
1
Computational Geometry:

Generalized (or Colored) Intersection
Searching

Prosenjit Gupta
Heritage Institute of Technology, Kolkata

Ravi Janardan
University of Minnesota, Minneapolis

Saladi Rahul
University of Minnesota, Minneapolis

Michiel Smid
Carleton University, Ottawa

1.1 Geometric intersection searching problems 1-1
Generalized intersection searching

1.2 Summary of known results . 1-3
Axes-parallel objects • Arbitrarily-oriented objects •

Problems on the grid • Single-shot problems • External
memory and word-RAM algorithms

1.3 Techniques . 1-5
A transformation-based approach • A
sparsification-based approach • A persistence-based
approach • A general approach for reporting problems
• Adding range restrictions • Exploiting the output size
• A reverse transformation

1.4 Conclusion and future directions . 1-20
1.5 Acknowledgement . 1-20

1.1 Geometric intersection searching problems

Problems arising in diverse areas, such as VLSI layout design, database query-retrieval,
robotics, and computer graphics can often be formulated as geometric intersection searching
problems. In a generic instance of such a problem, a set, S, of geometric objects is to be
preprocessed into a suitable data structure so that given a query object, q, we can answer
efficiently questions regarding the intersection of q with the objects in S. The problem
comes in four versions, depending on whether we want to report the intersected objects or
simply count their number—the reporting version and the counting version, respectively—
and whether S remains fixed or changes through insertion and deletion of objects—the static
version and the dynamic version, respectively. In the dynamic version, which arises very
often owing to the highly interactive nature of the above-mentioned applications, we wish
to perform the updates more efficiently than simply recomputing the data structure from
scratch after each update, while simultaneously maintaining fast query response times. We
call these problems standard intersection searching problems in order to distinguish them
from the generalized intersection searching problems that are the focus of this chapter. Due
to their numerous applications, standard intersection searching problems have been the
subject of much study and efficient solutions have been devised for many of them (see, for
instance, [6, 21] and the references therein).

0-8493-8597-0/01/$0.00+$1.50
c© 2001 by CRC Press, LLC 1-1

1-2

The efficiency of a standard intersection searching algorithm is measured by the space
used by the data structure, the query time, and, in the dynamic setting, the update time.
In a counting problem, these are expressed as a function of the input size n (i.e., the size
of S); in a reporting problem, the space and update time are expressed as a function of n,
whereas the query time is expressed as a function of both n and the output size k (i.e., the
number of intersected objects) and is typically of the form O(f(n)+k) or O(f(n)+k ·g(n)),
for some functions f and g. Such a query time is called output-sensitive.

1.1.1 Generalized intersection searching

In many applications, a more general form of intersection searching arises: Here the ob-
jects in S come aggregated in disjoint groups and of interest are questions regarding the
intersection of q with the groups rather than with the objects. (q intersects a group if and
only if it intersects some object in the group.) In our discussion, it will be convenient to
associate with each group a different color and imagine that all the objects in the group
have that color. Then, in the generalized reporting (resp., generalized counting) problem,
we want to report (resp., count) the distinct colors of the objects intersected by q; in the
dynamic setting, an object of some (possibly new) color is inserted in S or an object in S
is deleted. Note that the generalized problem reduces to the standard one when each color
class has cardinality 1. (We remark that the generalized problems discussed here are also
sometimes referred to as colored problems; we use the two terms interchangeably.)

We give some examples of such generalized problems:

• Consider a database of mutual funds which contains for each fund its annual
total return and its beta (a real number measuring the fund’s volatility). Thus
each fund can be represented as a point in two dimensions. Moreover, funds are
aggregated into groups according to the fund family they belong to. A typical
query is to determine the families that offer funds whose total return is between,
say, 15% and 20%, and whose beta is between, say, 0.9 and 1.1. This is an
instance of the generalized 2-dimensional range searching problem. The output
of this query enables a potential investor to initially narrow his/her search to
a few families instead of having to plow through dozens of individual funds (all
from the same small set of families) that meet these criteria. (From a database
perspective, this query is similar to an SQL query with a GROUP-BY clause.)

• In the Manhattan layout of a VLSI chip, the wires (line segments) can be grouped
naturally according to the circuits they belong to. A problem of interest to the
designer is determining which circuits (rather than wires) become electrically
connected when a new wire is added. This is an instance of the generalized
orthogonal segment intersection searching problem.

One approach to solving a generalized problem is to try to take advantage of solutions
known for the corresponding standard problem. For instance, we can solve a generalized
reporting problem by first determining the objects intersected by q (a standard reporting
problem) and then reading off the distinct colors. However, the query time can be very high
since q could intersect k = Ω(n) objects but only O(1) distinct colors. For a generalized
reporting problem, we seek query times that are sensitive to the number, i, of distinct
colors intersected, typically of the form O(f(n) + i) or O(f(n) + i · g(n)), where f and
g are polylogarithmic. (This is attainable using the approach just described if each color
class has cardinality O(1). On the other hand, if there are only O(1) different color classes,
we could simply run a standard algorithm on each color class in turn, stopping as soon as

Computational Geometry: Generalized (or Colored) Intersection Searching 1-3

an intersection is found and reporting the corresponding color. The real challenge is when
the number of color classes and the cardinalities of the color classes are not constants, but
rather are (unknown) functions of n; throughout, we will assume this to be the case.) For
a generalized counting problem, the situation is worse; it is not even clear how one can
extract the answer for such a problem from the answer (a mere count) to the corresponding
standard problem. One could, of course, solve the corresponding reporting problem and
then count the colors, but this is not efficient. Thus it is clear that different techniques are
needed.

In this chapter, we describe the research that has been conducted over the past two
decades on generalized intersection searching problems. We begin with a brief review of
known results and then discuss a variety of techniques for these problems. For each tech-
nique, we give illustrative examples and provide pointers to related work. We conclude with
a discussion of possible directions for further research.

1.2 Summary of known results

Generalized intersection searching problems were introduced by Janardan and Lopez in [33].
Subsequent work in this area may be found in [7, 8, 12, 13, 14, 20, 24, 25, 26, 27, 28, 29,
30, 31, 34, 35, 36, 37, 43, 45, 46, 47, 48, 50, 52], among others. In this section, we give a
broad overview of the work on these problems to date; details may be found in the cited
references.

1.2.1 Axes-parallel objects

In [33], efficient solutions were given for several generalized reporting problems, where
the input objects and the query were axes-parallel. Examples of such input/query pairs
considered include: points/interval in R

1; line segments/segment, points/rectangle, and
rectangles/rectangle, all in R

2; and rectangles/points in R
d, where d ≥ 2 is a constant.

Several of these results were further extended in [27] to include counting and/or dynamic
reporting, and new results were presented for input/query pairs such as intervals/interval
in R

1, points/quadrant in R
2, and points/rectangle in R

3. Furthermore, a new type of
counting problem, called a type-2 counting problem was also introduced, where the goal was
to count for each color intersected the number of objects of that color that are intersected.
In [12], improved solutions were given for counting and/or reporting problems involving
points/interval in R

1, points/rectangle in R
2, and line segments/segment in R

2.

In [20, 24] variants of the reporting problem were considered for points/rectangle in
R

2, with the goal of reporting those colors that appeared “many” times in the output.
Specifically, in [24], an efficient dynamic algorithm was given for reporting each color for
which the number of points of that color in the query rectangle was more than a user-
specified fraction of the total number points in the query rectangle. On the other hand,
in [20], an efficient (approximation) algorithm was given for reporting each color such that
the number of points of that color in the query rectangle was at least a user-specified fraction
of the total number of points of that color in the input set. More recently, interesting
connections have been shown between generalized counting problems and other problems.
For instance, as shown in [37], standard range counting involving points/rectangle in R

2 can
be solved using an algorithm for generalized range counting on points/interval in R

1. Also,
as discussed at length in [34], it is possible to use an “offline” version of the generalized
counting problem on points/rectangle in R

2 to do sparse matrix multiplication.

1-4

1.2.2 Arbitrarily-oriented objects

Efficient solutions were given in [33] for generalized reporting on non-intersecting line seg-
ments using a query line segment. Special, but interesting, cases of intersecting line seg-
ments, such as when each color class forms a polygon or a connected component, were
considered in [8]. Efficient solutions were given in [28] for input/query pairs consisting of
points/halfspace in R

d, points/fat-triangle, and fat-triangles/point in R
2. (A fat-triangle

is a triangle where each internal angle is at least a user-specified constant, hence “well-
shaped”.) Some of these results were improved subsequently in [12]. In [29], alternative
bounds were obtained for the fat-triangle problems within the framework of a general tech-
nique for adding range restriction capability to a generalized data structure. Results were
presented in [14] for querying, with a polygon, a set of polygons whose sides are oriented in
at most a constant number of different directions, with a polygon. In [52], a general method
was given for querying intersecting line segments with a segment and for querying points in
R

d with a halfspace or a simplex. Generalized problems involving various combinations of
circular objects (circles, discs, annuli) and points, lines, and line segments were considered
in [30].

1.2.3 Problems on the grid

Problems involving document retrieval or string manipulation can often be cast in the
framework of generalized intersection searching. For example, in the context of document
retrieval, the following problem (among others) was considered in [43]: Preprocess an array
of colored non-negative integers (i.e., points on the 1-dimensional grid) such that, given
two indices into the array, each distinct color for which there is a pair of points in the
index range at distance less than a specified constant can be reported efficiently. In the
context of substring indexing, the following problem was considered in [25]: Preprocess a
set of colored points on the 1-dimensional grid, so that given two non-overlapping intervals,
the list of distinct colors that occur in both intervals can be reported efficiently. I/O
efficient algorithms were given in the standard external memory model [53] for this problem.
See [44, 45] and references therein for a discussion of more recent work on document retrieval
and string manipulation problems. Other grid-related work in this area includes [7], where
efficient solutions were given for the points/rectangle and rectangles/point problems, under
the condition that the input and query objects lie on a d-dimensional grid.

1.2.4 Single-shot problems

In this class of problems, we are given a collection of geometric objects and the goal is
to report all pairs that intersect. Note that there is no query object as such here and
no notion of preprocessing the input. As an example, suppose that we are given a set of
convex polygons with a total of n vertices in R

2, and we wish to report or count all pairs
that intersect, with the goal of doing this in time proportional to the number of intersecting
pairs (i.e., output-sensitively). If the number of polygons and their sizes are both functions
of n (instead of one or the other being a constant), then, as discussed in [31], standard
methods (e.g., testing each pair of polygons or computing all boundary intersections and
polygon containments in the input) are inefficient. In [31], an efficient and output-sensitive
algorithm is given for this problem. Each polygon is assigned a color and then decomposed
into simpler elements, i.e., trapezoids, of the same color. The problem then becomes one
of reporting all distinct color pairs (c1, c2) such that a trapezoid of color c1 intersects one
of color c2. An improved algorithm was given subsequently in [5] for both R

2 and R
3.

Computational Geometry: Generalized (or Colored) Intersection Searching 1-5

Other related work on such colored single-shot problems may be found in [13, 35]. In
[35], interesting connections between sparse matrix multiplication and colored single-shot
problems are established.

1.2.5 External memory and word-RAM algorithms

The results discussed earlier (and in the rest of this chapter) are in the well-known RAM
model or pointer machine model. Recently, generalized problems have also been considered
in other machine models such as the external memory model and the word-RAM model.
In the external memory model [9], the data resides primarily on disk, in blocks of some
fixed size, data transfer (I/O) between disk and main memory happens in blocks, and space
and query time are measured in terms of the number of blocks used and the number of
I/O operations, respectively. In this model, efficient algorithms were first given in [46]
(see also [47]) for generalized range search in R

2, where the query rectangle is grounded,
i.e., 3-sided. These results have been improved subsequently in [37]. A limitation of these
results is that they report each color O(1) times, instead of exactly once, which results
in an additional overhead in the external memory model for removal of duplicate colors
via sorting. (This is in contrast to internal memory algorithms, where duplicate removal
is easy.) This limitation has recently been removed in [48] where each color is reported
exactly once. The above papers also present results in the word-RAM model [32], where it
is assumed that standard arithmetic and bitwise operations can be done in constant time
on a computer word of some fixed length.

1.3 Techniques

We describe in some detail several techniques that have emerged over the past several years
for generalized intersection searching. Briefly, these include: a geometric transformation-
based approach, an approach based on generating a sparse representation of the input, an
approach based on persistent data structures, a generic method that is applicable to any
reporting problem, an approach for searching on a subset of the input satisfying a specified
range restriction, and an approach that exploits the output size to gain efficiency. We
illustrate each method with examples. Finally, we also discuss a “reverse” transformation
method that shows an interesting connection between a standard counting and a generalized
counting problem.

1.3.1 A transformation-based approach

We describe an approach for certain reporting and counting problems, which transforms
the original generalized reporting/counting problem to an instance of a related standard
reporting/counting problem on which efficient known solutions can be brought to bear.
We illustrate this approach by considering the generalized 1-dimensional range searching
problem, where the input consists of a set, S, of n colored points in R

1 and the query, q, is
an interval. Let S be a set of n colored points on the x-axis. We show how to preprocess
S so that for any query interval q, we can solve efficiently the dynamic reporting problem,
the static and dynamic counting problems, and the static type-2 counting problem. The
solutions for the dynamic reporting problem and the static and dynamic counting problems
are from [27]. The type-2 counting solution is from [12].

We now describe the transformation. For each color c, we sort the distinct points of that
color by increasing x-coordinate. For each point p of color c, let pred(p) be its predecessor

1-6

of color c in the sorted order; for the leftmost point of color c, we take the predecessor to
be the point −∞. We then map p to the point p′ = (p, pred(p)) in the plane and associate
with it the color c. Let S′ be the resulting set of points. Given a query interval q = [l, r],
we map it to the grounded rectangle q′ = [l, r]× (−∞, l).

LEMMA 1.1 There is a point of color c in S that is in q = [l, r] if and only if there is a
point of color c in S′ that is in q′ = [l, r]× (−∞, l). Moreover, if there is a point of color c
in q′, then this point is unique.

Proof Let p′ be a c-colored point in q′, where p′ = (p, pred(p)) for some c-colored point
p ∈ S. Since p′ is in [l, r]× (−∞, l), it is clear that l ≤ p ≤ r and so p ∈ [l, r].

For the converse, let p be the leftmost point of color c in [l, r]. Thus l ≤ p ≤ r and since
pred(p) 6∈ [l, r], we have l > pred(p). It follows that p′ = (p, pred(p)) is in [l, r] × (−∞, l).
We prove that p′ is the only point of color c in q′. Suppose for a contradiction that
t′ = (t, pred(t)) is another point of color c in q′. Thus we have l ≤ t ≤ r. Since t > p, we
also have pred(t) ≥ p ≥ l. Thus t′ = (t, pred(t)) cannot lie in q′—a contradiction.

Lemma 1.1 implies that we can solve the generalized 1-dimensional range reporting (resp.,
counting) problem by simply reporting the points in q′ (resp., counting the number of points
in q′), without regard to colors. In other words, we have reduced the generalized reporting
(resp., counting) problem in R

1 to the standard grounded range reporting (resp., counting)
problem in R

2. In the dynamic case, we also need to update S′ when S is updated. We
discuss these issues in more detail below.

The dynamic reporting problem

Our data structure consists of the following: For each color c, we maintain a balanced
binary search tree, Tc, in which the c-colored points of S are stored in increasing x-order.
We maintain the colors themselves in a balanced search tree CT , and store with each color
c in CT a pointer to Tc. We also store the points of S′ in a balanced priority search tree
(PST) [42]. (Recall that a PST on m points occupies O(m) space, supports insertions and
deletions in O(logm) time, and can be used to report the k points lying inside a grounded
query rectangle in O(logm+ k) time [42]. Although this query is designed for query ranges
of the form [l, r] × (−∞, l], it can be trivially modified to ignore the points on the upper
edge of the range without affecting its performance.) Clearly, the space used by the entire
data structure is O(n), where n = |S|.
To answer a query q = [l, r], we simply query the PST with q′ = [l, r] × (−∞, l) and

report the colors of the points found. Correctness follows from Lemma 1.1. The query time
is O(log n+ k), where k is the number of points inside q′. By Lemma 1.1, k = i, and so the
query time is O(log n+ i).

Suppose that a c-colored point p is to be inserted into S. If c 6∈ CT , then we create a
tree Tc containing p, insert p′ = (p,−∞) into the PST , and insert c, with a pointer to Tc,
into CT . Suppose that c ∈ CT . Let u be the successor of p in Tc. If u exists, then we set
pred(p) to pred(u) and pred(u) to p; otherwise, we set pred(p) to the rightmost point in Tc.
We then insert p into Tc, p

′ = (p, pred(p)) into the PST , delete the old u′ from the PST ,
and insert the new u′ into it.

Deletion of a point p of color c is essentially the reverse. We delete p from Tc. Then we
delete p′ from the PST and if p had a successor, u, in Tc then we reset pred(u) to pred(p),
delete the old u′ from the PST , and insert the new one. If Tc becomes empty in the process,

Computational Geometry: Generalized (or Colored) Intersection Searching 1-7

then we delete c from CT . Clearly, the update operations are correct and take O(log n)
time.

THEOREM 1.1 Let S be a set of n colored points on the real line. S can be preprocessed
into a data structure of size O(n) such that the i distinct colors of the points of S that
are contained in any query interval can be reported in O(log n + i) time and points can be
inserted and deleted online in S in O(log n) time.

For the static reporting problem, we can dispense with CT and the Tc’s and simply use a
static form of the PST to answer queries. This provides a simple O(n)-space, O(log n+ i)-
query time alternative to another solution given in [33].

The static counting problem

We store the points of S′ in non-decreasing x-order at the leaves of a balanced binary
search tree, T , and store at each internal node t of T an array At containing the points
in t’s subtree in non-decreasing y-order. The total space is clearly O(n log n). To answer
a query, we determine O(log n) canonical nodes v in T such that the query interval [l, r]
covers v’s range but not the range of v’s parent. Using binary search we determine in each
canonical node’s array the highest array position containing an entry less than l (and thus
the number of points in that node’s subtree that lie in q′) and add up the positions thus
found at all canonical nodes. The correctness of this algorithm follows from Lemma 1.1.
The total query time is O(log2 n).
We can reduce the query time to O(log n) as follows: At each node t we create a linked

list, Bt, which contains the same elements as At and maintain a pointer from each entry
of Bt to the same entry in At. We then apply the technique of fractional cascading [16] to
the B-lists, so that after an initial O(log n)-time binary search in the B-list of the root, the
correct positions in the B-lists of all the canonical nodes can be found directly in O(log n)
total time. (To facilitate binary search in the root’s B-list, we build a balanced search
tree on it after the fractional cascading step.) Once the position in a B-list is known, the
appropriate position in the corresponding A-array can be found in O(1) time.
It is possible to reduce the space slightly (to O(n log n/ log logn)) at the expense of a larger

query time (O(log2 n/ log logn)), by partitioning the points of S′ recursively into horizontal
strips of a certain size and doing binary search, augmented with fractional cascading, within
the strips. Details can be found in [27].

THEOREM 1.2 Let S be a set of n colored points on the real line. S can be preprocessed
into a data structure of size O(n log n) (resp., O(n log n/ log logn)) such that the number of
distinctly-colored points of S that are contained in any query interval can be determined in
O(log n) (resp., O(log2 n/ log logn)) time.

The dynamic counting problem

We store the points of S′ using the same basic two-level tree structure as in the first solution
for the static counting problem. However, T is now a BB(α) tree [54] and the auxiliary
structure, D(t), at each node t of T is a balanced binary search tree where the points are
stored at the leaves in left to right order by non-decreasing y-coordinate. To facilitate the
querying, each node v of D(t) stores a count of the points in its subtree. Given a real
number, l, we can determine in O(log n) time the number of points in D(t) that have y-
coordinate less than l by searching for l in D(t) and adding up the count for each node of

1-8

D(t) that is not on the search path but is the left child of a node on the path. It should be
clear that D(t) can be maintained in O(log n) time under updates.

In addition to the two-level structure, we also use the trees Tc and the tree CT , described
previously, to maintain the correspondence between S and S′. We omit further discussion
about the maintenance of these trees.

Queries are answered as in the static case, except that at each auxiliary structure we use
the above-mentioned method to determine the number of points with y-coordinate less than
l. Thus the query time is O(log2 n). (We cannot use fractional cascading here.)

Insertion/deletion of a point is done using the worst-case updating strategy for BB(α)
trees, and take O(log2 n) time.

THEOREM 1.3 Let S be a set of n colored points on the real line. S can be preprocessed
into a data structure of size O(n log n) such that the number of distinctly-colored points of
S that are contained in any query interval can be determined in O(log2 n) time and points
can be inserted and deleted online in S in O(log2 n) worst-case time.

The static type-2 problem

We wish to preprocess a set S of n colored points on the x-axis, so that for each color
intersected by a query interval q = [l, r], the number of points of that color in q can be
reported efficiently. The solution for this problem originally proposed in [27] takes O(n logn)
space and supports queries in O(log n + i) time. The space bound was improved to O(n)
in [12], as follows.

The solution consists of two priority search trees, PST 1 and PST 2. PST 1 is similar to
the priority search tree built on S′ in the solution for the dynamic reporting problem, with
an additional count stored at each node. Let p′ = (p, pred(p)) be the point that is stored
at a node in PST 1 and c the color of p. Then at this node, we store an additional number
t1(p

′), which is the number of points of color c to the right of p.

PST 2 is based on a transformation that is symmetric to the one used for PST 1. For each
color c, we sort the distinct points of that color by increasing x-coordinate. For each point
p of color c, let next(p) be its successor in the sorted order; for the rightmost point of color
c, we take the successor to be the point +∞. We then map p to the point p′′ = (p, next(p))
in the plane and associate with it the color c. Let S′′ be the resulting set of points. We
build PST 2 on S′′, with an additional count stored at each node. Let p′′ = (p, next(p)) be
the point that is stored at a node in PST 2 and c the color of p. Then at this node, we
store an additional number t2(p

′′), which is the number of points of color c to the right of
next(p).

We also maintain an auxiliary array A of size n. Given a query q = [l, r], we query PST 1

with q′ = [l, r] × (−∞, l) and for each color c found, we set A[c] = t1(p
′), where p′ is the

point stored at the node where we found c. Then we query PST 2 with q′′ = [l, r]× (r,+∞)
and for each color c found, we report c and A[c]− t2(p

′′), where p′′ is the point stored at the
node where we found c. This works because the queries on PST 1 and PST 2 effectively find
the leftmost and rightmost points of color c in q = [l, r] (cf. proof of Lemma 1.1). Thus,
A[c]− t2(p

′′) gives the number of points of color c in q.

THEOREM 1.4 A set S of n colored points on the real line can be preprocessed into a
data structure of size O(n) such that for any query interval, a type-2 counting query can be
answered in O(log n+ i) time, where i is the output size.

Computational Geometry: Generalized (or Colored) Intersection Searching 1-9

Finally, we note that Theorem 1.1 combined with the notion of persistence (which is
discussed in detail Section 1.3.3) yields an efficient solution to the generalized grounded
range reporting problem in R

2. In this problem, we wish to preprocess a set of n colored
points in R

2 so that the distinct colors of the points lying in any 3-sided axes-parallel
query rectangle can be reported efficiently. The solution uses O(n log n) and O(log n + i)
query time. As shown in [50], the space bound can be further improved to O(n) by using
persistence in conjunction with a transformation that maps the colored points in R

1 to
colored points in R

2 such that the y-coordinates are integers in the range [0 : ⌈logn⌉]. (This
transformation is different from the one underlying Lemma 1.1.) We refer the reader to [50]
for details. In Section 1.3.6, we describe another solution to this problem which has the
same bounds but is based on a different technique.

1.3.2 A sparsification-based approach

The idea behind this approach is to generate from the given set, S, of colored objects a
colored set, S′—possibly consisting of different objects than those in S—such that a query
object q intersects an object in S if and only if it intersects an object in S′. Moreover,
if q intersects objects in S′ then it intersects at most a constant number of them. This
allows us to use a solution to a standard problem on S′ to solve the generalized reporting
problem on S. (In the case of a generalized counting problem, the requirement is more
stringent: exactly one object in S′ must be intersected.) We illustrate this method with
the generalized halfspace range searching problem in R

d, d = 2, 3.

Generalized halfspace range searching in R
2 and R

3

Let S be a set of n colored points in R
d, d = 2, 3. In the generalized halfspace range searching

problem we wish to preprocess S so that for any query hyperplane Q, the i distinct colors
of the points lying in the closed halfspace Q− (i.e., below Q) can be reported or counted
efficiently. Without loss of generality, we may assume that Q is non-vertical since vertical
queries are easy to handle. The approach described here is from [28].

We denote the coordinate directions by x1, x2, . . . , xd. Let F denote the well-known
point-hyperplane duality transform [23]: If p = (p1, . . . , pd) is a point in R

d, then F(p) is
the hyperplane xd = p1x1 + · · ·+ pd−1xd−1 − pd. If H : xd = a1x1 + · · ·+ ad−1xd−1 + ad is
a (non-vertical) hyperplane in R

d, then F(H) is the point (a1, . . . , ad−1,−ad). It is easily
verified that p is above (resp., on, below) H , in the xd-direction, if and only if F(p) is below
(resp., on, above) F(H). Note also that F(F(p)) = p and F(F(H)) = H .

Using F we map S to a set S′ of hyperplanes and map Q to the point q = F(Q), both
in R

d. Our problem is now equivalent to: “Report or count the i distinct colors of the
hyperplanes lying on or above q, i.e., the hyperplanes that are intersected by the vertical
ray r emanating upwards from q.”

Let Sc be the set of hyperplanes of color c. For each color c, we compute the upper
envelope Ec of the hyperplanes in Sc. Ec is the locus of the points of Sc of maximum xd-
coordinate for each point on the plane xd = 0. Ec is a d-dimensional convex polytope which
is unbounded in the positive xd-direction. Its boundary is composed of j-faces, 0 ≤ j ≤ d−1,
where each j-face is a j-dimensional convex polytope. Of particular interest to us are the
(d− 1)-faces of Ec, called facets. For instance, in R

2, Ec is an unbounded convex chain and
its facets are line segments; in R

3, Ec is an unbounded convex polytope whose facets are
convex polygons.

Let us assume that r is well-behaved in the sense that for no color c does r intersect two
or more facets of Ec at a common boundary—for instance, a vertex in R

2 and an edge or

1-10

a vertex in R
3. (This assumption can be removed; details can be found in [28].) Then, by

definition of the upper envelope, it follows that (i) r intersects a c-colored hyperplane if and
only if r intersects Ec and, moreover, (ii) if r intersects Ec, then r intersects a unique facet
of Ec (in the interior of the facet). Let E be the collection of the envelopes of the different
colors. By the above discussion, our problem is equivalent to: “Report or count the facets
of E that are intersected by r”, which is a standard intersection searching problem. We will
show how to solve efficiently this ray-envelope intersection problem in R

2 and in R
3. This

approach does not give an efficient solution to the generalized halfspace searching problem
in R

d for d > 3; for this case, we will give a different solution in Section 1.3.4.

To solve the ray–envelope intersection problem in R
2, we project the endpoints of the line

segments of E on the x-axis, thus partitioning it into 2n+ 1 elementary intervals (some of
which may be empty). We build a segment tree T which stores these elementary intervals
at the leaves. Let v be any node of T . We associate with v an x-interval I(v), which is the
union of the elementary intervals stored at the leaves in v’s subtree. Let Strip(v) be the
vertical strip defined by I(v). We say that a segment s ∈ E is allocated to a node v ∈ T if
and only if I(v) 6= ∅ and s crosses Strip(v) but not Strip(parent(v)). Let E(v) be the set of
segments allocated to v. Within Strip(v), the segments of E(v) can be viewed as lines since
they cross Strip(v) completely. Let E ′(v) be the set of points dual to these lines. We store
E ′(v) in an instance D(v) of the standard halfplane reporting (resp., counting) structure
for R

2 given in [17] (resp., [40]). This structure uses O(m) space and has a query time of
O(logm+ kv) (resp., O(m1/2)), where m = |E(v)| and kv is the output size at v.

To answer a query, we search in T using q’s x-coordinate. At each node v visited, we
need to report or count the lines intersected by r. But, by duality, this is equivalent to
answering, in R

2, a halfplane query at v using the query F(q)− = Q−, which we do using
D(v). For the reporting problem, we simply output what is returned by the query at each
visited node; for the counting problem, we return the sum of the counts obtained at the
visited nodes.

THEOREM 1.5 A set S of n colored points in R
2 can be stored in a data structure of

size O(n log n) so that the i distinct colors of the points contained in any query halfplane
can be reported (resp., counted) in time O(log2 n+ i) (resp., O(n1/2)).

Proof Correctness follows from the preceding discussion. As noted earlier, there are
O(|Sc|) line segments (facets) in Ec; thus |E| = O(

∑
c |Sc|) = O(n) and so |T | = O(n).

Hence each segment of E can get allocated to O(log n) nodes of T . Since the structure
D(v) has size linear in m = |E(v)|, the total space used is O(n log n). For the reporting
problem, the query time at a node v is O(logm+ kv) = O(log n+ kv). When summed over
the O(log n) nodes visited, this gives O(log2 n + i). To see this, recall that the ray r can
intersect at most one envelope segment of any color; thus the terms kv, taken over all nodes
v visited, sum to i.

For the counting problem, the query time at v is O(m1/2). It can be shown that if v has
depth j in T , then m = |E(v)| = O(n/2j). (See, for instance, [19, page 675].) Thus, the

overall query time is O(
∑O(log n)

j=0 (n/2j)1/2), which is O(n1/2).

The (standard) problem of reporting the segments in R
2 that are intersected by a vertical

query ray has been revisited recently in [4], in the context of solving a different problem
defined on so-called “uncertain points”. For a set of n segments, the solution in [4] uses O(n)
space and has a query time of O(log n+k), where k is the number of reported segments. The

Computational Geometry: Generalized (or Colored) Intersection Searching 1-11

approach is based on using a combination of a segment tree and an interval tree together
with some other ideas; we refer the reader to [4] for details. By the preceding discussion,
this result implies an O(n)-space and O(log n + i)-query time solution to the generalized
halfspace range reporting problem in R

2.
In R

3, the approach is similar, but somewhat more complex. Our goal is to solve the
ray–envelope intersection problem in R

3. As shown in [28], this problem can be reduced to
certain standard halfspace range queries in R

3 on a set of triangles (obtained by triangulating
the Ec’s.) This problem can be solved by building a segment tree on the x-spans of the
triangles projected to the xy-plane and augmenting each node of this tree with a data
structure based on partition trees [39] or cutting trees [38] to answer the halfplane queries.
Details may be found in [28].

THEOREM 1.6 The reporting version of the generalized halfspace range searching prob-
lem for a set of n colored points in R

3 can be solved in O(n log2 n) (resp., O(n2+ǫ)) space
and O(n1/2+ǫ + i) (resp., O(log2 n + i)) query time, where i is the output size and ǫ > 0
is an arbitrarily small constant. The counting version is solvable in O(n log n) space and
O(n2/3+ǫ) query time.

Additional examples of the sparsification-based approach may be found in [33]. (An exam-
ple also appears in the next section, enroute to a persistence-based solution of a generalized
problem.)

1.3.3 A persistence-based approach

Roughly speaking, we use persistence as follows: To solve a given generalized problem
we first identify a different, but simpler, generalized problem and devise a data structure
for it that also supports updates (usually just insertions). We then make this structure
partially persistent [22] and query this persistent structure appropriately to solve the
original problem.
We illustrate this approach for generalized 3-dimensional range searching, where we are

required to preprocess a set, S, of n colored points in R
3 so that for any query box q = [a, b]×

[c, d]× [e, f] the i distinct colors of the points inside q can be reported efficiently. We first
show how to build a semi-dynamic (i.e., insertions-only) data structure for the generalized
versions of the quadrant searching and 2-dimensional range searching problems. These two
structures will be the building blocks of our solution for the 3-dimensional problem.

Generalized semi-dynamic quadrant searching

Let S be a set of n colored points in the plane. For any point q = (a, b), the northeast
quadrant of q, denoted by NE (q), is the set of all points (x, y) in the plane such that x ≥ a
and y ≥ b. We show how to preprocess S so that for any query point q, the distinct colors
of the points of S contained in NE (q) can be reported, and how points can be inserted
into S. This is the generalized 2-dimensional quadrant range searching problem supporting
insertions. The data structure uses O(n) space, has a query time of O(log2 n + i), and an
amortized insertion time of O(log n). This solution is based on the sparsification approach
described previously.
For each color c, we determine the c-maximal points. (A point p is called c-maximal if

it has color c and there are no points of color c in p’s northeast quadrant.) We discard all
points of color c that are not c-maximal. In the resulting set, let the predecessor, pred(p),
of a c-colored point p be the c-colored point that lies immediately to the left of p. (For

1-12

the leftmost point of color c, the predecessor is the point (−∞,∞).) With each point
p = (a, b), we associate the horizontal segment with endpoints (a′, b) and (a, b), where a′ is
the x-coordinate of pred(p). This segment gets the same color as p. Let Sc be the set of
such segments of color c. The data structure consists of two parts, as follows.

The first part is a structure T storing the segments in the sets Sc, where c runs over all
colors. T supports the following query: given a point q in the plane, report the segments
that are intersected by the upward-vertical ray starting at q. Moreover, it allows segments
to be inserted and deleted. We implement T as the structure given in [18]. This structure
uses O(n) space, supports insertions and deletions in O(log n) time, and has a query time
of O(log2 n+ l), where l is the number of segments intersected.

The second part is a balanced search tree CT , storing all colors. For each color c, we
maintain a balanced search tree, Tc, storing the segments of Sc by increasing y-coordinate.
This structure allows us to dynamically maintain Sc when a new c-colored point p is inserted.
The general approach (omitting some special cases; see [27]) is as follows: By doing a binary
search in Tc we can determine whether or not p is c-maximal in the current set of c-maximal
points, i.e., the set of right endpoints of the segments of Sc. If p is not c-maximal, then
we simply discard it. If p is c-maximal, then let s1, . . . , sk be the segments of Sc whose left
endpoints are in the southwest quadrant of p. We do the following: (i) delete s2, . . . , sk from
Tc; (ii) insert into Tc the horizontal segment which starts at p and extends leftwards upto
the x-coordinate of the left endpoint of sk; and (iii) truncate the segment s1 by keeping
only the part of it that extends leftwards upto p’s x-coordinate. The entire operation can
be done in O(log n+ k) time.

Let us now consider how to answer a quadrant query, NE (q), and how to insert a point
into S. To answer NE (q), we query T with the upward-vertical ray from q and report the
colors of the segments intersected. The correctness of this algorithm follows from the easily
proved facts that (i) a c-colored point lies in NE (q) if and only if a c-maximal point lies
in NE (q) and (ii) if a c-maximal point is in NE (q), then the upward-vertical ray from q
must intersect a segment of Sc. The correctness of T guarantees that only the segments
intersected by this ray are reported. Since the query can intersect at most two segments in
any Sc, we have l ≤ 2i, and so the query time is O(log2 n+ i).

Let p be a c-colored point that is to be inserted into S. If c is not in CT , then we insert
it into CT and insert the horizontal, leftward-directed ray emanating from p into a new
structure Tc. If c is present already, then we update Tc as just described. In both cases, we
then perform the same updates on T . Hence, an insertion takes O((k + 1) logn) time.

What is the total time for n insertions into an initially empty set S? For each insertion,
we can charge the O(log n) time to delete a segment si, 2 ≤ i ≤ k, to si itself. Notice
that none of these segments will reappear. Thus each segment is charged at most once.
Moreover, each of these segments has some previously inserted point as a right endpoint.
It follows that the number of segments existing over the entire sequence of insertions is
O(n) and so the total charge to them is O(n log n). The rest of the cost for each insertion
(O(log n) for the binary search plus O(1) for steps (ii) and (iii)) we charge to p itself. Since
any p is charged in this mode only once, the total charge incurred in this mode by all the
inserted points is O(n log n). Thus the time for n insertions is O(n logn), which implies an
amortized insertion time of O(log n).

LEMMA 1.2 Let S be a set of n colored points in the plane. There exists a data structure
of size O(n) such that for any query point q, we can report the i distinct colors of the points
that are contained in the northeast quadrant of q in O(log2 n+ i) time. Moreover, if we do
n insertions into an initially-empty set then the amortized insertion time is O(log n).

Computational Geometry: Generalized (or Colored) Intersection Searching 1-13

Generalized semidynamic 2-dimensional range searching

Our goal here is to preprocess a set S of n colored points in the plane so that for any
axes-parallel query rectangle q = [a, b]× [c, d], we can report efficiently the distinct colors of
the points in q and moreover perform insertions in S. This is the generalized 2-dimensional
range reporting problem supporting insertions.

Our solution is based on the quadrant reporting structure of Lemma 1.2. We first show
how to solve the problem for query rectangles q′ = [a, b] × [c,∞). We store the points of
S in sorted order by x-coordinate at the leaves of a BB(α) tree T ′. At each internal node
v, we store an instance of the structure of Lemma 1.2 for NE -queries (resp., NW -queries)
built on the points in v’s left (resp., right) subtree. Let X(v) denote the average of the
x-coordinate in the rightmost leaf in v’s left subtree and the x-coordinate in the leftmost
leaf of v’s right subtree; for a leaf v, we take X(v) to be the x-coordinate of the point stored
at v.

To answer a query q′, we do a binary search down T ′, using [a, b], until either the search
runs off T ′ or a (highest) node v is reached such that [a, b] intersects X(v). In the former
case, we stop. In the latter case, if v is a leaf, then if v’s point is in q′ we report its color.
If v is a non-leaf, then we query the structures at v using the NE -quadrant and the NW -
quadrant derived from q′ (i.e., the quadrants with corners at (a, c) and (b, c), respectively),
and then combine the answers. Updates on T ′ are performed using the amortized-case
updating strategy for BB(α) trees [54]. The correctness of the method should be clear.
The space and query time bounds follow from Lemma 1.2. Since the amortized insertion
time of the quadrant searching structure is O(log n), the insertion in the BB(α) tree takes
amortized time O(log2 n) [54].

To solve the problem for general query rectangles q = [a, b] × [c, d], we use the above
approach again, except that we store the points in the tree by sorted y-coordinates. At
each internal node v, we store an instance of the data structure above to answer queries of
the form [a, b]× [c,∞) (resp., [a, b]× (−∞, d]) on the points in v’s left (resp., right) subtree.
The query strategy is similar to the previous one, except that we use the interval [c, d] to
search in the tree. The query time is as before, while the space and update times increase
by a logarithmic factor.

LEMMA 1.3 Let S be a set of n colored points in the plane. There exists a data structure
of size O(n log2 n) such that for any query rectangle [a, b]× [c, d], we can report the i distinct
colors of the points that are contained in it in O(log2 n+ i) time. Moreover, points can be
inserted into this data structure in O(log3 n) amortized time.

Generalized 3-dimensional range searching

The semi-dynamic structure of Lemma 1.3 coupled with persistence allows us to go up one
dimension and solve the original problem of interest: Preprocess a set S of n colored points
in R

3 so that for any query box q = [a, b]× [c, d] × [e, f] the i distinct colors of the points
inside q can be reported efficiently.

First consider queries of the form q′ = [a, b] × [c, d] × [e,∞). We sort the points of S
by non-increasing z-coordinates, and insert them in this order into a partially persistent
version of the structure of Lemma 1.3, taking only the first two coordinates into account.
To answer q′, we access the version corresponding to the smallest z-coordinate greater than
or equal to e and query it with [a, b]× [c, d].

To see that the query algorithm is correct, observe that the version accessed contains
the projections on the xy-plane of exactly those points of S whose z-coordinate is at least

1-14

e. Lemma 1.3 then guarantees that among these only the distinct colors of the ones in
[a, b] × [c, d] are reported. These are precisely the distinct colors of the points contained
in [a, b] × [c, d] × [e,∞). The query time follows from Lemma 1.3. To analyze the space
requirement, we note that the structure of Lemma 1.3 satisfies the conditions given in [22].
Specifically, it is a pointer-based structure, where each node is pointed to by only O(1)
other nodes. As shown in [22], any modification made by a persistent update operation on
such a structure adds only O(1) amortized space to the resulting persistent structure. By
Lemma 1.3, the total time for creating the persistent structure, via insertions, is O(n log3 n).
This implies the same bound for the number of modifications in the structure, so the total
space is O(n log3 n).

To solve the problem for general query boxes q = [a, b] × [c, d] × [e, f], we follow an
approach similar to that described for the 2-dimensional case: We store the points in a
balanced binary search tree, sorted by z-coordinates. We associate with each internal node
v in the tree the auxiliary structure described above for answering queries of the form
[a, b] × [c, d] × [e,∞) (resp., [a, b] × [c, d] × (−∞, f]) on the points in v’s left (resp., right)
subtree. (Note that since we do not need to do updates here the tree need not be a BB(α)
tree.) Queries are done by searching down the tree using the interval [e, f]. The query time
is as before, but the space increases by a logarithmic factor.

THEOREM 1.7 Let S be a set of n colored points in 3-space. S can be stored in a data
structure of size O(n log4 n) such that for any query box [a, b]× [c, d]× [e, f], we can report
the i distinct colors of the points that are contained in it in O(log2 n+ i) time.

Additional applications of the persistence-based approach to generalized intersection
problems can be found in [27, 28, 30, 50].

1.3.4 A general approach for reporting problems

We describe a general method from [30] for solving any generalized reporting problem given
a data structure for a “related” standard decision problem.

Let S be a set of n colored geometric objects and let q be any query object. In prepro-
cessing, we store the distinct colors in S at the leaves of a balanced binary tree CT (in no
particular order). For any node v of CT , let C(v) be the set of colors stored in the leaves
of v’s subtree and let S(v) be the set of those objects of S colored with the colors in C(v).
At v, we store a data structure DEC (v) to solve the following standard decision problem
on S(v): “Decide whether or not q intersects any object of S(v).” DEC (v) returns “true”
if and only if there is an intersection.

To answer a generalized reporting query on S, we do a depth-first search in CT and query
DEC (v) with q at each node v visited. If v is a non-leaf node then we continue searching
below v if and only if the query returns “true”; if v is a leaf, then we output the color stored
there if and only if the query returns “true”.

THEOREM 1.8 Assume that a set of n geometric objects can be stored in a data structure
of size M(n) such that it can be decided in f(n) time whether or not a query object intersects
any of the n objects. Assume that M(n)/n and f(n) are non-decreasing functions for non-
negative values of n. Then a set S of n colored geometric objects can be preprocessed into a
data structure of size O(M(n) log n) such that the i distinct colors of the objects in S that
are intersected by a query object q can be reported in time O(f(n) + i · f(n) logn).

Computational Geometry: Generalized (or Colored) Intersection Searching 1-15

Proof We argue that a color c is reported if and only if there is a c-colored object in
S intersecting q. Suppose that c is reported. This implies that a leaf v is reached in the
search such that v stores c and the query on DEC (v) returns “true”. Thus, q intersects
some object in S(v). Since v is a leaf, all objects in S(v) have the same color c and the
claim follows.
For the converse, suppose that q intersects a c-colored object p. Let v be the leaf storing

c. Thus, p ∈ S(v′) for every node v′ on the root-to-v path in CT . Thus, for each v′, the
query on DEC (v′) will return “true”, which implies that v will be visited and c will be
output.
If v1, v2, . . . , vr are the nodes at any level, then the total space used by CT at that level is∑r
i=1 M(|S(vi)|) =

∑r
i=1 |S(vi)| · (M(|S(vi)|)/|S(vi)|) ≤

∑r
i=1 |S(vi)| · (M(n)/n) = M(n),

since
∑r

i=1 |S(vi)| = n and since |S(vi)| ≤ n implies that M(|S(vi)|)/|S(vi)| ≤ M(n)/n.
Now since there are O(log n) levels, the overall space is O(M(n) log n). The query time
can be upper-bounded as follows: If i = 0, then the query on DEC (root) returns “false”
and we abandon the search at the root itself; in this case, the query time is just O(f(n)).
Suppose that i 6= 0. Call a visited node v fruitful if the query on DEC (v) returns “true”
and fruitless otherwise. Each fruitful node can be charged to some color in its subtree that
gets reported. Since the number of times any reported color can be charged is O(log n) (the
height of CT) and since i colors are reported, the number of fruitful nodes is O(i logn).
Since each fruitless node has a fruitful parent and CT is a binary tree, it follows that
there are only O(i log n) fruitless nodes. Hence the number of nodes visited by the search is
O(i logn). At each such node, v, we spend time f(|S(v)|), which is O(f(n)) since |S(v)| ≤ n
and f is non-decreasing. Thus the total time spent in doing queries at the visited nodes is
O(i · f(n) logn). The claimed query time follows.

As an application of this method, consider the generalized halfspace range searching
problem in R

d, for any fixed d ≥ 2. For d = 2, 3, we discussed a solution for this problem
in Section 1.3.2. For d > 3, the problem can be solved by extending (significantly) the
ray-envelope intersection algorithm outlined in Section 1.3.2. However, the bounds are not
very satisfactory—O(nd⌊d/2⌋+ǫ) space and logarithmic query time or near-linear space and
superlinear query time. The solution we give below has more desirable bounds.
The colored objects for this problem are points in R

d and the query is a closed halfspace
in R

d. We store the objects in CT , as described previously. The standard decision problem
that we need to solve at each node v of CT is “Does a query halfspace contain any point
of S(v).” The answer to this query is “true” if and only if the query halfspace is non-
empty. We take the data structure, DEC (v), for this problem to be the one given in [41]. If

|Sv| = nv, then DEC (v) uses O(n
⌊d/2⌋
v /(lognv)

⌊d/2⌋−ǫ) space and has query time O(log nv)
[41]. The conditions in Theorem 1.8 hold, so applying it gives the following result.

THEOREM 1.9 For any fixed d ≥ 2, a set S of n colored points in R
d can be stored in a

data structure of size O(n⌊d/2⌋/(logn)⌊d/2⌋−1−ǫ) such that the i distinct colors of the points
contained in a query halfspace Q− can be reported in time O(log n+ i log2 n). Here ǫ > 0 is
an arbitrarily small constant.

Other applications of the general method may be found in [30].

1-16

1.3.5 Adding range restrictions

We describe the general technique of [29] that adds a range restriction to a generalized
intersection searching problem.
Let PR be a generalized intersection searching problem on a set S of n colored objects

and query objects q belonging to a class Q. We denote the answer to a query by PR(q, S).
To add a range restriction, we associate with each element p ∈ S a real number kp. In
a range-restricted generalized intersection searching problem, denoted by TPR, a query
consists of an element q ∈ Q and an interval [l, r], and

TPR(q, [l, r], S) := PR(q, {p ∈ S : l ≤ kp ≤ r}).

For example, if PR is the generalized (d − 1)-dimensional range searching problem, then
TPR is the generalized d-dimensional version of this problem, obtained by adding a range
restriction to the dth dimension.
Assume that we have a data structure DS that solves PR with O((log n)u + i) query

time using O(n1+ǫ) space and a data structure TDS that solves TPR for generalized (semi-
infinite) queries of the form TPR(q, [l,∞), S) with O((log n)v + i) query time using O(nw)
space. (Here u and v are positive constants, w > 1 is a constant, and ǫ > 0 is an arbitrarily
small constant.) We will show how to transform DS and TDS into a data structure that
solves generalized queries TPR(q, [l, r], S) in O((log n)max(u,v,1) + i) time, using O((n1+ǫ)
space.
Let S = {p1, p2, . . . , pn}, where kp1 ≥ kp2 ≥ . . . ≥ kpn

. Let m be an arbitrary
parameter with 1 ≤ m ≤ n. We assume for simplicity that n/m is an integer. Let
Sj = {p1, p2, . . . , pjm} and S′

j = {pjm+1, pjm+2, . . . , p(j+1)m} for 0 ≤ j < n/m.
The transformed data structure consists of the following. For each j with 0 ≤ j < n/m,

there is a data structure DS j (of type DS) storing Sj for solving generalized queries of the
form PR(q, Sj), and a data structure TDS j (of type TDS) storing S′

j for solving generalized
queries of the form TPR(q, [l,∞), S′

j).
To answer a query TPR(q, [l,∞), S), we do the following. Compute the index j such that

kp(j+1)m
< l ≤ kpjm

. Solve the query PR(q, Sj) using DS j , solve the query TPR(q, [l,∞), S′
j)

using TDS j , and output the union of the colors reported by these two queries. It is easy to
see that the query algorithm is correct. The following lemma gives the complexity of the
transformed data structure.

LEMMA 1.4 The transformed data structure uses O(n2+ǫ/m+ nmw−1) space and can
be used to answer generalized queries TPR(q, [l,∞), S) in O((log n)max(u,v,1) + i) time.

THEOREM 1.10 Let S, DS and TDS be as above. There exists a data structure of size
O(n1+ǫ) that solves generalized queries TPR(q, [l, r], S) in O((log n)max(u,v,1) + i) time.

Proof We will use Lemma 1.4 to establish the claimed bounds for answering general-
ized queries TPR(q, [l,∞), S). The result for queries TPR(q, [l, r], S) then follows from a
technique, based on BB(α) trees, that we used in Section 1.3.3.
If w > 2, then we apply Lemma 1.4 with m = n1/w. This gives a data structure having

size O(n2) that answers queries TPR(q, [l,∞), S) in O((log n)max(u,v,1) + i) time. Hence,
we may assume that w = 2.
By applying Lemma 1.4 repeatedly, we obtain, for each integer constant a ≥ 1, a data

structure of size O(n1+ǫ+1/a) that answers queries TPR(q, [l,∞), S) in O((log n)max(u,v,1)+

Computational Geometry: Generalized (or Colored) Intersection Searching 1-17

i) time. This claim follows by induction on a; in the inductive step from a to a + 1, we
apply Lemma 1.4 with m = na/(a+1).

Using Theorem 1.10, we can solve efficiently, for instance, the generalized orthogonal
range searching problem in R

d. (Examples of other problems solvable via this method may
be found in [29].)

THEOREM 1.11 Let S be a set of n colored points in R
d, where d ≥ 1 is a constant.

There exists a data structure of size O(n1+ǫ) such that for any query box in R
d, we can

report the i distinct colors of the points that are contained in it in O(log n+ i) time.

Proof The proof is by induction on d. For d = 1, the claim follows from Theorem 1.1.
Let d ≥ 2, and let DS be a data structure of size O(n1+ǫ) that answers generalized
(d − 1)-dimensional range queries in O(log n + i) time. Observe that for the generalized
d-dimensional range searching problem, there are only polynomially many distinct semi-
infinite queries. Hence, there exists a data structure TDS of polynomial size that answers
generalized d-dimensional semi-infinite range queries in O(log n+ i) time. Applying Theo-
rem 1.10 to DS and TDS proves the claim.

1.3.6 Exploiting the output size

In this approach, the design of the data structure and the query algorithm is based on the
(unknown) size of the output (i.e., i). It involves building and querying two structures, one
to handle “large” output size and the other to handle “small” output size. The definition of
“large” and “small” depends on the problem at hand and will become clear in the discussion
below.
Suppose that we have designed a low-space data structure, DL, to handle the case where

the output size is large; let the query time of this be O(f(n)+i). Then the crucial observation
is that if i is Ω(f(n)) (i.e., i is large), then the query time is O(i), which is the best one
can hope for since it takes this much time to merely output the query results. However, if
i is O(f(n)) (i.e., i is small), then the query time is O(f(n)) which is undesirable if f(n)
is large. The challenge now is to design a separate data structure, DS , that can handle
efficiently the case where the output size is small, by taking advantage of this very fact.
Intuitively, this step involves “precomputing” and storing the answers to certain carefully
chosen queries; the space used for this is kept small by exploiting the fact that the output
size is small. Note that an additional challenge is that one does not know a priori whether i
is small or large for a given query instance. Therefore, the overall query algorithm proceeds
as follows: First DS is queried with the given query object. If this succeeds in returning
all of the query results (i.e., the output size is small) then the query algorithm terminates.
Otherwise, the query on DS aborts and the algorithm proceeds to reissue the query on DL

to compute the query result.
We illustrate this approach by presenting an optimal algorithm for generalized grounded

range reporting in R
2, where the input is a set of n colored points and the query is a

rectangle q = [xl, xr] × [y0,∞). This algorithm uses O(n) space and answers queries in
O(log n + i) time. The following description is based on ideas from [46, 47], where the
problem is solved in external memory.
For DL, we use a data structure presented in [33] which, for a set of n colored points in

R
2, occupies O(n) space and answers a generalized grounded range query in O(log2 n+ i)

time. Thus, f(n) = log2 n and we take the output size to be large if i ≥ log2 n. We build

1-18

an instance of DL on the given set S.

We design the structure DS as follows: We sort the points of S in non-decreasing order of
their x-coordinates and partition them into groups consisting of log3 n consecutive points
each. For each group we build an instance of DL. Next, we build a balanced binary search
tree, T , based on the left-to-right ordering of the groups and associate a leaf with each
group. Let v be a proper ancestor of a leaf u and let Π(u, v) be the path from u to v
(excluding u and v). Let Sl(u, v) (resp., Sr(u, v)) be the union of the sets of points in the
subtrees rooted at nodes that are left (resp., right) children of nodes on Π(u, v) but not
themselves on the path. For each distinct color in Sl(u, v), we select from among the points
of that color in Sl(u, v) the one with the highest y-coordinate. Let S′

l(u, v) be the set of such
points selected. Let S′′

l (u, v) be the subset of S′
l(u, v) consisting of the log2 n points with

largest y-coordinate (ties broken arbitrarily). If fewer than log2 n points are in S′
l(u, v), then

we include all of them in S′′
l (u, v). A symmetric discussion for Sr(u, v) yields a set S′′

r (u, v).
For each pair (u, v), we store S′′

l (u, v) and S′′
r (u, v) in linked lists, in non-increasing order of

the y-coordinates of their points (ties broken arbitrarily). The number of (u, v)-pairs stored
is O((n/ log3 n) × (log n)) = O(n/ log2 n), so the space occupied by all sets S′′

l (u, v) and
S′′
r (u, v) is O(n). The space occupied by T and the DL structures at all leaves is also O(n).

To answer a query q = [xl, xr] × [y0,∞), we first determine the leaf ul (resp., ur) of T
whose range of x-coordinates contains xl (resp., xr). If ul = ur, then we query the DL

structure of that leaf and stop. Otherwise, we find the lowest common ancestor, v, of ul

and ur and do the following:

• First, we report the distinct colors of the points in the groups associated with ul

and ur that lie in q. This is done by querying the DL structure of ul (resp., ur)
with [xl,∞)× [y0,∞) (resp., (−∞, xr]× [y0,∞)).

• Next, we scan the list for S′′
r (ul, v) and report the colors in it until either (a) we

find a point with y-coordinate less than y0, or (b) all the points in the list have
been scanned. If case (a) holds, then the distinct colors of the points of Sr(ul, v)
that lie in q have been reported. If case (b) holds, then we check the size of
S′′
r (ul, v). If |S′′

r (ul, v)| < log2 n, then again the distinct colors of the points
of Sr(ul, v) that lie in q have been reported. (Recall that, by construction, if
Sr(ul, v) has fewer than log2 n distinctly-colored points, then all of them are
included in S′′

r (ul, v).) However, if |S′′
r (ul, v)| ≥ log2 n, then we conclude that

i is Ω(log2 n). Similarly, we also scan the list for S′′
l (ur, v) and either report

the distinct colors of the points of Sl(ur, v) that lie in q or conclude that i is
Ω(log2 n). If we conclude i is Ω(log2 n) at least once in the above process, then
we discard the reported colors and proceed to query the structure DL built on
the entire set S with q.

The time to find ul, ur, and v is O(log n). If ul = ur, then querying the DL structure
at that leaf node takes O((log(log3 n))2 + i) = O(log n + i) time. If ul 6= ur, then, as
above, querying the DL structure at the two leaves takes O(log n + i) time. The time to
scan S′′

r (ul, v) and S′′
l (ur, v) is O(i). Finally, the time to query the DL structure for S is

O(log2 n+ i) = O(i), since at this point we know that i is Ω(log2 n). Therefore, the overall
query time is O(log n+ i).

THEOREM 1.12 Let S be a set of n colored points in R
2. S can be preprocessed into

a data structure of size O(n) such that the i distinct colors of the points of S lying in any
grounded query rectangle can be reported in O(log n+ i) time.

Computational Geometry: Generalized (or Colored) Intersection Searching 1-19

We remark that the idea of exploiting the output size to gain efficiency can be traced back
to [15], where it was used within the framework of filtering search. It has manifested itself
in various forms in several subsequent papers on standard and generalized range search,
including [1, 2, 3, 4, 10, 37, 46, 47, 49, 51] among others.

1.3.7 A reverse transformation

In Section 1.3.1, we discussed how the generalized range counting problem in R
1 can be

transformed to a standard range counting problem in R
2 (with a grounded query rectangle).

In this section, we show a reverse transformation which maps a standard range counting
problem in R

2 to a generalized range counting problem in R
1. The approach, which is

based on [37], shows that the two problems (i.e., generalized range counting in R
1 and

standard range counting in R
2) are in fact equivalent and it also yields a lower bound

for the former problem based on a known lower bound for the latter (in the word-RAM
model). This reverse transformation is not a solution technique for generalized problems
per se, but it does reveal an interesting connection between a generalized problem and
a standard problem and prompts the question of whether other pairs of generalized and
standard problems might share a similar connection.
We begin by noting that a standard range counting query in R

2 with a four-sided (i.e.,
non-grounded) query rectangle can be answered by doing four standard quadrant count-
ing queries, where each quadrant is defined by one of the vertices of the rectangle, and
then adding and subtracting the counts returned using the principle of inclusion/exclusion.
Therefore, in what follows, it suffices to focus on standard quadrant counting queries. Specif-
ically, we wish to preprocess a set S of n points in R

2 so that given any query quadrant
q = (−∞, a]× (−∞, b], we can count efficiently the number of points of S that are in q. We
assume, without loss of generality, that all coordinates are positive.
We map each point p = (x(p), y(p)) ∈ S to two points in R

1, one with coordinate −x(p)
and the other with coordinate y(p). We give each of these points the color p (any unique
identifier associated with p). Let S1 be the set of these newly constructed 2n points in R

1.
Next we make a copy, S2, of S1 and recolor the points so that all of them have distinct
colors. For each of S1 and S2, we build a data structure for answering generalized range
counting queries in R

1. (Note that the structure on S2 is actually a standard structure since
all colors in S2 are distinct, but it is convenient for our purposes to view it as a generalized
structure.)
Given q, we query the two data structures with q′ = [−a, b] to obtain two integers t1 and

t2, where t1 is the the number of distinct colors among the points of S1 in q′ and t2 is the
number of distinct colors among the points of S2 in q′ (hence also the number of points of
S2 in q′, since the points in S2 have distinct colors). We report t2 − t1 as the answer to the
query q on S, i.e., the number of points of S that are in q.
The correctness of this can be seen as follows: If p is in q, then we have x(p) ≤ a and

y(p) ≤ b, i.e., −a ≤ −x(p) and y(p) ≤ b, i.e., −a ≤ −x(p) < b and −a < y(p) ≤ b (since all
coordinates are positive). Hence the points −x(p) and y(p) are both in q′ = [−a, b]. Thus,
this pair contributes 2 to t2 and 1 to t1, and it follows that t2 − t1 correctly returns the
count of the points of S that are in q. On the other hand, if p is not in q, then we have
−a > −x(p) or y(p) > b (or both). In this case, the pair contributes the same amount
to both t2 and t1 (1, if exactly one inequality holds, and 0 if both hold), so t2 − t1 again
returns the correct overall count.

1-20

1.4 Conclusion and future directions

We have reviewed research on a class of geometric query-retrieval problems, where the
objects to be queried come aggregated in disjoint groups and of interest are questions con-
cerning the intersection of the query object with the groups (rather than with the individual
objects). These problems include the well-studied standard intersection problems as a spe-
cial case and have many applications. We have described several general techniques that
have been identified for these problems and have illustrated them with examples.
Some potential directions for future work include: (i) extending the transformation-based

approach to higher dimensions; (ii) improving the time bounds for some of the problems
discussed here—for instance, can the generalized orthogonal range searching problem in R

d,
for d ≥ 4, be solved with O(polylog(n) + i) query time and O(n(log n)O(1)n) space; (iii)
developing general dynamization techniques for generalized problems, along the lines of,
for instance, [11] for standard problems; (iv) developing efficient solutions to generalized
problems where the objects may be in time-dependent motion; (v) identifying other pairs
of standard and generalized problems (beyond the pair discussed in Section 1.3.7) that
are equivalent; and (vi) implementing and testing experimentally some of the solutions
presented here.

1.5 Acknowledgement

Parts of the material in this chapter are drawn from the publications of some of the chapter’s
authors: References [27, 28, 29], with permission from Elsevier (http://www.elsevier.com),
and Reference [30], with permission from Taylor & Francis (http://www.tandf.co.uk).
The work of one of the authors (S. Rahul) is supported in part by a Doctoral Dissertation
Fellowship from the Graduate School of the University of Minnesota.

References

[1] P. Afshani, L. Arge, and K.G. Larsen. Higher-dimensional orthogonal range reporting

and rectangle stabbing in the pointer machine model. In Proceedings of the ACM
Symposium on Computational Geometry, pages 323–332, 2012.

[2] P. Afshani and T.M. Chan. Optimal halfspace range reporting in three dimensions. In

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages
180–186, 2009.

[3] P. K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbing-max data

structure? In Proceedings of the Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 803–812, 2005.

[4] P. K. Agarwal, S. W Cheng, Y. Tao, and K. Yi. Indexing uncertain data. In Proceed-
ings of the ACM Symposium on Principles of Database Systems, pages 137–146,

2009.

[5] P. K. Agarwal, M. de Berg, S. Har-Peled, M. H. Overmars, M. Sharir, and J. Vahren-

hold. Reporting intersecting pairs of convex polytopes in two and three dimensions.

Computational Geometry: Theory and Applications, 23:195–207, 2002.
[6] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In

B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, volume 223 of Contemporary Mathematics, pages 1–56.

American Mathematical Society, Providence, RI, 1999.

[7] P. K. Agarwal, S. Govindarajan, and S. Muthukrishnan. Range searching in categorical

data: Colored range searching on grid. In Proceedings of the 10th European Sym-

Computational Geometry: Generalized (or Colored) Intersection Searching 1-21

posium on Algorithms, volume 2461 of Lecture Notes in Computer Science, pages
17–28, Berlin, 2002. Springer-Verlag.

[8] P. K. Agarwal and M. van Kreveld. Polygon and connected component intersection

searching. Algorithmica, 15:626–660, 1996.
[9] A. Aggarwal and J. Vitter. The input/output complexity of sorting and related prob-

lems. Communications of the ACM, 31(9):1116–1127, 1988.

[10] A. Agrawal, S. Rahul, Y. Li, and R. Janardan. Range search on tuples of points. Jour-
nal of Discrete Algorithms, 2014. Published online. DOI: 10.1016/j.jda.2014.10.006.

[11] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic

transformations. Journal of Algorithms, 1:301–358, 1980.
[12] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. New upper bounds for gen-

eralized intersection searching problems. In Proceedings of the 22nd International
Colloqium on Automata, Languages and Programming, volume 944 of Lecture Notes
in Computer Science, pages 464–475, Berlin, 1995. Springer-Verlag.

[13] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. Red-blue intersection reporting

for objects of non-constant size. The Computer Journal, 39:541–546, 1996.
[14] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. New results on intersection query

problems. The Computer Journal, 40:22–29, 1997.
[15] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on

Computing, 15(3):703–724, 1986.
[16] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique.

Algorithmica, 1:133–162, 1986.
[17] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT,

25:76–90, 1985.

[18] S. W. Cheng and R. Janardan. Efficient dynamic algorithms for some geometric in-

tersection problems. Information Processing Letters, 36:251–258, 1990.
[19] S. W. Cheng and R. Janardan. Algorithms for ray-shooting and intersection searching.

Journal of Algorithms, 13:670–692, 1992.
[20] M. de Berg and H. Haverkort. Significant-presence range queries in categorical data. In

Proceedings of the 8th International Workshop on Algorithms and Data Structures,
pages 462–473. Springer, 2003.

[21] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd

edition, 2000.

[22] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures

persistent. Journal of Computer and System Sciences, 38:86–124, 1989.
[23] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer–Verlag, New

York, 1987.

[24] A. Elmasry, M. He, J. Munro, and P. Nicholson. Dynamic range majority data struc-

tures. In Proceedings of the 22nd International Symposium on Algorithms and
Computation, pages 150–159. Springer, 2011.

[25] P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-dimensional

substring indexing. In Proceedings of the 20th ACM Symposium on Principles of
Database Systems, pages 282–288, 2001.

[26] P. Gupta. Efficient algorithms and data structures for geometric intersec tion prob-
lems. Ph.D. dissertation, Department of Computer Science, University of Minnesota,

Minneapolis, MN, 1995.

[27] P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection

searching problems: counting, reporting and dynamization. Journal of Algorithms,
19:282–317, 1995.

1-22

[28] P. Gupta, R. Janardan, and M. Smid. Algorithms for generalized halfspace range

searching and other intersection searching problems. Computational Geometry: The-
ory and Applications, 5:321–340, 1996.

[29] P. Gupta, R. Janardan, and M. Smid. A technique for adding range restrictions to

generalized searching problems. Information Processing Letters, 64:263–269, 1997.
[30] P. Gupta, R. Janardan, and M. Smid. Algorithms for some intersection searching prob-

lems involving circular objects. International Journal of Mathematical Algorithms,
1:35–52, 1999.

[31] P. Gupta, R. Janardan, and M. Smid. Efficient algorithms for counting and report-

ing pairwise intersections between convex polygons. Information Processing Letters,
69:7–13, 1999.

[32] T. Hagerup. Sorting and searching on the word RAM. In Proceedings of the 15th
Annual Symposium on Theoretical Aspects of Computer Science, pages 366–398.

Springer, 1998.

[33] R. Janardan and M. Lopez. Generalized intersection searching problems. International
Journal of Computational Geometry and Applications, 3:39–69, 1993.

[34] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin. Counting colors in boxes. In Proceed-
ings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages 785–794,
2007.

[35] H. Kaplan, M. Sharir, and E. Verbin. Colored intersection searching via sparse rect-

angular matrix multiplication. In Proceedings of the ACM Symposium on Compu-
tational Geometry, pages 52–60, 2006.

[36] Y. Lai, C. Poon, and B. Shi. Approximate colored range and point enclosure queries.

Journal of Discrete Algorithms, 6(3):420–432, 2008.
[37] K.G. Larsen and F. van Walderveen. Near-optimal range reporting structures for

categorical data. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 265–276, 2013.

[38] J. Matoušek. Cutting hyperplane arrangements. Discrete & Computational Geome-
try, 6:385–406, 1991.

[39] J. Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8:315–
334, 1992.

[40] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Com-
putational Geometry, 10:157–182, 1993.

[41] J. Matoušek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete &
Computational Geometry, 10:215–232, 1993.

[42] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257–276,
1985.

[43] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceed-
ings of the 13th ACM-SIAM Symposium on Discrete Algorithms, pages 657–666,

2002.

[44] G. Navarro. Spaces, trees, and colors: The algorithmic landscape of document retrieval

on sequences. ACM Computing Surveys, 46(4):52, 2014.
[45] G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear

space. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1066–1077, 2012.

[46] Y. Nekrich. Space-efficient range reporting for categorical data. In Proceedings of the
31st symposium on Principles of Database Systems, pages 113–120, 2012.

[47] Y. Nekrich. Efficient range searching for categorical and plain data. ACM Transac-
tions on Database Systems, 39(1):9, 2014.

[48] M. Patil, S. V. Thankachan, R. Shah, Y. Nekrich, and J.S. Vitter. Categorical range

Computational Geometry: Generalized (or Colored) Intersection Searching 1-23

maxima queries. In Proceedings of the ACM Symposium on Principles of Database
Systems, pages 266–277, 2014.

[49] S. Rahul. Improved bounds for orthogonal point enclosure query and point location

in orthogonal subdivisions in R3. In Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2015. To appear.

[50] Q. Shi and J. JáJá. Optimal and near-optimal algorithms for generalized intersection

reporting on pointer machines. Information Processing Letters, 95(3):382–388, 2005.
[51] Y. Tao. Stabbing horizontal segments with rays. In Proceedings of the ACM Sympo-

sium on Computational Geometry, pages 313–322, 2012.
[52] M. J. van Kreveld. New Results on Data Structures in Computational Geome-

try. Ph.D. dissertation, Department of Computer Science, Utrecht University, The

Netherlands, 1992.

[53] J. S. Vitter. External memory algorithms and data structures: dealing with massive

data. ACM Computing Surveys, 33:209–271, 2001.
[54] D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic data

structures. Journal of the ACM, 32:597–617, 1985.

