ stores a, (ii) p is stored in T ′, (iii) the root of T ′′ stores b, and (iv) q
is stored in T ′′. By the first claim, we have |ap| < nLi−2 and |qb| < nLi−2. Therefore,

|ab| 6 |ap|+ |pq|+ |qb| < 2nLi−2 + |pq|.
Since (p, q) ∈ Ei−1 ∪ Ei, we have |pq| < Li. Moreover, by Lemma 3.1, Li−2 6 Li/n2c. It follows that

|ab| < 2nLi−2 + |pq| < 2Li/n2c−1 + Li < 2Li,

where the last inequality follows from the fact that n2c−1 > 2. Hence, we have shown that the length of
every edge in Gi is less than 2Li.

Now we are ready to prove the main results of this section, Lemmas 3.4 and 3.5.

Lemma 3.4. Let i be an index such that 1 6 i 6 `, and let x and y be two vertices of Gi such that
Li/nc+4 6 |xy| < Li/t. Then

δGi(x, y) 6 (1 + ε) · δG(x, y).

10



Proof. Let P = (x = x0, x1, . . . , xk = y) be a shortest path in G between x and y. Since G is a t-
spanner, the length of P is less than or equal to t|xy|, which is less than Li, as assumed in this lemma.
Hence, |xjxj+1| < Li for each j with 0 6 j 6 k − 1. If i 6 2, then we have δGi(x, y) = δG(x, y), and the
lemma is true. So assume that i > 3.

We will convert P to a path Q between x and y in the graph Gi. It will then be shown that the length
of Q is less than or equal to (1 + ε) times the length of P . During the conversion, we will maintain the
following invariant.

Invariant: The subpath (x = x0, x1, . . . , xj) has been converted into a path (x = y0, y1, . . . , yk′) in Gi, and
the point yk′ is stored at the root of the tree in the forest Ui−2 that stores xj (see Figure 2).

We start the conversion by setting j := 0, k′ := 0, and y0 := x0. Since x0 is a vertex of Gi, it must be a
root of a tree in Ui−2 and the invariant holds at this moment.

Assume that j < k. If xj and xj+1 are stored in the same tree of the forest Ui−2, then we set j := j + 1.
Observe that the invariant is maintained in this case.

Now assume that xj and xj+1 are stored in different trees of Ui−2. Since |xjxj+1| < Li, the edge (xj , xj+1)
is contained in E1 ∪ . . . ∪ Ei. Since xj and xj+1 are stored in different trees of Ui−2, this edge cannot be
contained in E1 ∪ . . . ∪ Ei−2. Hence, (xj , xj+1) is contained in Ei−1 ∪ Ei. Let yk′+1 be the point stored at
the root of the tree in Ui−2 that contains xj+1. Then (yk′ , yk′+1) is an edge of Gi. Hence, if we set j := j +1
and k′ := k′ + 1, then the invariant still holds.

We continue extending the path in Gi until j = k. Observe that the last vertex of Q is equal to xk = y.
Therefore, we have obtained the path Q between x and y in the graph Gi. It remains to estimate the length
of Q. Consider the edge (yk′ , yk′+1). By the triangle inequality, we have

|yk′yk′+1| 6 |yk′xj |+ |xjxj+1|+ |xj+1yk′+1|.
By Lemma 3.3, both |yk′xj | and |xj+1yk′+1| are less than nLi−2 6 Li/n2c−1 6 |xy|/nc−5, which implies that

|yk′yk′+1| 6 |xjxj+1|+ 2|xy|/nc−5.

Since the path Q contains less than n edges, it follows that the length of Q is less than the length of P plus
2|xy|/nc−6. If c > 6, then for any fixed constant ε > 0 and n sufficiently large, we can make 2/nc−6 less
than ε. Therefore,

δGi(x, y) < δG(x, y) +
2

nc−6
|xy|

6 δG(x, y) + ε|xy|
6 (1 + ε) · δG(x, y).

This completes the proof.

(a) (b)

yk′
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xj+1

xk

P

Q

yk′

xj

x0

xj+1

xk

P

Q

yk′+1

y0
y0

Fig. 2. Illustration for the proof of Lemma 3.4.
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It remains to prove an upper bound on δG(x, y).

Lemma 3.5. Let i be an index such that 1 6 i 6 `, and let x and y be two vertices of Gi such that
Li/nc+4 6 |xy| < Li/t. Then

δG(x, y) 6 (1 + ε) · δGi(x, y).

Proof. As in the previous lemma, we have δG(x, y) = δGi
(x, y) for i ∈ {1, 2}. So we may assume that

i > 3. Let (a, b) be an arbitrary edge of Gi. It follows from the definition of Gi that there is an edge (p, q)
in G such that (i) (p, q) ∈ Ei−1 ∪ Ei, (ii) a is stored at the root of the tree in the forest Ui−2 that contains
p, and (iii) b is stored at the root of the tree in the forest Ui−2 that contains q. By Lemma 3.3, both |ap|
and |bq| are less than nLi−2 6 Li/n2c−1. Therefore,

|pq| 6 |pa|+ |ab|+ |bq| 6 |ab|+ 2Li/n2c−1.

Since G is a t-spanner, we have

δG(a, p) 6 t|ap| 6 tLi/n2c−1,

and

δG(q, b) 6 t|qb| 6 tLi/n2c−1.

By combining these inequalities, it follows that

δG(a, b) 6 δG(a, p) + |pq|+ δG(q, b) 6 |ab|+ 2(t + 1)Li/n2c−1. (2)

Now consider the points x and y. It follows from Lemma 3.4 that x and y are connected by a path in Gi.
Let k be the number of edges on a shortest path in Gi between x and y. If we apply the inequality (2) to
each edge on this path, then we obtain

δG(x, y) 6 δGi(x, y) + k · 2(t + 1)Li/n2c−1 6 δGi(x, y) + 2(t + 1)Li/n2c−2.

Since Li 6 nc+4|xy| and |xy| 6 δGi(x, y), it follows that

δG(x, y) 6 δGi(x, y) + 2(t + 1)|xy|/nc−6 6 (1 + ε)δGi(x, y).

The last inequality comes about because c > 6, and for any ε > 0, for sufficiently large n, we can make
2(t + 1)/nc−6 less than ε. This completes the proof.

3.3 Extending the component graphs to partial spanners

Let i be an index such that 1 6 i 6 `, and let x and y be two vertices of Gi such that Li/nc+4 6 |xy| < Li/t.
Then it follows from Lemma 3.4 and the fact that G is a t-spanner that

δGi(x, y) 6 (1 + ε) · δG(x, y) 6 (1 + ε)t|xy|. (3)

We would like to apply Theorem 2.6 to the graph Gi. However, this is only possible if each pair of vertices
of Gi having Euclidean distance less than Li/t is connected by a t(1 + ε)-spanner path. Observe that this is
true if i = 1 and i = 2. The following algorithm takes the sequence of component graphs and constructs a
sequence of augmented component graphs that have the required property for all i. The required correctness
proofs are detailed in Section 3.4.

Algorithm ComputeAugmentedComponentGraphs
For each i with 3 6 i 6 `, let G′i be a ((1 + ε)t)-spanner for the vertex set Vi of Gi, having O(|Vi|) edges.
Such a spanner can be constructed in time O(|Vi| log |Vi|) using, for example, the algorithms by Salowe [1991]
or by Callahan and Kosaraju [1993]. Let G′′i be the graph with vertex set Vi whose edge set is the union of
the edge set of Gi and the set of all edges of G′i having length at most Li/nc+3.

3.4 Properties of the augmented component graphs

In this section we will prove that the sequence of graphs G′′i collectively approximate the input graph G. It
will be shown that for any two points p and q in V one can, with the help of the trees U`−1 and U`, find a
graph G′′i and two vertices x and y of G′′i such that δG′′i (x, y) closely approximates δG(p, q). First we start
with the following lemma.
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Lemma 3.6. Let i be an index with 1 6 i 6 `, and let x and y be two distinct vertices of G′′i such that
|xy| < Li/t. Then

(1 ) δG′′i (x, y) 6 (1 + ε)t|xy|, and

(2 ) if Li/nc+1 6 |xy|, then δG(x,y)
1+ε 6 δG′′i (x, y) 6 (1 + ε) · δG(x, y).

Proof. The claims are true if i ∈ {1, 2}. Assume that i > 3. If Li/nc+4 6 |xy|, then the first claim
follows from inequality (3) and the fact that Gi is a subgraph of G′′i . So we may assume that |xy| < Li/nc+4.
Since G′i is a ((1 + ε)t)-spanner for Vi, we have

δG′i(x, y) 6 (1 + ε)t|xy| < (1 + ε)tLi/nc+4 6 Li/nc+3.

Hence, the shortest path in G′i between x and y is completely contained in G′′i . Therefore, by the first
inequality in the previous chain, we have

δG′′i (x, y) 6 δG′i(x, y) 6 (1 + ε)t|xy|,
proving the first claim.

To prove the second claim, assume that Li/nc+1 6 |xy| as stated. Since Gi is a subgraph of G′′i , we have
δG′′i (x, y) 6 δGi

(x, y). By Lemma 3.4, we have δGi
(x, y) 6 (1 + ε) · δG(x, y), thus proving the second part of

the second claim. It thus remains to prove that δG(x, y) 6 (1 + ε) · δG′′i (x, y).
Let x = x0, x1, . . . , xk = y be a shortest path in G′′i between x and y. (Since G′′i contains a spanner on

the vertices in Vi, such a path must exist.) Let j be any index with 0 6 j 6 k − 1 and consider the edge
(xj , xj+1) in G′′i . Either (xj , xj+1) is an edge of Gi or an edge of G′i. First assume that (xj , xj+1) is an edge
of Gi. Then it follows from inequality (2) in the proof of Lemma 3.5 that

δG(xj , xj+1) 6 |xjxj+1|+ 2(t + 1)Li/n2c−1.

If (xj , xj+1) is not an edge of Gi, then it must be an edge of G′i and |xjxj+1| 6 Li/nc+3. In this case, we
have

δG(xj , xj+1) 6 t|xjxj+1| 6 tLi/nc+3.

Hence, we always have

δG(xj , xj+1) 6 |xjxj+1|+ 2(t + 1)Li/n2c−1 + tLi/nc+3.

It follows that

δG(x, y) 6
k∑

j=0

δG(xj , xj+1)

6 δG′′i (x, y) + k
(
2(t + 1)Li/n2c−1 + tLi/nc+3

)
.

Since c > 6, Li 6 nc+1|xy|, and k 6 n, we obtain

δG(x, y) 6 δG′′i (x, y) + 2(t + 1)|xy|/nc−3 + t|xy|/n 6 δG′′i (x, y) + ε|xy|.
Since |xy| 6 δG′′i (x, y), the proof is complete.

Recall from Lemma 3.1 that each of U`−1 and U` is one single tree. Therefore, for any two points p and
q in V , the lowest common ancestor of the leaves in U`−1 or U` storing p and q is well-defined and will be
instrumental in answering the query.

Lemma 3.7. Let p and q be two distinct points of V , let U be the tree U`−1 or U`, and let u be the lowest
common ancestor of the leaves in U storing p and q. Let v and w be the two children of u that contain p and
q in their subtrees, respectively, and let x and y be the points of V that are stored in v and w, respectively,
as illustrated in Figure 3(a). Finally, let i be the index that is stored with u. The following inequalities hold.

(1 ) |xy| < 2nLi−2 + |pq|.
(2 ) |pq| < 2nLi−2 + |xy|.
(3 ) |pq| > Li−2/t.
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(4 ) |xy| > Li−2/t.
(5 ) |xy| < (

n + 2/n2c−2
)
Li.

Proof. Let j be the index stored with v. Then v is the root of a tree in the forest Uj and j 6 i − 2.
Hence, by Lemma 3.3, |xp| < nLj 6 nLi−2. In a similar way, we obtain |qy| < nLi−2. It follows that

|xy| 6 |xp|+ |pq|+ |qy| < 2nLi−2 + |pq|,
proving the first claim. The second claim can be proved in the same way.

To prove the third claim, assume the contrary, i.e., that |pq| < Li−2/t. Since G is a t-spanner, we have
δG(p, q) 6 t|pq| < Li−2. Hence, p and q are connected by a path in the graph with vertex set V and edge
set E1 ∪ E2 ∪ . . . ∪ Ei−2. But then, by Lemma 3.2, p and q must have been stored in the same tree of the
forest Ui−2, which is a contradiction. The fourth claim can be proved in the same way.

It remains to prove the fifth claim. Observe that v and w are children of u because the points x and y are
vertices of Gi that are connected by a path in this graph. Consider any path in Gi between x and y, and
let (x′, y′) be a longest edge on this path. There exists an edge (a, b) ∈ Ei−1 ∪ Ei such that a is stored in
the tree of Ui−2 whose root stores x′, and b is stored in the tree of Ui−2 whose root stores y′, as shown in
Figure 3(b). By Lemma 3.3, we have |ax′| < nLi−2 and |by′| < nLi−2. It follows that

|xy| 6 δGi
(x, y)

6 n|x′y′|
6 n (|x′a|+ |ab|+ |by′|)
< 2n2Li−2 + nLi

6 2Li/n2c−2 + nLi.

This completes the proof of the lemma.

u

(a)

p q

i

U

(b)

x′

a

y′

b

Ui−2

yx
v w

Fig. 3. Illustration of Lemma 3.7 and Lemma 3.8.

By using the above inequalities we can now prove the following lemma.

Lemma 3.8. Let p and q be two distinct points of V , let U be the tree U`−1 or U`, and let u be the lowest
common ancestor of the leaves in U storing p and q. Let v and w be the two children of u that contain p and
q in their subtrees, respectively, and let x and y be the points of V that are stored in v and w, respectively,
as illustrated in Figure 3(a). Finally, let i be the index that is stored with u. If Li/nc+1 6 |xy| < Li/t, then

(1 ) δG(p, q) 6 (1 + 2ε) · δG′′i (x, y), and

(2 ) δG′′i (x, y) 6 (1 + ε)2 · δG(p, q).
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Proof. We assume that i > 3. The case when i ∈ {1, 2} is easy and left to the reader. First observe
that x and y are vertices of the graph G′′i . By Lemma 3.6, we have δG(x, y) 6 (1 + ε) · δG′′i (x, y) and
δG′′i (x, y) 6 (1+ε)·δG(x, y). By Lemma 3.3, we have |px| < nLi−2 6 Li/n2c−1 and |yq| < nLi−2 6 Li/n2c−1.
By using these inequalities and the fact that G is a t-spanner, we obtain

δG(p, q) 6 δG(p, x) + δG(x, y) + δG(y, q)
6 t|px|+ (1 + ε) · δG′′i (x, y) + t|yq|
< 2tLi/n2c−1 + (1 + ε) · δG′′i (x, y)

6 2t|xy|/nc−2 + (1 + ε) · δG′′i (x, y)
6 ε|xy|+ (1 + ε) · δG′′i (x, y)
6 (1 + 2ε) · δG′′i (x, y).

The proof of the second claim is similar:

δG′′i (x, y) 6 (1 + ε) · δG(x, y)
6 (1 + ε) (δG(x, p) + δG(p, q) + δG(q, y))
6 (1 + ε) (t|xp|+ δG(p, q) + t|qy|)
< (1 + ε)

(
2t|xy|/nc−2 + δG(p, q)

)
.

By Lemma 3.7, we have |xy| < 2nLi−2 + |pq| and |pq| > Li−2/t. This implies that |xy| 6 (2nt + 1)|pq|.
Hence,

δG′′i (x, y) 6 (1 + ε)
(
2t(2nt + 1)|pq|/nc−2 + δG(p, q)

)
.

Since |pq| 6 δG(p, q), it follows that δG′′i (x, y) 6 (1 + ε)2 · δG(p, q).

For the following two lemmas, we assume the following situation, as illustrated in Figure 4. We assume
that p and q are two distinct points from V and that the following two conditions are satisfied:

(1) Let u be the lowest common ancestor of the leaves in U`−1 storing p and q. Let v and w be the two
children of u that contain p and q in their subtrees, respectively, and let x and y be the points of V that
are stored in v and w, respectively. Finally, let i be the index that is stored with u.

(2) Let u′ be the lowest common ancestor of the leaves in U` storing p and q. Let v′ and w′ be the two
children of u′ that contain p and q in their subtrees, respectively, and let x′ and y′ be the points of V
that are stored in v′ and w′, respectively. Finally, let i′ be the index that is stored with u′.

u

p q

i

Uℓ−1

u′

p q

i
′

Uℓ

y′yx x′

Fig. 4. Illustrations for Lemmas 3.9 and 3.10.

Lemma 3.9. If the above two conditions are satisfied, then i′ = i + 1 or i′ = i− 1.
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Proof. Observe that U`−1 stores only even indices and U` stores only odd indices, or vice versa. We
assume that i > 3; the case when i ∈ {1, 2} is easy and left to the reader. We may assume without loss of
generality that i′ > i + 1. Hence, we have to prove that i′ = i + 1. Assume to the contrary that i′ > i + 3.
Then Li 6 Li′−3 6 Li′−2/nc. By Lemma 3.7, we have Li′−2 6 t|pq|, Li−2 6 t|xy| and |pq| 6 2nLi−2 + |xy|.
It follows that

Li 6 t|pq|/nc

6 t (2nLi−2 + |xy|) /nc

6 t (2nt|xy|+ |xy|) /nc

= t (2nt + 1) |xy|/nc.

According to Lemma 3.7 it holds that |xy| < (
n + 2/n2c−2

)
Li. But then,

(
n + 2/n2c−2

)
Li 6 t

(
n + 2/n2c−2

)
(2nt + 1) |xy|/nc < |xy|,

which is a contradiction. Hence, we have proved that i′ = i + 1.

Lemma 3.10. If the same conditions as in Lemma 3.9 apply, then

Li/nc+1 6 |xy| < Li/t or Li′/nc+1 6 |x′y′| < Li′/t.

Proof. As before, we assume that i > 3 and i′ > 3, and leave the easier cases for the reader. By
Lemma 3.9, we may assume without loss of generality that i′ = i + 1. Since, by Lemma 3.7, |xy| 6
2nLi−2 + |pq| and |pq| 6 2nLi−1 + |x′y′|, we have

|xy| 6 2nLi−2 + 2nLi−1 + |x′y′| 6 3nLi−1 + |x′y′|.
Hence,

|xy| 6 3Li/nc−1 + |x′y′|. (4)

In a similar way, we obtain the inequality

|x′y′| 6 3Li/nc−1 + |xy|. (5)

By Lemma 3.7, we have |xy| < (
n + 2/n2c−2

)
Li. Therefore,

|x′y′| 6
(
3/nc−1 + n + 2/n2c−2

)
Li

6
(
3/n2c−1 + 1/nc−1 + 2/n3c−2

)
Li+1

< Li+1/t = Li′/t.

If |x′y′| > Li+1/nc+1, then the lemma holds. So from now on, we assume that

|x′y′| < Li+1/nc+1. (6)

Let L be the length of a longest edge on a shortest path between x′ and y′ in the graph G. Since
L 6 δG(x′, y′) 6 t|x′y′|, it follows that L/t 6 |x′y′|. Let j be the index such that L is contained in the
interval Ij . Then Lj/nc 6 L and, therefore,

Lj/nc+1 6 Lj/(tnc) 6 |x′y′|. (7)

By combining inequalities (6) and (7), it follows that

Lj 6 nc+1|x′y′| < Li+1,

which implies that j 6 i. We claim that j = i. To prove this, assume that j 6 i − 1. Then x′ and y′ are
connected by a path in the graph with vertex set V and edge set E1∪E2∪ . . .∪Ei−1. Hence, by Lemma 3.2,
x′ and y′ are stored in the same tree in the forest Ui−1, which is a contradiction. This proves that j = i.
Note that, since j = i, the points x′ and y′ are stored in the same tree in the forest Ui.

Since L ∈ Ij = Ii, the edge set Ej = Ei is non-empty. Therefore, by Lemma 3.1, we have Li+1 = ncLi.
Then it follows from inequalities (4) and (6) that

|xy| < 3Li/nc−1 + Li+1/nc+1 = 3Li/nc−1 + Li/n < Li/t.
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It remains to prove that Li/nc+1 6 |xy|. We will prove this inequality by contradiction. So we assume that

|xy| < Li/nc+1.

Let L′ be the length of a longest edge on a shortest path between x and y in the graph G, and let j′ be
the index such that L′ ∈ Ij′ . An argument similar to the one used to obtain (7) shows that Lj′/nc+1 6 |xy|
and, hence, Lj′ 6 nc+1|xy| < Li, which shows that j′ 6 i− 1. If j′ 6 i− 2, then x and y must be contained
in the same tree in the forest Ui−2, which we know is not the case. Therefore, j′ = i − 1 and, hence, the
points x and y are stored in the same tree in the forest Ui−1. To summarize, we have shown that

(1) x′ and y′ are stored in the same tree in the forest Ui, and
(2) x and y are stored in the same tree in the forest Ui−1.

By the assumptions in the lemma, p and x are stored in the same tree in Ui−2, and q and y are stored in
the same tree in Ui−2. Let T be the tree in Ui−1 that stores x and y. By Lemma 3.2, the subset of V stored
in T is the union of one or more subsets of V that are stored in trees in Ui−2. Therefore, p and q are both
stored in T , implying that the lowest common ancestor of the leaves in U` storing p and q stores an index
that is less than or equal to i− 1, which is a contradiction.

3.5 Preprocessing: tying it all together

Having completed the description of the preprocessing step needed to construct the query structure for
supporting arbitrary shortest path length queries, we now summarize this preprocessing step.

Preprocessing algorithm:
Step 1: Construct the sequence L1, . . . , L` using algorithm PartitionEdges (see Section 3.1).
Step 2: Construct the two trees U`−1 and U` and the component graphs Gi, 1 6 i 6 `, using algorithm
ComputeComponentGraphs (see Section 3.1).
Step 3: Preprocess the trees U`−1 and U` in linear time such that lowest common ancestor queries can
be answered in constant time. This can be done using an algorithm by Harel and Tarjan [1984]; see also
Schieber and Vishkin [1988], Gusfield [1997] and Bender and Farach-Colton [2000].
Step 4: Compute the sequence of graphs G′′i , 1 6 i 6 ` using the algorithm ComputeAugmentedCompo-
nentGraphs, as described at the end of Section 3.3.
Step 5: Preprocess the graphs G′′i , 1 6 i 6 ` using the algorithm implied by Theorem 2.6.

Step 5 needs some clarification. By Lemma 3.6, the graph G′′i is an (Li/t)-partial (1+ε)t-spanner for the set
Vi. We apply Theorem 2.6, where, in this theorem, we replace G by G′′i , replace V by Vi, replace L by Li/t,
replace t by (1+ε)t, and replace C by nc+1. Thus, Theorem 2.6 implies that we can answer (1+ε)-approximate
shortest path queries in G′′i , for any two points x and y of Vi that satisfy Li/(tnc+1) 6 |xy| < Li/t. The
latter condition is met, if Li/nc+1 6 |xy| < Li/t. By Theorem 2.6, the time to preprocess G′′i is

O (|Vi| log |Vi|+ |Vi| log C) = O(|Vi| log n). (8)

3.6 Answering approximate distance queries

Given an ε > 0, the query data structure consists of:

—The sequence L1, . . . , L`, as described in Section 3.1.
—The two trees U`−1 and U`, as described in Section 3.1.
—The data structure of Theorem 2.6 for each of the graphs G′′i , 1 6 i 6 `.

Let p and q be two points in V , and consider the two trees U`−1 and U`, as shown in Figure 4. Let i
and i′ be the index values stored in the lowest common ancestor nodes of p and q in the trees U`−1 and U`,
respectively. From Lemma 3.10, it follows that either i or i′ satisfies the conditions of Lemma 3.8 and hence,
either δG′′i (x, y) or δG′′

i′
(x, y) is a close approximation of δG(p, q). Note also that from Lemma 3.6, G′′i and

G′′i′ satisfy the requirements for Theorem 2.6. Thus the query algorithm is as follows. Let p and q be two
distinct points of V .

Query algorithm:
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Step 1: Compute the lowest common ancestor u of the leaves in U`−1 storing p and q. Let v and w be the
children of u that contain p and q in their subtrees, respectively, and let x and y be the points of V that are
stored in v and w, respectively. Finally, let i be the index that is stored with u (see Figure 4).
Step 2: Compute the lowest common ancestor u′ of the leaves in U` storing p and q. Let v′ and w′ be the
children of u′ that contain p and q in their subtrees, respectively, and let x′ and y′ be the points of V that
are stored in v′ and w′, respectively. Finally, let i′ be the index that is stored with u′.
Step 3: If Li/nc+1 6 |xy| < Li/t, then use the algorithm of Theorem 2.6 to compute a (1+ε)-approximation
∆ to δG′′i (x, y). Otherwise, use the algorithm of Theorem 2.6 to compute a (1 + ε)-approximation ∆ to
δG′′

i′
(x′, y′).

It follows from Lemmas 3.8 and 3.10 that

δG(p, q)/(1 + 2ε) 6 ∆ 6 (1 + ε)3 · δG(p, q).

By replacing (1 + 2ε)∆ by ∆′, we get

δG(p, q) 6 ∆′ 6 (1 + 2ε)(1 + ε)3 · δG(p, q).

The three steps can be computed in constant time using the above data structures.

3.7 Analyzing the complexity of the preprocessing step

Recall that we assume that |E| = O(n). In Step 1 of the preprocessing, the sequences Ei, 1 6 i 6 `, and Ii,
1 6 i 6 `, can be computed in O(|E| log n) = O(n log n) time.

By using a separate union-find data structure, we can compute the sequences Gi = (Vi, Fi), 1 6 i 6 `,
and Ui, 1 6 i 6 `, in time that is proportional to

|E| log n +
∑̀

i=1

(|Vi|+ |Fi|).

Since Gi does not contain vertices of degree zero, we have |Vi| 6 2|Fi|. Also, it is clear from the algorithm
that constructs Gi, that |Fi| 6 |Ei−1| + |Ei|. Therefore, the time to compute all graphs Gi and all forests
Ui (and thus the time complexity of Step 2) is proportional to

|E| log n +
∑̀

i=1

|Ei| = O(|E| log n) = O(n log n).

Step 3 runs in O(n) time (see Harel and Tarjan [1984]).
Using the algorithm of Callahan and Kosaraju [1993], the sequence of spanners G′i, 1 6 i 6 `, can be

computed in Step 4 in time that is proportional to

∑̀

i=1

|Vi| log n = O(|E| log n) = O(n log n).

The time needed to compute the sequence of graphs G′′i , 1 6 i 6 `, is proportional to

∑̀

i=1

(|Vi|+ |Fi|) = O(|E|) = O(n).

Finally, by (8), the total time to preprocess all graphs G′′i (Step 5) is proportional to

∑̀

i=1

|Vi| log n = O(|E| log n) = O(n log n).

The discussion above shows how the data structure can be used to answer approximate shortest path
queries, within a ratio of (1 + 2ε)(1 + ε)3. If we replace ε by ε/6 in the entire reduction, and observe that
(1 + 2ε/6)(1 + ε/6)3 6 1 + ε, then we obtain Theorem 1.1, which we restate below. (As mentioned before,
the computation of the value dlog |pq|e, which is needed in the query algorithm of Section 2.2, will be given
in Section 5.)
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Theorem 1.1. Let t > 1 and ε > 0 be real constants. Let V be a set of n points in Rd, and let G = (V, E) be
a t-spanner for V with O(n) edges. The graph G can be preprocessed into a data structure of size O(n log n)
in time O(n log n), such that for any pair of query points p, q ∈ V , we can compute a (1 + ε)-approximation
of the shortest-path distance in G between p and q in O(1) time. Note that all the big-Oh notations hide
constants that depend on d, t and ε.

The proof of Theorem 1.1 is based on the fast implementation of the ImprovedGreedy algorithm of
Gudmundsson et al. [2002] (as was discussed in Section 2). This algorithm works in the algebraic model
of computation with indirect addressing. If we want an algorithm in the traditional algebraic model of
computation (without indirect addressing), then we can replace algorithm ImprovedGreedy by the corre-
sponding algorithm of Das and Narasimhan [1997], which has a running time of O(n log2 n). In this model,
the computation of the value dlog |pq|e, as well as lowest common ancestor computations, can be done in
O(log log n) time. Thus, we obtain the following result:

Theorem 3.11. Let V be a set of n points in Rd, and let G = (V,E) be a t-spanner for V , for some
real constant t > 1, having O(n) edges. In O(n log2 n) time, we can preprocess G into a data structure of
size O(n log n), such that for any two points p and q in V , we can in O(log log n) time compute a (1 + ε)-
approximation of the shortest-path distance in G between p and q. This algorithm works in the algebraic
model of computation.

4. APPLICATIONS

The data structure of Theorem 1.1 has several nice properties, and we believe that it can be applied to
a number of basic problems. In this section we consider some examples where the utilization of the data
structure immediately improves the time complexity, and in some cases also the approximation factor, of
existing approximation algorithms.

4.1 Shortest paths in planar polygonal domains with obstacles

Consider a polygonal domain consisting of a collection F of polygonal obstacles in the plane, and let V be
the set of vertices of these obstacles. The visibility graph of F is the graph G with vertex set V , and in which
any two vertices p and q are connected by an edge if and only if the line segment joining p and q does not
intersect the interior of any obstacle. We denote by δG(p, q), the Euclidean length of a shortest path between
p and q in the graph G. For any real number t > 1, we say that the collection F is t-rounded if δG(p, q) is
at most t times the Euclidean distance between p and q, for any two points p and q in V . In other words,
the visibility graph is a t-spanner for the complete geometric graph on the point set V (where the obstacles
are ignored).

Arikati et al. [1996] have shown how to compute, in O(n log n) time, a (1 + ε)-spanner G′ of G, for any
given constant ε > 0. Let p and q be two points of V , and assume that t is a constant. Since G′ is a
(1 + ε)t-spanner of V , our results above imply that we can compute, in O(1) time, a (1 + ε)-approximation
of the shortest path P in G′ between p and q. The length of this path P is at most (1 + ε)2 times the length
of a shortest obstacle-avoiding path between p and q.

Using conical Voronoi diagrams, Clarkson [1987] and Chen [1995] have shown that, for any two points
p and q in the plane, the problem of computing a (1 + ε)-approximation of the shortest obstacle-avoiding
path between p and q can be reduced to the computation of a constant number of shortest path queries
in the visibility graph. This reduction takes O(log n) time. (See also Arikati et al. [1996]). Hence, a
(1 + ε)3-approximation of the shortest obstacle-avoiding path can be computed in O(log n) time.

Theorem 4.1. Let F be a t-rounded collection of polygonal obstacles in the plane of total complexity n,
where t is a positive constant. One can preprocess F in O(n log n) time into a data structure of size O(n log n)
that can answer obstacle avoiding (1 + ε)-approximate shortest path length queries in time O(log n). If the
query points are vertices of F , then the queries can be answered in O(1) time.

4.2 Approximate closest pair queries

Given a geometric graph G = (V, E) on n points and O(n) edges, such that G is a t-spanner for V , for some
constant t > 1, it is often of interest to answer various closest pair queries where distances are measured
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according to distances in G. We show that our results can be applied to give approximate solutions to such
queries.

4.2.1 The monochromatic case. For any subset S of V , we define

δG(S) := min{δG(p, q) : p, q ∈ S, p 6= q}.
In a query, we get a set S ⊆ V , and want to compute two points x and y in V that are a (1+ ε)-approximate
closest pair in S, i.e., δG(S) 6 δG(x, y) 6 (1 + ε)δG(S). Here, ε is a fixed positive real constant.

In what follows, we will be making use of the well-separated pair decompositions (WSPD) devised by
Callahan [1995], Callahan and Kosaraju [1995]. Details about the decomposition may be found in the above
references. Callahan and Kosaraju showed that a WSPD of size ` = O(n) can be computed in O(n log n)
time. For our purpose, we make use of the following simple lemma from Callahan and Kosaraju [1993],
which we restate here for convenience.

Lemma 4.2. Let s > 0 be a real number, let A and B be two finite sets of points that are well-separated
w.r.t. s, let x and p be points of A, and let y and q be points of B. Then (i) |xy| 6 (1 + 2/s) · |xq|, (ii)
|xy| 6 (1 + 4/s) · |pq|, and (iii) |px| 6 (2/s) · |pq|.

Consider a well-separated pair decomposition (WSPD), {Ai, Bi}, 1 6 i 6 `, where ` = O(|S|), for the set
S, with separation constant s > 2t. For each i, 1 6 i 6 `, for which both Ai and Bi are singleton sets, let
∆i be a (1 + ε)-approximation to the length of a shortest path in G between ai and bi, which are the only
points of Ai and Bi, respectively. Let i be an index for which ∆i is minimum. We claim that the points
x := ai and y := bi form a (1 + ε)-approximate closest pair in S.

To prove this, let p and q be two points of S for which δG(p, q) = δG(S), and let j be the index such that
(i) p ∈ Aj and q ∈ Bj , or (ii) q ∈ Aj and p ∈ Bj . We may assume w.l.o.g. that (i) holds. The first claim
is that both Aj and Bj are singleton sets, i.e., Aj = {p} and Bj = {q}. (If this claim holds, then ∆j is
well-defined.) Indeed, assume the set Aj contains a point p′ different from p. Then, Lemma 4.2, the fact
that G is a t-spanner for V , and our assumption that s > 2t, imply that

δG(p, p′) 6 t|pp′| 6 t(2/s)|pq| 6 t(2/s)δG(p, q) < δG(p, q),

which is a contradiction. Now we can easily complete the proof that x and y form a (1 + ε)-approximate
closest pair in S:

δG(S) 6 δG(x, y) 6 ∆i 6 ∆j 6 (1 + ε)δG(p, q) = (1 + ε)δG(S).

Hence, we have reduced the problem of computing a (1 + ε)-approximate closest pair in S to computing a
WSPD for S and answering O(|S|) approximate shortest path queries in G.

Theorem 4.3. Let G = (V, E) be a geometric graph on n points and O(n) edges, such that G is a t-
spanner for V , for some constant t > 1. One can preprocess G in time O(n log n) into a data structure of
size O(n log n) such that given a subset S of V , a (1 + ε)-approximate monochromatic closest pair query can
be answered in time O(|S| log |S|).

4.2.2 The bichromatic case. For any two disjoint subsets X and Y of V , we define

δG(X,Y ) := min{δG(p, q) : p ∈ X, q ∈ Y }.
In a query, we get disjoint sets X and Y and want to compute a (1 + ε)-approximate bichromatic closest
pair, i.e., a point x ∈ X and a point y ∈ Y such that δG(X, Y ) 6 δG(x, y) 6 (1 + ε) · δG(X,Y ). Again, ε is
a fixed positive real constant.

Let {Ai, Bi}, 1 6 i 6 `, be a WSPD for the set X ∪ Y , where ` = O(|X ∪ Y |), with separation constant s,
where s > max{2t, 4t/ε}. For each i, 1 6 i 6 `, for which Ai contains one or more points of X but no points
of Y , and Bi contains one or more points of Y but no points of X, let ai be an arbitrary point of Ai ∩X,
let bi be an arbitrary point of Bi ∩Y , and let ∆i be a (1 + ε)-approximation to the length of a shortest path
in G between ai and bi. Let i be an index for which ∆i is minimum. We claim that the points x := ai and
y := bi form a (1 + ε)-approximate bichromatic closest pair in X ∪ Y .

To prove this, let p ∈ X and q ∈ Y be points such that δG(p, q) = δG(X, Y ). Let j be the index such
that (i) p ∈ Aj and q ∈ Bj , or (ii) q ∈ Aj and p ∈ Bj . We may assume w.l.o.g. that (i) holds. As in
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the monochromatic case, it can be shown (using the fact that s > 2t) that Aj ∩ Y = ∅ and Bj ∩ X = ∅.
Therefore, the value ∆j is well-defined. We have

δG(aj , bj) 6 δG(aj , p) + δG(p, q) + δG(q, bj)
6 t|ajp|+ δG(p, q) + t|qbj |
6 t(2/s)|pq|+ δG(p, q) + t(2/s)|pq|
6 (1 + 4t/s) · δG(p, q).

Also,

δG(X,Y ) 6 δG(x, y) 6 δG(ai, bi) 6 ∆i 6 ∆j 6 (1 + ε) · δG(aj , bj).

Combining these inequalities, it follows that

δG(X, Y ) 6 ∆i 6 (1 + ε)(1 + 4t/s) · δG(X, Y ) 6 (1 + ε)2 · δG(X, Y ),

where the last inequality follows from the fact that s > 4t/ε.
Hence, we have reduced the problem of computing a (1 + ε)-approximate bichromatic closest pair to

computing a WSPD for X ∪ Y and answering O(|X|+ |Y |) approximate shortest path queries in G.

Theorem 4.4. Let G = (V, E) be a geometric graph on n points and O(n) edges, such that G is a t-
spanner for V , for some constant t > 1. One can preprocess G in time O(n log n) into a data structure of
size O(n log n) such that given two disjoint subsets X and Y of V an (1+ε)-approximate bichromatic closest
pair query can be answered in time O((|X|+ |Y |) log(|X|+ |Y |)).
4.3 Approximating the dilation of a geometric graph

Given a geometric graph G = (V, E) on n points and O(n) edges, it was shown by Narasimhan and Smid
[2000] that the problem of computing a (1 + ε)-approximation to the dilation t of G (for any given ε > 0),
can be reduced to the problem of computing O(n) shortest path queries after computing a well-separated
decomposition that takes O(n log n) time.

Now assume that we are given a constant C which is an upper bound on the dilation t of G. Using
the results of this paper, we can answer the O(n) shortest path queries in O(n) time after O(n log n) time
preprocessing computation, giving a total computation time of O(n log n). This improves the existing time
complexity for planar graphs from O(n

√
n) to O(n log n) time. It results in a considerable improvement

(both in terms of time and approximability) for arbitrary linear-sized geometric graphs, for which the time
complexity decreases from O(n(1+ 1

1+ε ) log2 n) with (2(1+ε))-approximation factor to O(n log n) with (1+ε)-
approximation factor.

Theorem 4.5. Given a geometric graph on n vertices with O(n) edges, and given a constant C that is
an upper bound on the dilation t of G, one can compute a (1 + ε)-approximation to t in time O(n log n).

5. EFFICIENT BUCKETING OF DISTANCES

In this section, we develop the algorithmic tool that was used in Section 2.2.
Let V be a set of n points in the open hypercube (0, nk)d, where k is a positive integer constant and d

is the number of dimensions. Our goal is to preprocess the points of V into a data structure, such that for
any two points p and q in V for which |pq| > 1, we can efficiently answer the query of computing the integer
BIndex(p, q) defined as

BIndex(p, q) := blog |pq|c.
Observe that BIndex(p, q) is the unique non-negative integer i such that the distance |pq| is in the interval
[2i, 2i+1), and that 0 6 BIndex(p, q) 6 b(1/2) log d + k log nc.

In a computation model that has the floor and logarithm function as unit-time operations, such a query
can clearly be answered in O(1) time. The main result of this section is a data structure, having size O(n),
that can be built in O(n log n) time, and that can be used to answer queries in O(1) time. This structure,
together with the algorithms that operate on it, work in the algebraic computation tree model with the
added power of indirect addressing; in particular, they do not use the floor or logarithm functions. We start

21



by presenting this data structure for the one-dimensional case. In Section 5.3, we show how to use this result
to solve the d-dimensional case.

5.1 The one-dimensional case

We will assume that V is a set of n real numbers in the interval (0, nk). For any two elements x, y ∈ V with
|x−y| > 1, we have BIndex(x, y) = blog |x−y|c, which is an integer between zero and bk log nc. We assume
w.l.o.g. that n is a power of two.

Let T0 be the perfectly balanced binary search tree whose leaves store—from left to right—the intervals
[j, j + 1), 0 6 j < nk. With each internal node u of T0, we store the interval I(u), which is the union of the
intervals stored at the leaves in the subtree rooted at u. Observe that I(u) has the form [a, b), for some real
numbers a and b, where b− a is a power of two. Distribute the elements of V over the leaves of T0. That is,
we store each element x of V in the unique leaf whose interval contains x.

This tree T0 has nk leaves, and each of them stores a possibly empty subset of V . Let T be the tree
obtained from T0 by performing the following compression steps as long as possible:

—Delete the subtree rooted at any node u for which the interval I(u) does not contain any element of V .
—For any node u having only one child v, delete u and make v the child of u’s parent.

The resulting tree T does not depend on the order in which the compression steps are made. Also, T has
at most n leaves, and each internal node has exactly two children. Hence, T has a total of at most 2n − 1
nodes. Since the height of T0 is at most k log n the height of T is O(log n), since k is a constant.

We show how the compressed tree T can be constructed in a top-down manner, without first constructing
T0. In a generic step, we have a subset V ′ of V and an interval [a, b), where b − a is a power of two, such
that V ′ ⊆ [a, b), and we want to compute the compressed tree T (V ′) for V ′.

—If b− a = 1 or V ′ contains only one element, then T (V ′) consists of only one node u storing the interval
I(u) := [a, b) and the element(s) of V ′.

—If b− a > 2, |V ′| > 2 and V ′ ⊆ [a, (a + b)/2), then T (V ′) is the output of the recursive call for V ′ and the
interval [a, (a + b)/2).

—If b− a > 2, |V ′| > 2 and V ′ ⊆ [(a + b)/2, b), then T (V ′) is the output of the recursive call for V ′ and the
interval [(a + b)/2, b).

—Otherwise, V ′ is partitioned into two sets V ′
1 := {x ∈ V ′ : x < (a+b)/2} and V ′

2 := {x ∈ V ′ : x > (a+b)/2}.
In this case, T (V ′) consists of a node u storing the interval I(u) := [a, b). The left subtree of u is the
output of the recursive call for the set V ′

1 and the interval [a, (a + b)/2), whereas the right subtree of u is
the output of the recursive call for the set V ′

2 and the interval [(a + b)/2, b).

The complete compressed tree T = T (V ) is built by running this algorithm on the set V and the interval
[0, nk). We can easily extend the algorithm such that each node u stores the non-negative integer i where
the interval I(u) has length 2i. The running time to build this tree is O(n log n).

5.2 Answering a query

Let us see how we can use this tree to answer queries. Let x and y be two elements of V with |x − y| > 1.
Recall that we want to compute the integer BIndex(x, y) = blog |x − y|c. We may assume w.l.o.g. that
x < y. We observe that BIndex(x, y) is the exponent of the length of the largest interval whose length is a
power of two and that fits in the interval [x, y].

Let u be the lowest common ancestor of the leaves of T that store x and y. Note that x and y are stored at
different leaves. Let a > 0, b > 2, and j > 1 be the integers such that I(u) = [a, b) and b− a = 2j . Observe
that x ∈ [a, a + 2j−1) and y ∈ [a + 2j−1, b). If at least one of x and y is “far” away from the mid-point
c := a + 2j−1, then j differs from BIndex(x, y) by a “small” additive constant. It may happen, however,
that both x and y are “close” to c. Let us assume that |c − x| 6 |y − c|. Then |y − c| < |y − x| 6 2|y − c|.
Hence, if j′ is the exponent of the largest interval whose length is a power of two and that fits in the interval
[c, y], then j′ differs from BIndex(x, y) by a “small” additive constant. This suggests that we find the lowest
common ancestor v of the leaves of T whose intervals contain c and y. This does not, in general, give us
a good approximation to j′, because c and y can be “close” to each other in the interval I(v). Assume,
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however, that c is an element of V . Let w be the right child of u. Hence, I(w) = [c, b), c is stored in the
leftmost leaf of the subtree rooted at w, and y is stored in the subtree of w. Consider again the lowest
common ancestor v of the leaves storing c and y. The nodes on the path starting in w and ending in v store
the intervals

[c, b), [c, c + 2j−2), [c, c + 2j−3), . . . , [c, c + 2j′+1),

where j′ is as above. Note that this does not necessarily hold if c does not belong to the set V .
This suggests the following data structure for solving our query problem. Let V ′ be the union of V and

the set of all mid-points of the intervals I(u) over all internal nodes u of T . Observe that V ′ contains at most
2n− 1 elements. We build a new compressed tree T ′ using the algorithm given above, but for the set V ′.

Given two elements x and y in V with |x− y| > 1 and x < y, we first test if y − x = 1 or 1 < y − x < 2.
In the first case, we have BIndex(x, y) = 0, whereas BIndex(x, y) = 1 in the second case. Assume that
y − x > 2. Compute the lowest common ancestor u of the leaves of T ′ that store x and y. Let c be the
mid-point of the interval I(u). If |c − x| 6 |y − c|, then we compute the lowest common ancestor v of the
leaves storing c and y. Let j be the positive integer such that I(v) has length 2j . Since y−c > 1, the elements
y and c are stored at different leaves of T . Then 2j−1 6 |y− c| < 2j and, hence, 2j−1 < |y− x| 6 2j+1. This
implies that j − 1 6 BIndex(x, y) 6 j + 1. Since we know the values of j (stored with node v) and 2j (the
length of the interval I(v)), we can now easily compute BIndex(x, y) in constant time.

We cannot use this data structure if |c − x| > |y − c|. In order to handle this case, we also build a
compressed tree using intervals of the form (a, b] instead of [a, b).

To summarize, we have shown that after an O(n log n)-time preprocessing, we can reduce the problem of
computing BIndex(x, y) to answering two lowest common ancestor queries in a tree having size O(n), plus
an O(1)-time computation. Harel and Tarjan [1984] showed that, any tree can be preprocessed in linear time
such that lowest common ancestor queries can be answered in O(1) time. See also Schieber and Vishkin
[1988], Gusfield [1997] and Bender and Farach-Colton [2000]. Hence, we have proved the following result.

Theorem 5.1. Let V be a set of n real numbers that are contained in the interval (0, nk), for some
positive integer constant k. We can preprocess V in O(n log n) time into a data structure of size O(n), such
that for any two elements x and y of V , with |x − y| > 1, we can compute BIndex(x, y) = blog |y − x|c in
O(1) time.

It should be clear that this theorem also holds if we allow queries with elements x, y ∈ V such that
|x− y| > δ, for some fixed constant δ > 0.

5.3 The d-dimensional case

Now assume that V is a d-dimensional set of points, where d is a constant. Let p = (p1, p2, . . . , pd) and
q = (q1, q2, . . . , qd) be any two points of V with |pq| > 1, let j be such that |pj − qj | is maximum, and let
i = blog |pj − qj |c. Since

|pj − qj | 6 |pq| 6
√

d|pj − qj |,
we have

i 6 BIndex(p, q) 6 1
2

log d + i.

This suggests the following solution. For each `, 1 6 ` 6 d, we build the data structure of Theorem 5.1 for
the set of `-th coordinates of all points of V .

Given two distinct points p and q of V , we compute the index j such that |pj − qj | is maximum. Then we
use the algorithm of Theorem 5.1 to compute the integer i = blog |pj − qj |c. Note that this algorithm also
gives us the value 2i. Given i and 2i, we then compute BIndex(p, q) in O(log log d) time. Observe that we
can indeed apply Theorem 5.1, because |pj − qj | > 1/

√
d. This gives the following result.

Theorem 5.2. Let V be a set of n points in Rd that are contained in the hypercube (0, nk)d, for some-
positive integer constant k. We can preprocess V in O(n log n) time into a data structure of size O(n), such
that for any two points p and q of V , with |pq| > 1, we can compute

BIndex(p, q) = blog |pq|c
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in O(1) time.

Until now, the values BIndex were based on the binary logarithm. Let ε be a positive real constant, and
assume that we want to compute the integer

BIndexε(p, q) := blog1+ε |pq|c = blog |pq|/ log(1 + ε)c,
where p and q are two points in V with |pq| > 1. Hence, BIndexε(p, q) is the integer i such that (1 + ε)i 6
|pq| < (1 + ε)i+1. Let j := BIndex(p, q). Then a straightforward calculation shows that

⌊
j

log(1 + ε)

⌋
6 BIndexε(p, q) 6

⌈
j + 1

log(1 + ε)

⌉
− 1. (9)

Hence, if we know j, then we can compute BIndexε(p, q) in O(1 + 1/ log(1 + ε)) time, provided that we
know the values bj/ log(1 + ε)c and (1 + ε)i for all i in the range given in (9). Note that j is a non-negative
integer that is bounded by O(log n), and the same holds for i. In an O(n)-time preprocessing step, we can
easily compute two arrays of length O(log n), containing all possible values of bj/ log(1 + ε)c and (1 + ε)i.
Then given j, we can use this array to compute BIndexε(p, q) in time O(1/ log(1 + ε)).

Corollary 5.3. Let V be a set of n points in Rd that are contained in the hypercube (0, nk)d, for some
positive integer constant k, and let ε be a positive real constant. We can preprocess V in O(n log n) time,
such that for any two points p and q of V , with |pq| > 1, we can in constant time compute

BIndexε(p, q) = blog1+ε |pq|c.

6. EXTENSIONS TO GEOMETRIC SPANNER GRAPHS WITH SUPERLINEAR SIZE

The distance oracle algorithm presented so far only applies to geometric spanner graphs with a linear number
of edges. The result can be extended to geometric spanner graphs with superlinear size.

In a recent conference paper, Gudmundsson et al. [2005] have proved that a geometric t-spanner G on n
points in Rd and m edges can be “pruned” to obtain a (1+ε)-spanner G′ of G with O(n) edges. Hence, G′ is
a t(1 + ε)-spanner on the same points. Here ε is any given positive constant, and the time complexity of the
algorithm was shown to be O(m + n log n). The corresponding time complexity in the traditional algebraic
model of computation (without indirect addressing) is O(m log log n + n log n).

The above result has the following consequence for the results in this paper. Given a geometric t-spanner
with m edges, where m is superlinear in n, i.e., m = ω(n), we can apply the pruning algorithm of Gud-
mundsson et al. [2005] to first obtain a t(1 + ε)-spanner on the input points before applying the algorithm
presented here. Hence the following two corollaries are easy consequences.

Corollary 6.1. Let t > 1 and ε > 0 be real constants. Let V be a set of n points in Rd, and let
G = (V,E) be a t-spanner for V with m edges. The graph G can be preprocessed into a data structure of
size O(n log n) in time O(m + n log n), such that for any pair of query points p, q ∈ V , we can compute a
(1 + ε)-approximation of the shortest-path distance in G between p and q in O(1) time. Note that all the
big-Oh notations hide constants that depend on d, t and ε.

In the traditional algebraic model of computation (without indirect addressing) the corresponding weaker
result can be stated as follows.

Corollary 6.2. Let V be a set of n points in Rd, and let G = (V, E) be a t-spanner for V , for some
real constant t > 1, having m edges. In O(m log log n + n log2 n) time, we can preprocess G into a data
structure of size O(n log n), such that for any two points p and q in V , we can in O(log log n) time compute
a (1 + ε)-approximation of the shortest-path distance in G between p and q. This algorithm works in the
algebraic model of computation.

7. CONCLUDING REMARKS

We have presented the first data structure which supports (1 + ε)-approximate shortest path queries in
constant time for geometric t-spanners, and hence functions as an approximate distance oracle. In the
process we have developed several tools that we believe are useful for other geometric problems. We have also
given several applications for our data structure. These applications include answering closest pair queries,
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shortest path length queries between vertices in a planar polygonal domain, and efficiently computing the
approximate dilation of geometric graphs. Because of the wide applicability of spanners, we expect that
many more applications will be discovered.

Even though the results in this paper are restricted to geometric graphs with constant dilation we believe
that the results are of great importance since many naturally occurring geometric graphs have constant
dilation. As we already pointed out in the introduction, Keil and Gutwin [1992] have shown that this
is true for the Delaunay triangulation, which is used in numerous applications. Also, different kinds of
transportation networks have small dilations.

Finally, we note two problems that remain open. First, it is not clear if the space utilization of the algo-
rithms in this paper can be reduced from O(n log n) to O(n) without sacrificing the speed of the algorithms.
Secondly, we have encountered technical problems in extending the algorithms to report the approximate
shortest path between the given query points. This is caused by the fact that for given query points, p and
q, Step 3 of the query algorithm actually reports the length of the shortest path between a pair of points x
and y, which may be distinct from the pair of points p and q.
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