
A Linear-Space Algorithm for Distance Preserving Graph
Embedding∗

Tetsuo Asano1 Prosenjit Bose2 Paz Carmi2 Anil Maheshwari2

Chang Shu3 Michiel Smid2 Stefanie Wuhrer2,3

Abstract

The distance preserving graph embedding problem is to embed the vertices of a given
weighted graph onto points in d-dimensional Euclidean space for a constant d such that for
each edge the distance between their corresponding endpoints is as close to the weight of the
edge as possible. If the given graph is complete, that is, if the weights are given as a full
matrix, then multi-dimensional scaling [13] can minimize the sum of squared embedding errors
in quadratic time. A serious disadvantage of this approach is its quadratic space requirement.
In this paper we develop a linear-space algorithm for this problem for the case when the weight
of any edge can be computed in constant time. A key idea is to partition a set of n objects into
O(
√

n) disjoint subsets (clusters) of size O(
√

n) such that the minimum inter cluster distance
is maximized among all possible such partitions. Experimental results are included comparing
the performance of the newly developed approach to the performance of the well-established
least-squares multi-dimensional scaling approach [13] using three different applications. Al-
though least-squares multi-dimensional scaling gave slightly more accurate results than our
newly developed approach, least-squares multi-dimensional scaling ran out of memory for data
sets larger than 15000 vertices.

1 Introduction

Suppose a set of n objects is given and for each pair (i, j) of objects their dissimilarity denoted by
δi,j can be computed in constant time. Using the dissimilarity information, we want to map the
objects onto points in a low dimensional Euclidean space while preserving the dissimilarities as the
distances between the corresponding points.

Converting distance information into coordinate information is helpful for human perception be-
cause we can see how close two objects are. Many applications require the embedding of a set of

∗A preliminary version of this work appeared at CCCG 2007 [2]. Research supported in part by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research on Priority Areas, Scientific Research
(B), HPCVL, NSERC, NRC, MITACS, and MRI. We thank attendees of the 9th Korean Workshop on CG and
Geometric Networks 2006. Work by T.A. was done in 2006 while visiting MPI, Carleton University, and NYU. We
wish to thank anonymous referees for helpful comments.

1Japan Advanced Institute of Science and Technology, Ishikawa, Japan.
2Carleton University, Ottawa, Canada.
3National Research Council of Canada, Ottawa, Canada.

1

high dimensional objects while preserving dissimilarities for data analysis and visualization. Ex-
amples include analysis of psychological models, stock markets, computational chemistry problems,
and image and shape recognition. Because of its practical importance, this topic has been widely
studied under the name of dimensionality reduction [4].

Multi-Dimensional Scaling (MDS) [13] is a generic name for a family of algorithms for dimension-
ality reduction. Although MDS is powerful, it has a serious drawback for practical use due to its
high space complexity. The input to MDS is an n× n matrix specifying the pairwise dissimilarities
(or distances).

In this paper, we present a method for dimensionality reduction that avoids this high space
complexity if the dissimilarity information is given by a function that can be evaluated in constant
time. In many cases, we can assume that dissimilarity information is given by a function that can
be evaluated in constant time. For instance, if we are given k-dimensional data vectors, where k is a
large constant, we can compute the Euclidean distance between two data vectors in constant time.
High dimensional data-vectors are ubiquitous in the field of computer vision, where the vectors
represent images, and the field of machine learning, where the vectors represent characteristic
dimensions of the data. An algorithm requiring linear space is preferable to an algorithm requiring
quadratic space for large datasets, even if the algorithm requiring linear space is slower than the
algorithm requiring quadratic space. The reason is that the time to load data from external memory
dominates the running time of the algorithm in practice. Hence, the use of external memory should
be avoided by using the linear-space algorithm.

Contribution

Given a set S of n objects and a function that computes the dissimilarity δi,j, 1 ≤ i, j ≤ n with
δi,j = δj,i between a pair of objects in O(1) time, the objective is to find a set P (S) of points
p1, . . . , pn in d-dimensional space, such that ELSMDS =

∑
1≤i<j≤n(d(pi, pj) − δi,j)

2 is minimized,

where d(pi, pj) is the Euclidean distance between the embedded points pi and pj in Rd. We aim to
perform this computation using linear space.

A key idea of our linear-space implementation is to use clustering in the first step. That is, we
partition the set S into O(

√
n) disjoint subsets called clusters. More precisely, using a positive

integer m, we partition S into k = O(n
m

) subsets C1, C2, . . . , Ck such that each cluster contains
between m and cm objects, where c ≥ 2 is a constant, except for possibly one cluster having at
most m elements. When we set m = O(

√
n) then both the number, k, of clusters and the largest

cluster size are bounded by O(
√
n). Hence, each cluster has size O(

√
n).

To compute the embedding, we first find a center for each cluster and embed the cluster centers
using MDS. Since there are O(

√
n) clusters this takes O(n) space. Once the cluster centers are

embedded, we add the remaining objects by embedding one cluster at a time using MDS. Note
that performing MDS with a distance matrix for each cluster separately requires only O(n) working
space.

The quality of the output depends heavily on the clustering. A clustering achieves the largest
inter-cluster distance if the smallest distance between objects from different clusters is maximized.
A clustering achieves the smallest inner-cluster distance if the largest distance between objects
from the same cluster is minimized. The best clustering that can be achieved is a clustering that
achieves the largest inter-cluster distance and the smallest inner-cluster distance simultaneously.
Unfortunately, it is NP-hard to find a clustering that achieves the smallest inner-cluster distance.
However, we provide an algorithm that in the special case of so-called “well-separated” partitions

2

as defined in Section 3.1 finds the clustering that achieves the two goals simultaneously.
Since it is in general not possible to find a clustering achieving both goals, we relax the clustering

condition. In many applications, dissimilarities between similar objects have more importance
than those between totally dissimilar objects. We propose a simple algorithm for finding a size-
constrained clustering that achieves the largest inter-cluster distance.

Experimental results are included comparing the performance of the newly developed approach to
the performance of the well-established least-squares multi-dimensional scaling approach [13]. We
apply the embedding algorithms to three different application areas and show that our algorithm
requires significantly less space than the least-squares multi-dimensional scaling approach, with
comparable accuracy.

Organization

The paper is organized as follows. Section 2 reviews related work and gives an overview of ap-
plications of dimensionality reduction using only linear space. Section 3 presents our clustering
algorithm that finds O(

√
n) clusters of size O(

√
n) each with largest inter-cluster distance. Sec-

tion 4 presents the algorithm to embed the clusters in a low-dimensional space while minimizing the
sum of squared embedding errors over all pairwise dissimilarities using only O(n) space. Section 5
gives experimental results of our implementation. Finally, Section 6 concludes and gives ideas for
future work.

2 Related Work

This section reviews work related to dimensionality reduction. We start by giving applications of
dimensionality reduction using linear space.

2.1 Applications of Dimensionality Reduction

Problems where we wish to embed dissimilarities as points in a low dimensional space often arise
in many different settings including data visualization [18], data classification [14], and computer
graphics [9]. The goal is to find meaningful low-dimensional subspaces that are hidden in the
high-dimensional observations. Low-dimensional subspaces are especially useful to visualize the
high-dimensional data in a meaningful way.

Embedding high-dimensional datasets is a common task in data classification. We therefore
demonstrate embedding a large dataset of registered high-energy gamma particles with our algo-
rithm in Section 5. Section 5 further applies our algorithm to embed grey-level images of faces
to a low-dimensional space. This embedding is useful in applications such as face recognition or
expression recognition.

A problem arising in computer graphics is surface matching or recognition. Given a database
of three-dimensional triangulated surfaces, we aim to efficiently find the instance in the database
that is closest to a new triangulated model. An especially hard variant of this problem is matching
deformable objects. Examples of deformable surfaces are human faces and bodies, since the muscle
deformations and skeletal movements of the human yield new shapes of the human face and body.
Matching human faces (this is also called 3D face recognition) or bodies requires defining similarity of
triangulated deformable surfaces. In the case of the human body, we can model the deformations as

3

isometries. That is, geodesic distances on the surface are invariant during deformation. Clearly, this
model is not completely accurate since human skin can stretch, but the assumption approximates
the valid deformations and yields good matching algorithms [6, 7, 8, 9]. When matching isometric
deformable surfaces, the pairwise geodesic distances between vertices on the triangular surface can
be used as dissimilarities to perform MDS. Elad and Kimmel [15] observed that after embedding the
vertices of the surface in a low dimensional space via MDS, we obtain a point cloud that is invariant
with respect to deformations of the original surface. This point cloud is denoted as the canonical
form of the original surface. Elad and Kimmel show via experimental results that performing the
matching step after performing MDS yields accurate matching results. We use this application to
demonstrate the use of our algorithm in Section 5.

2.2 Multi Dimensional Scaling

Multi-Dimensional Scaling (MDS) [13] is a general and powerful framework for constructing a
configuration of points in a low-dimensional space using information on the pairwise dissimilarities
δi,j. Given a set S of n objects as well as the dissimilarities δi,j, 1 ≤ i, j ≤ n with δi,j = δj,i, the
objective is to find a set P (S) of points p1, . . . , pn in d-dimensional space, such that the Euclidean
distance between pi and pj equals δi,j. Since this objective can be shown to be too ambitious, we
aim to find a good approximation. Different related optimality measures can be used to reach this
goal.

Classical MDS, also called Principal Coordinate Analysis (PCO), assumes that the dissimilarities
are Euclidean distances in a high-dimensional space and aims to minimize

EPCO =
∑

1≤i<j≤n

|d(pi, pj)
2 − δ2

i,j|, (1)

where d(pi, pj) is the Euclidean distance between the embedded points pi and pj in Rd. Equation
(1) is minimized by computing the d largest eigenvalues and corresponding eigenvectors of a matrix
derived from the distance matrix [13]. Thus, if we neglect some numerical computational issues
concerning eigenvalue computation, the PCO embedding for n objects can be computed in O(n2d)
time using quadratic space. The reason is that only the d eigenvectors corresponding to the largest
eigenvalues need to be computed. These can be computed in O(n2d) time using a variation of the
power method [22]. Note that PCO’s result can be poor when the (d + 1)-st largest eigenvalue is
not negligible compared to the d-th largest one for embedding into d-space.

Least-squares MDS (LSMDS) aims to minimize

ELSMDS =
∑

1≤i<j≤n

(d(pi, pj)− δi,j)2. (2)

Equation (2) can be minimized numerically by using scaling by maximizing a convex function
(SMACOF) [13]. However, the algorithm can get stuck in local minima. The embedding can be
computed in O(n2t) time using quadratic space, where t is the number of iterations required by the
SMACOF algorithm.

Although PCO and LSMDS are powerful techniques, they have serious drawbacks because of
their high space complexity, since the input is an n × n matrix specifying pairwise dissimilarities
(or distances).

The recent approach of anchored MDS [10] enhances MDS by allowing to embed groups of objects
in the following way. The data is interactively divided into two groups, a group of objects called

4

anchors, and a group of objects called floaters. The anchors either have fixed coordinates or are
embedded using MDS. The floaters are then embedded with respect to the anchors only. That
is, anchors affect the embedding of floaters, but floaters do not affect the embedding of anchors.
This approach is conceptually similar to the clustering approach taken in this paper. However, no
clustering is performed in anchored MDS; the groups are given to the algorithm as input.

2.3 Other Dimensionality Reduction Algorithms

Two other popular algorithms for dimensionality reduction are locally linear embedding (LLE) [24]
and isomap [25]. LLE is similar to our algorithm in that the points are clustered and clusters
are later recombined. However, the clustering used in LLE is a heuristic and cannot be proven
to satisfy the property that the minimum distance between objects in any two different clusters
is maximized. We will show later that the clustering presented in this paper has this desirable
property. Furthermore, the recombination step of LLE requires quadratic working space. Isomap
embedding uses classical MDS as a subroutine and therefore uses quadratic working space. The
advantage of using an isomap embedding is that the algorithm can be proven to converge to the
global optimal embedding.

Another class of dimensionality reduction algorithms aims to analytically bound the worst em-
bedding error [11, 12].

3 Clustering

In this section, we consider the problem of partitioning a set of objects into clusters according to
the values of the pairwise dissimilarities. We show that it is possible to find a size-constrained
partitioning with largest inter-cluster distance using linear space.

Let S be a set of n objects: S = {1, . . . , n}. Assume that we are given a function which computes
the dissimilarity between any pair (i, j) of objects as δi,j with δi,i = 0 and δi,j = δj,i > 0 for i 6= j. A
partition P of a set S into k disjoint clusters C1, . . . , Ck is called a k-partition of S. A k-partition P
is characterized by two distances, inner-cluster distance Dinn(P) and inter-cluster distance Dint(P),
which are defined as

Dinn(P) = max
Ci∈P

max
p,q∈Ci

δp,q, (3)

and
Dint(P) = min

Ci 6=Cj∈P
min

p∈Ci,q∈Cj

δp,q. (4)

When we define a complete graph G(S) with edge weights being dissimilarities, edges are classified as
inner-cluster edges connecting vertices of the same cluster and inter-cluster edges between different
clusters. The inner-cluster distance is the largest weight of any inner-cluster edge and the inter-
cluster distance is the smallest weight of any inter-cluster edge.

A k-partition is called farthest (most compact, respectively) if it is a k-partition with largest
inter-cluster distance (smallest inner-cluster distance, respectively) among all k-partitions. Given
a set S of n objects, we want to find a k-partition of S which is farthest and most compact. It
is generally hard to achieve the two goals simultaneously. In fact, the problem of finding a most
compact k-partition, even in the special case where the dissimilarities come from a metric space, is
NP-hard [16]. There are, however, cases where we can find such a k-partition rather easily. One
easy case is the case of a well-separated partition.

5

3.1 Well-separated partitions

A k-partition P of a set S is called well-separated if Dinn(P) < Dint(P). We prove that if there is
a well-separated k-partition of a given set then we can find a k-partition that is farthest and most
compact. Moreover the partition is unique if no two pairs of objects have the same dissimilarity.

Lemma 3.1 Let S be a set of n objects with a dissimilarity defined for every pair of objects. If
S has a well-separated k-partition, then it is unique provided that no two pairs of objects have the
same dissimilarity. The unique well-separated k-partition is farthest and most compact.

Proof: The uniqueness of a well-separated k-partition follows from the assumption that no two
pairs of objects have the same dissimilarity. A k-partition classifies edges of a complete graph G(S)
defined by dissimilarities into inner-cluster edges and inter-cluster edges. Then, the inner-cluster
distance Dinn(P) is achieved by the largest inner-cluster edge and the inter-cluster distance Dint(P)
by the smallest inter-cluster edge. Since P is well-separated, this means that for every inner-cluster
edge, its weight is smaller than that of every inter-cluster edge. So, if we change any edge from an
inner-cluster to an inter-cluster edge or vice versa then we violate the inequality Dinn(P) < Dint(P).
Thus, uniqueness follows.

Let P be the unique well-separated k-partition of S. Then, it is most compact since reducing
the inner-cluster distance requires splitting some clusters, which increases the number of clusters.
It is also farthest. To prove it by contradiction, suppose that there is a k-partition (which is not
necessarily well separated) with inter-cluster distance t > Dint(P). This means that all the edges
which were inner-cluster edges remain unchanged and those edges with weight greater than Dinn(P)
and less than t have become inner-cluster edges. So, the number of connected components must be
at most k − 1, which is a contradiction. �

Consider the case where S admits a well-separated k-partition. By Lemma 3.1, if we sort all
the dissimilarities in increasing order then the inter-cluster distance must appear right next to the
inner-cluster distance in this order. So, it suffices to find some dissimilarity t∗ such that there is
a well-separated k-partition with the inner-cluster distance being t∗. If we define a graph Gt(S)
as the subgraph of G(S) with all the edges of weight at most t then the connected components
of Gt(S) define a well-separated partition of S with inner-cluster distance t. So, if we can find a
dissimilarity t such that the graph Gt(S) consists of k connected components, then it is a solution.
The following is an algorithm for counting the number of connected components in a graph Gt(S)
using linear working space. Each cluster is stored in a linked list. In the algorithm, we first scan
every pair and if its weight is at most t then we merge the two clusters containing those objects
into one cluster. At this moment we report the number of remaining clusters. After that, we again
scan every pair and report NO if we find a pair with dissimilarity greater than t such that both of
them belong to the same cluster, and report YES if no such pair is found.

If S has a well-separated k-partition, the algorithm returns k and YES for dissimilarity δi,j for
some pair (i, j). A naive algorithm is to check all the dissimilarities. Since there are O(n2) different
dissimilarities, O(n2) iterations of the algorithm are enough. It takes O(n4) time in total but the
space required is O(n).

An idea for efficient implementation is binary search on the sorted list of dissimilarities. Generally
speaking, the larger the t value becomes the fewer subsets we have by the algorithm above. If the
output is k and YES for some t∗, then the resulting partition is the unique well-separated k-partition
we want. If there is such a value t∗, any other value of t with t > t∗ generates fewer clusters. On the
other hand, if we have more than k clusters for some t, then we have t < t∗. There can be many t

6

values that generate exactly k clusters, but t∗ is the largest value among them. Thus, if the output
is NO and the number of clusters is at most k for some t then we can conclude that t < t∗. Based
on this observation, we can implement a binary search.
Linear-space algorithm for well-separated partition: One serious problem with the method
sketched above is that we cannot store a sorted list of dissimilarities due to the linear space con-
straint. We implement the binary search in two stages. In the beginning, our search interval contains
a superlinear number of distances. So, we compute an approximate median instead of the exact
median. As the binary search proceeds, our interval gets shorter and shorter. Once the number of
distances falling into the search interval is at most cn for some positive constant c, then we can find
an exact median. A more detailed description follows:

We start our binary search from the initial interval [1,
(
n
2

)
] which corresponds to a distance in-

terval determined by the smallest and largest distances. We maintain an index interval [low, high]
corresponding to the distance interval [δlow, δhigh], where δi denotes the i-th smallest distance. Imag-
ine dividing the interval [low, high] into 4 equal parts, then an approximate median is any element
contained in the 2nd or 3rd quarters. Thus, half of the elements in [low, high] are approximate
medians. Equivalently, a random element is an approximate median with probability 1/2. How can
we find one?

We pick a random integer k with 1 ≤ k ≤ high − low + 1. We can evaluate the dissimilarity
function in the order in which the dissimilarities are encountered when scanning the (unknown)
distance matrix row by row to simulate scanning the distance matrix. We refer to this process,
which uses only O(1) space, as scanning the matrix. We scan the matrix row by row and pick the
k-th element X with δlow ≤ X ≤ δhigh that we encounter. Given X, we scan the matrix and count
the number of values between δlow and X, and also count the number of values between X and
δhigh. In this way, we find out if X is an approximate median. If it is not, then we repeat the
above. We know that the expected number of trials is 2. Assume that X is a good approximate
median. While doing the above, we also find the index m such that X = δm. Now we test if X is
equal/larger/smaller than Dinn. If they are equal, we are done. Assume X is less than Dinn. Then,
we set the right boundary high of our current interval to m. If X is larger than Dinn, then we set
the left boundary low to m.

In this way, we spend O(n2) time for one binary search step. Since the expected number of these
steps is O(log n), the overall expected time bound is O(n2 log n). Once the current interval contains
at most cn distances, we can apply an exact median finding algorithm although we have to scan
the matrix in O(n2) time.

Theorem 3.2 Given n objects, a function evaluating the dissimilarity between any pair of objects in
O(1) time, and an integer k < n, we can decide whether or not there is a well-separated k-partition
in O(n2 log n) expected time and O(n) working space using approximate median finding. Moreover,
if there is such a partition, we find it in the same time and space.

If we are allowed to use O(n log n) space, then we can further improve the running time using
another randomization technique as follows. For ease of notation, assume that the dissimilarities are
numbers 1, 2, 3, . . . , n2. Define the interval Ii = [(i− ε/2)n, (i+ ε/2)n] for i = 1, 2, . . . , n. We would
like to obtain one element from each of these intervals. We choose a random sample consisting of
cn log n elements. What is the probability that this sample leaves one of the intervals Ii empty?
This probability is at most

7

the probability that we did not choose any element of I1
+ the probability that we did not choose any element of I2 + · · ·
+ the probability that we did not choose any element of In.

All probabilities above are equal, so let us look at the probability that we did not choose any
element of I1. The probability that a random element is not in I1 equal to 1− (εn)/n2 = 1− ε/n ≤
e−ε/n. So the probability that none of the cn log n random elements is in I1 is at most (e−ε/n)cn logn,
which is n−c

′
for some constant c′. Thus the total probability that our random sample is not good

is at most n×n−c′ , which is at most 1/2. In other words, the probability that the random sample is
good is at least 1/2. This means that we expect to do the random sampling at most twice. Hence,
the expected running time of the algorithm is O(n2).

3.2 Farthest and Most Compact k-partition

The problem of finding a most compact k-partition with the smallest inner-cluster distance is
difficult since even in the special case that the dissimilarities come from a metric space, finding the
most compact k-partition for k ≥ 3 is NP-hard [16, 19]. However, we can find a farthest k-partition
rather easily.

Let e1, e2, . . . , en−1 be the edges of a minimum spanning tree MST (S) for a complete graph G(S)
defined for a set S of n objects, and assume that

|e1| ≤ |e2| ≤ · · · ≤ |en−1|. (5)

LetMSTk(S) be the set of components resulting after removing the k−1 longest edges en−1, . . . , en−k+1

from MST (S). Then, MSTk(S) has exactly k components, which defines a k-partition of S. The
following lemma has been claimed by Asano et al. [1] and is proven in Kleinberg and Tardos [21, p.
160].

Lemma 3.3 Given a set S of n objects with all pairwise dissimilarities defined, there is an algorithm
for finding a farthest k-partition in O(n2) time and linear working space.

3.3 Size-constrained Farthest partition

Recall that our aim is to embed the graph using only O(n) space. In order to use MDS for the
embedding, clusters that are farthest are not sufficient. We also need to ensure that the clusters
are sufficiently small and that there are not too many of them. Specifically, we need to find O(

√
n)

clusters of size O(
√
n) each. For a given m with 1 < m < n, define a farthest partition satisfying the

size constraint on m as a clustering P where all clusters contain between m and cm vertices, where
c ≥ 2 is a constant, at most one cluster contains at most m vertices, and Dint(P) is maximized.
The method outlined in Lemma 3.3 does not provide such a partitioning.

To find the farthest partition satisfying the size constraint on m given a set S of n objects,
consider the following algorithm. First, each object i is placed into a separate cluster Ci of size one
to initialize the algorithm. The algorithm iteratively finds the minimum remaining dissimilarity
δi,j. If merging the cluster Cl containing object i and cluster Cq containing object j does not violate
the size constraint, that is, if it does not produce a new cluster of size exceeding cm, the algorithm
merges Cl and Cq into one cluster Cl. Dissimilarity δi,j is then removed from consideration. These
steps are iterated until all of the dissimilarities are removed from consideration. We denote this
algorithm Size-constrained-farthest-partition(m) in the following.

8

Lemma 3.4 Given m with 1 < m < n and a constant c ≥ 2, algorithm Size-constrained-farthest-
partition(m) creates a partition such that all clusters contain between m and cm vertices except for
at most one cluster that contains at most m vertices.

Proof: None of the clusters created by this algorithm has size greater than cm, since otherwise,
the clusters would not have been merged by the algorithm. It remains to prove that there exists
at most one cluster of size at most m. Assume for the sake of a contradiction that there exist
two clusters Cl and Cq of size at most m. Since Cl and Cq have not yet been merged, all δi,j with
i ∈ Cl and j ∈ Cq have not yet been removed from consideration. Hence, the algorithm has not yet
reached its stopping criterion, which contradicts the assumption. Hence, the clusters Cl and Cq are
merged before the termination of the algorithm and therefore, there exists at most one cluster that
contains at most m vertices. �

Note that the algorithm created k clusters with
⌊
n
cm

⌋
< k ≤

⌈
n
m

⌉
+ 1, because all clusters contain

at most cm vertices and at most one cluster contains at most m vertices according to the pigeon
hole principle.

Lemma 3.5 The partition created by algorithm Size-constrained-farthest-partition(m) is farthest
among all partitions with the property that all clusters contain at most cm vertices and at most one
cluster contains at most m vertices, where c ≥ 2 is a constant.

Proof: Assume for the sake of a contradiction that the partition P created by the algorithm
described above is not farthest. Hence, there exists a farther optimal partition POPT with the
property that all clusters contain at most cm vertices and at most one cluster contains at most m
vertices. The partition P has Dint(P) = δi,j with i ∈ Dl and j ∈ Dq, where Dl and Dq are the first
clusters that do not get merged by our algorithm. Since POPT is farther, δi,j is an internal edge of
POPT . Since all clusters of POPT contain at most cm vertices, it is impossible for all vertices of Dl

and Dq to belong to one cluster of POPT . Hence, without loss of generality, there exists a vertex
a in Dl that is in a different cluster of POPT than i. Next, we will show that there exists a path
pai between a and i inside Dl comprised entirely of edges of length at most δi,j. Initially, i and a
were located in two different components Ci and Ca in the execution of the algorithm described
above. Since during its execution, the algorithm merged the component Ca containing a and the
component Ci containing i before considering the edge δi,j, there exists an element b ∈ Ca and an
element c ∈ Ci with δb,c ≤ δi,j. This argument can be applied recursively to the pairs of vertices
a, b and i, c, respectively, until the path pai, comprised entirely of edges of length at most δi,j, is
found. For an illustration of this approach, please refer to Figure 1.

Since in POPT , a is in a different cluster than i, at least one of the edges on the path pai is an
inter-cluster edge. Hence, the inter-cluster distance Dint(POPT) ≤ Dint(P), which contradicts the
initial assumption. This proves that the partition P is farthest. �

To find this partition, we need to find the shortest edge that has not yet been considered iteratively
until all the edges are considered. In algorithm Size-constrained-farthest-partition(m) we use a data
structure for extracting edges in increasing order of their weights.

To analyze the running time of algorithm Size-constrained-farthest-partition(m), note that finding
and storing the minimum dissimilarity of each row of the matrix takes O(n2) time. There are at
most O(n2) iterations to find the smallest dissimilarity that has not yet been considered. One
iteration takes O(n) time, since we store and update the minimum dissimilarity of each row of the
matrix. Hence, the total running time is O(n3).

9

a

i j

pai

Dl

Dq

Figure 1: Path pai comprised of short edges between i and a.

Theorem 3.6 One can compute the farthest partition satisfying the size constraint on m in O(n3)
time using O(n) space.

An example of running the clustering algorithm on a set of points in the plane is shown in Figure 2.
In this example, the dissimilarity is defined to be the Euclidean distance between a pair of points.
Clusters are shown as connected sets. Cluster centers are shown as black points.

Figure 2: Example showing the result of running the clustering algorithm on a random set of 268
points in the plane with m = 2 and c = 11.

4 Graph Embedding

A direct way of embedding a weighted graph into a low-dimensional space is to apply least-squares
multi-dimensional scaling (LSMDS), see Section 2.2, which needs a full matrix representing dissim-

10

ilarities between all pairs of objects. This takes O(n2) space for a set of n objects, which is often
a problem for implementation when n is large. To remedy this, we partition the given set into
O(
√
n) clusters of size O(

√
n) each by applying Algorithm Size-constrained-farthest-partition(m)

with m =
√
n. Consider the k = O(

√
n) clusters C1, C2, . . . , Ck with ni = |Ci| = O(

√
n) for each i.

First we find a center object in each cluster Ci, denoted by center(Ci), which is defined to be
an object in Ci whose greatest dissimilarity with any other object in the cluster is the smallest.
We denote the i-th cluster by Ci = {pi1, pi2, . . . , pini−1}. For ease of notation, we exclude the cluster
center pi = pini

from the cluster Ci in the following.

Second, we form a set C0 = {p1, p2, . . . , pk} consisting of cluster centers. Since k = O(
√
n), we

can apply LSMDS to find an embedding that minimizes the sum of squared embedding errors of
elements in C0 using a distance matrix of size O(n). We fix those points as embedded positions
X0 = [~x1, ~x2, . . . , ~xk].

Third, we embed clusters C1, C2, . . . , Ck, k = O(
√
n), one by one. We do this by minimizing a

generalized form of the least-squares MDS energy function given in Equation (2). The energy that
is minimized to embed cluster Ci, i = 1, 2, . . . , k is

E =
∑
pj∈Ci

∑
pk∈Ci

(δj,k − d(pj, pk))
2

︸ ︷︷ ︸
E1

+
∑
pj∈Ci

∑
pk∈C0

(δj,k − d(pj, pk))
2

︸ ︷︷ ︸
E2

. (6)

Denote the position vector of the embedding of object pj ∈ Ci in Rd by ~xj = [xj,1 xj,2 . . . xj,d]
T

and denote the point matrix by Xi =
[
~xi1 ~xi2 . . . ~xini−1

]T
.

The first part of the energy function, E1, corresponds to the complete LSMDS energy if only
points in the same cluster Ci are considered. The energy E1 can therefore be expressed as

E1 = α + β − γ

with α =
∑

pj∈Ci

∑
pk∈Ci

δ2
j,k, β =

∑
pj∈Ci

∑
pk∈Ci

d(pj, pk)
2 and γ = 2

∑
pj∈Ci

∑
pk∈Ci

d(pj, pk)δj,k
and using the Cauchy-Schwartz inequality bounded by

E1 ≤
∑
pj∈Ci

∑
pk∈Ci

δ2
i,j + tr(XT

i ViXi)− 2tr(XT
i Bi(Zi)Zi) =: τ ∗,

where Xi is a d× (ni− 1) matrix containing the coordinates of pi, Vi is an (ni− 1)× (ni− 1) matrix
with elements

Vij,k
=

{
ni − 1 if j = k

−1 if j 6= k,

Zi is a possible solution for Xi, and Bi(Zi) is an (ni − 1)× (ni − 1) matrix with elements

Bij,k
=


− δj,k

d(pi
j ,p

i
k)

if j 6= k, d(pij, p
i
k) 6= 0

0 if j 6= k, d(pij, p
i
k) = 0∑n

l=1,l 6=j Bl,j if j = k.

The gradient of τ ∗ can be found analytically as ∇τ ∗ = 2XT
i (Vi −Bi) [5, p.146-155].

11

The second part of the energy, E2, considers the distances between the cluster being embedded
and the fixed cluster centers. It is the same energy used when adding the points in Ci to the fixed
embedding of C0 one by one. The energy can be rewritten as

E2 =
∑
pj∈Ci

α∗j + β∗j − γ∗j

where α∗j =
∑

pk∈C0
δ2
j,k, β

∗
j =

∑
pk∈C0

d(pj, pk)
2 and γ∗j = 2

∑
pk∈C0

δj,kd(pj, pk). The gradient of E2

can therefore be computed analytically as

∇E2 =

[
∂E2

∂pi1

∂E2

∂pi2
. . .

∂E2

∂pini−1

]
,

where ∂E2

∂pi
k

=
∑

~xj∈X0
2(~xik − ~xj)(1−

δj,k

d(pj ,pi
k)

) [3].

Hence, we can compute the gradient of the convex function τ = τ ∗ +E2 bounding E from above
with respect to Xi analytically as

∇τ = 2XT
i (Vi −Bi) +

[
∂E2

∂pi1

∂E2

∂pi2
. . .

∂E2

∂pini−1

]
. (7)

We minimize τ using a quasi-Newton method called limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LSBFGS) scheme in our experiments [23]. This quasi-Newton method offers the advantage
of obtaining close to quadratic convergence rates without the need to compute the inverse of the
Hessian matrix explicitly in each step. Instead LSBFGS updates an approximation to the inverse
Hessian matrix in each iterative step, such that the approximation converges to the true inverse of
the Hessian in the limit. To be consistent, when adding clusters to the embedding, we initialize the
embedding positions to the positions computed when adding an object to the PCO embedding of
the cluster centers [17].

Since we aim to minimize τ , we embed each cluster optimally according to the LSMDS optimality
measure when taking into consideration the cluster centers and the objects in the same cluster. We
do not take points other than the cluster centers from different clusters into account, since this would
require more than linear space. This can be viewed as a trade-off between space and accuracy of
the embedding.

The running time of this algorithm, referred to as the embedding algorithm in the following,
depends on the maximum number of iterations t. Embedding the cluster centers takes O(nt) time
and embedding each cluster Ci takes O(nt) time. Hence, the total running time of the embedding

algorithm is O(n
3
2 t). Since all of the matrices required for the computation are of size at most

O(
√
n)×O(

√
n), the algorithm uses linear working space.

Recall that the algorithm to compute a size-constrained farthest partition takes O(n3) time. This
yields the following result:

Theorem 4.1 Given a set S of n objects, the embedding algorithm embeds S in Rd for any con-
stant embedding dimension d while numerically minimizing the sum of squared embedding errors of
pairwise dissimilarities between objects in S using O(n3 + n

3
2 t) time and O(n) space, where t is the

number of iterations required to minimize the LSMDS energy.

12

5 Experiments

We implemented our algorithm of Theorem 4.1 in C++. All of the experiments were conducted on
an Intel (R) Pentium (R) D with 3.5 GB of RAM. We compare our algorithm to two alternative
embedding algorithms: the SMACOF algorithm explained in Cox and Cox [13] to compute an
LSMDS embedding using quadratic space and a variant of our algorithm that embeds the cluster
centers using SMACOF and simply adds the remaining objects one by one to the embedding. The
two algorithms are explained below.

5.1 SMACOF Algorithm

The SMACOF algorithm aims to minimize the objective function ELSMDS given in Equation (2).
Since ELSMDS is hard to minimize, it is easier to iteratively approximate the objective function
by a simple function. This approach is used in the algorithm Scaling by Maximizing a Convex
Function (SMACOF) that is explained by Borg and Groenen [5, p.146-155] and used by Elad
and Kimmel [15] to compute canonical forms. SMACOF proceeds by iteratively refining a simple
majorization function that bounds the objective function ELSMDS from above.

As in Section 4, we rewrite the objective function as

ELSMDS = α + β − γ

with α =
∑n

i=1

∑n
j=i+1 δ

2
i,j, β =

∑n
i=1

∑n
j=i+1 d(pi, pj)

2 and γ = 2
∑n

i=1

∑n
j=i+1 d(pi, pj)δi,j and using

the Cauchy-Schwartz inequality bound it by

ELSMDS ≤
n∑
i=1

n∑
j=i+1

δ2
i,j + tr(XTV X)− 2tr(XTB(Z)Z) =: τ ∗,

where X is a d× n matrix containing the coordinates of pi, V is an n× n matrix with elements

Vi,j =

{
n− 1 if i = j

−1 if i 6= j,

Z is a possible solution for X, and B(Z) is an n× n matrix with elements

Bi,j =


− δi,j
d(pi,pj)

if i 6= j, d(pi, pj) 6= 0

0 if i 6= j, d(pi, pj) = 0∑n
l=1,l 6=iBi,l if i = j.

We implement the SMACOF algorithm and minimize τ ∗ using a quasi-Newton method. The
quasi-Newton method used is the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LSBFGS)
scheme [23]. The running time of the SMACOF algorithm is O(n2t), where t is the number of
iterations used by the algorithm.

5.2 Projection Algorithm

We can obtain an approximate graph embedding using a variant of our proposed embedding al-
gorithm as follows. We first compute the farthest k-partition with k = b

√
nc as presented in

13

Section 3.2. The cluster centers are objects whose greatest dissimilarity with any other object in
the cluster is smallest. We first embed the cluster centers using the SMACOF algorithm and then
add all of the remaining objects to the LSMDS embedding one by one [3]. This approach takes only
linear space, but it does not take any inner-cluster distances into consideration when embedding
the objects. For ease of notation, we call this algorithm the projection algorithm in the following
discussion.

We describe how to add an additional objectOn+1 with corresponding dissimilarities δn+1,1, . . . , δn+1,n

that becomes available only after the objectsO1, O2, . . . , On have been mapped to points p1, p2, . . . , pn
in d-dimensional space [3]. We minimize the least-squares function

E∗LSMDS =
n∑
i=1

(δn+1,i − d(pn+1, pi))
2 ,

which can be written as
E∗LSMDS = α∗ + β∗ − γ∗

where α∗ =
∑n

i=1 δ
2
n+1,i, β

∗ =
∑n

i=1 d(pn+1, pi)
2 and γ∗ = 2

∑n
i=1 δn+1,id(pn+1, pi).

We can now compute the gradient of this objective function w.r.t. the point pn+1 analytically as

∇E∗LSMDS =
n∑
i=1

2(~xTn+1 − ~xTi)

(
1− δn+1,i

d(pn+1, pi)

)
,

where ~xi is the column vector of coordinates of point pi. This allows us to add the object On+1 to
the MDS embedding by minimizing E∗LSMDS using an LSBFGS quasi-Newton approach [23].

5.3 Comparison

For all embeddings that are computed, we initialize the embedding to the PCO embedding and use
the LSBFGS quasi-Newton method for the iterative minimization. For all of our experiments, the
constant c for the clustering step is chosen as 2 and the parameter m is chosen as b

√
nc. In the

following, three applications are considered.
We compare our embedding algorithm to the SMACOF algorithm and the projection algorithm

in terms of storage requirement, produced embedding error, running time, and maximum number
of iterations t to minimize the energy using LSBFGS. The storage requirement of all algorithms
ignores the space to store that data. In case of computing canonical forms, the comparison therefore
ignores the space allocated to store the triangular mesh and the data structures required to compute
geodesic distances along the mesh. To measure the amount of storage used by the algorithms, we
recursively report all the memory that is allocated.

The experiments show that the time complexity of the distance function has a big influence on
the running time of the algorithms. It is therefore recommended to evaluate the distance function
as efficiently as possible.

5.3.1 Embedding Registered High-Energy Gamma Particles

In a first experiment, we embed the MAGIC gamma telescope data available in the UCI Machine
Learning Repository1 into R3. The data was generated using a Monte-Carlo method and simulates

1http://archive.ics.uci.edu/ml/

14

the registration of high-energy gamma particles in a ground-based atmospheric Cherenkov gamma
telescope. The dataset consists of 10-dimensional vectors of real numbers. The distance between
two data vectors is computed as Euclidean distance. Note that this implies a low time complexity of
the distance function, since the Euclidean distance between 10-dimensional vectors can be computed
efficiently. There are a total of 19020 data vectors available in the dataset. The algorithms were
tested on five different sizes of datasets. We obtain five datasets of size 1000 to 19020 simply by
taking a subset of the original dataset.

Table 1 compares the performance of the three algorithms on different sizes of data of the gamma
telescope dataset. The table shows the quality of the computed embeddings, the size and space
complexities of the algorithms, and the number of iterations required by the algorithms. We do not
give the results of the SMACOF algorithm for the two largest datasets, since the algorithm ran out
of memory. The time and space requirements are furthermore visualized in Figure 3.

The storage required by the projection algorithm and the embedding algorithm are significantly
smaller than the storage required by the SMACOF algorithm. This is to be expected, since the
SMACOF algorithm requires O(n2) storage while the other two algorithms require O(n) storage.
In this experiment, we see an example where SMACOF is no longer practical due to its quadratic
space complexity. For n = 10000, we can no longer initialize the embedding to the one computed
using classical MDS since there is not enough internal memory. This leads to an abnormality in
the running time and embedding quality of the SMACOF result for n = 10000. For n ≥ 15000, we
can no longer run the SMACOF algorithm in internal memory. In order to compute a SMACOF
embedding for the datasets of size 15000 or larger, we need to store data in external memory,
thereby significantly growing the time complexity of the algorithm. In contrast, the data stored by
the embedding algorithm and the projection algorithm still easily fits into internal memory. The
projection algorithm requires only about half of the storage required by the embedding algorithm
and is the most space efficient algorithm of the three.

The embedding algorithm is the most time efficient algorithm for this dataset. The reason is that
the time of evaluating the input dissimilarity function is small compared to the matrix operations
used by SMACOF. In general, SMACOF is expected to be the most time efficient algorithm, since
its running time is O(tn2), while the running time of the other two algorithms is O(n3). The quality
of the computed embedding is highest for SMACOF. This does not hold for n = 10000, since it
was no longer possible to initialize the embedding to the classical MDS embedding in this case. We
expect SMACOF to be most accurate because SMACOF takes all of the pairwise dissimilarities into
account when computing the embedding. The second most accurate embedding is the one produced
by the embedding algorithm. This is also expected as the embedding algorithm takes inner-cluster
dissimilarities into account while the projection algorithm does not.

5.3.2 Embedding Grey-Level Images

The second application is embedding grey-level images of faces into points in the plane. We use
the Yale Face Database2 showing the faces of 15 individuals. The face of each individual is shown
in 11 different expressions. The eleven facial expressions of one of the subjects in the database
are shown in Figure 4. An embedding of these faces can be used for classification by subject or
expression or for face recognition. Each grey-level image is a vector of dimension 77760. The
distance between two grey-level images is computed as the Euclidean vector-distance. Note that
the running time of evaluating this distance function is significantly larger than the running time

2http://cvc.yale.edu/projects/yalefaces/yalefaces.html

15

n Emb. alg. Proj. alg. SMACOF
t ELSMDS S time t ELSMDS S time t ELSMDS S time

1000 149 5.3 · 107 0.19 1 43 6.5 · 107 0.10 14 90 2.6 · 107 20.28 17
5000 209 1.3 · 109 0.58 18 77 2.2 · 109 0.25 77 117 7.0 · 108 482.73 1772

10000 198 4.6 · 109 1.04 67 48 9.8 · 109 0.42 173 52 7.0 · 1010 1919.02 384
15000 219 1.8 · 1010 1.48 141 59 3.5 · 1011 0.58 301 not enough internal memory
19020 182 3.6 · 1010 1.82 221 72 1.9 · 1012 0.70 422 not enough internal memory

Table 1: Quality of embedding for the gamma telescope dataset. The table shows the maximum
number t of iterations required by the LSBFGS quasi-Newton method [23], the embedding error
ELSMDS of the computed embedding, the storage use S in MB, and the running time in seconds of
all three algorithms that were implemented.

(a) (b)

Figure 3: Comparison of time and space used by the embedding algorithm (solid), the projection
algorithm (dotted), and the SMACOF algorithm (dashed) for the gamma telescope dataset. The
number of objects n is shown along the x-axis and the space and time requirements are shown along
the y-axis.

of evaluating the distance function in the previous experiment because of the higher dimensionality
of the data vectors.

The results are shown in Table 2. We can see that the space used by the embedding algorithm
and the projection algorithm is significantly lower than the space used by SMACOF. The space
used by the projection algorithm is about 70% of the space used by the embedding algorithm, since
no inner-cluster distances need to be stored. The quality of all three embeddings is poor because
the faces cannot be represented well in the plane. As expected, the result by SMACOF is best,
followed by the result by the embedding algorithm. The SMACOF algorithm is fastest and the
embedding algorithm is slowest. This is different than in the previous experiment. The reason is
that it takes longer to compute the dissimilarity between two grey-level images than to compute
the dissimilarities between two gamma particles.

16

Figure 4: Facial expressions in the database.

(a) (b)

(c)

Figure 5: The Figure shows the embedding results for the face database. Figure (a): embedding
computed by the embedding algorithm. Figure (b): embedding computed by the projection algorithm.
Figure (c): embedding computed by SMACOF.

17

n 165
t ELSMDS S (MB) time (sec)

Emb. alg. 174 1.17 · 107 0.070 84
Proj. alg. 48 1.49 · 107 0.052 43
SMACOF 143 8.63 · 106 0.69 9

Table 2: Quality of embedding for the Yale Face Database.

The embeddings are shown in Figure 5(a) to (c). Figure 5(a) shows the embedding obtained using
the projection algorithm, Figure 5(b) shows the result obtained using the embedding algorithm, and
Figure 5(c) shows the result obtained using the SMACOF algorithm. The points marked as crosses
correspond to the expression where the face is lit from the right side only shown on the bottom left
of Figure 4. We can see that most of the crosses are close in all of the embedding results. This
suggests that we can visualize different expressions as clusters of points in the plane.

5.3.3 Computing a Canonical Form

The third application we consider is to compute the canonical form of a complete triangular sur-
face [15]. In this application, objects are vertices on a triangular surface and dissimilarities between
objects are geodesic distances between the corresponding vertices. Note that in this application,
the assumption that the dissimilarity function can be evaluated in constant time does not hold,
since it takes O(n log n) time to compute a geodesic distance [20]. Hence, the running time of the

embedding algorithm becomes O(n4 log n+ n
5
2 t log n).

We evaluate the algorithms using the following two experiments. First, we evaluate the algorithms
by embedding the surface of the swiss roll dataset into R2. The swiss roll dataset shown in Figure 8
(a) has a non-Euclidean structure, but can be rolled into a planar patch. Due to the complexity of
unrolling the swiss roll, this experiment is commonly used to demonstrate the quality of embedding
algorithms [24, 25, 9]. In our experiment, we use the parametric form of the swiss roll surface given
by Bronstein et al. [9]: x = θ, y = 0.51(1

2.75π
+ 0.75φ) cos(2.5φ), z = 0.51(1

2.75π
+ 0.75φ) sin(2.5φ),

where (θ, φ) ∈ [0, 1]× [0, 1].
Second, we evaluate the algorithms using the triangular mesh from the Princeton Shape Bench-

mark3 shown in Figure 9(a) consisting of n = 429 vertices. We refine the mesh using local subdivision
of triangles and run the algorithm on different resolutions of the mesh.

In the first (respectively second) experiment, we use geodesic distances on the mesh as dissim-
ilarities and embed the vertices into R2 (respectively R3). Table 3 (respectively Table 4) reports
the amount of storage required by the algorithms, the maximum number t of iterations required
by the algorithms, the running time of the algorithms, and the error of the embedding computed
by the algorithms according to equation (2). The time and space complexities of the algorithms
are furthermore visualized in Figure 6 (respectively Figure 7). The x-axis of the graph shows the
number n of vertices and the y-axes show the amount of storage used by the algorithms in MB and
the running times of the algorithms in seconds.

We can see that the amount of storage required by the SMACOF algorithm shown as dashed
curve grows significantly faster than the amount of storage required by the embedding algorithm
shown as solid curve and the projection algorithm shown as dotted curve. This is to be expected,
since the SMACOF algorithm takes O(n2) storage while the other two algorithms take O(n) storage.

3http://shape.cs.princeton.edu/benchmark/

18

Furthermore, the projection algorithm requires only about half of the amount of storage required
by the embedding algorithm.

The SMACOF algorithm is fastest and the embedding algorithm is slowest. Note that the differ-
ence in running time between the three algorithms is larger than in the previous experiment. The
reason is that evaluating the dissimilarity function is slow in this experiment as the running time
of the distance function is O(n log n).

n Emb. alg. Proj. alg. SMACOF
t ELSMDS S time t ELSMDS S time t ELSMDS S time

100 1 4.7 · 10−27 0.062 12 1 1.4 · 10−27 0.049 8 1 6.8 · 10−28 0.31 2
250 1 1.7 · 10−26 0.081 149 1 5.0 · 10−26 0.056 108 1 1.7 · 10−27 1.42 26
500 1 2.7 · 10−025 0.11 1120 1 1.5 · 10−025 0.068 832 1 1.0 · 10−25 5.20 243
750 1 5.3 · 10−025 0.11 4070 1 7.2 · 10−025 0.077 2633 1 1.0 · 10−24 11.36 793

1000 1 9.6 · 10−24 0.17 8472 1 1.2 · 10−23 0.086 6462 1 9.7 · 10−24 19.90 1933

Table 3: Quality of embedding for the swiss roll. The table shows the maximum number t of iterations
required by the LSBFGS quasi-Newton method [23], the embedding error ELSMDS of the computed
embedding, the storage use S in MB, and the running time in seconds of all three algorithms that
were implemented.

(a) (b)

Figure 6: Comparison of time and space used by the embedding algorithm (solid), the projection
algorithm (dotted), and the SMACOF algorithm (dashed) for the swiss roll. The number of objects
n is shown along the x-axis and the space and time requirements are shown along the y-axis.

An image of the swiss roll containing 500 vertices as well as the embeddings computed using the
tested algorithms are shown in Figure 8. Note that all of the results are similar except for rotations.

For the Alien dataset (n = 429), the embedding obtained using the projection algorithm is shown
in Figure 9(b), the embedding obtained using the embedding algorithm is shown in Figure 9(c),
and the embedding obtained using the SMACOF algorithm is shown in Figure 9(d). We can see
that all of the embeddings are similar.

19

n Emb. alg. Proj. alg. SMACOF
t ELSMDS S time t ELSMDS S time t ELSMDS S time

429 111 190 0.12 1403 91 233 0.073 807 99 950 4.05 162
550 143 170 0.13 2894 96 263 0.080 1680 152 126 6.45 374

1121 143 673 0.20 23720 93 1550 0.11 15663 128 540 25.32 3150

Table 4: Quality of embedding for the Alien. The table shows the maximum number t of iterations
required by the LSBFGS quasi-Newton method [23], the embedding error ELSMDS of the computed
embedding, and the storage use S of all three algorithms that were implemented.

(a) (b)

Figure 7: Comparison of time and space used by the embedding algorithm (solid), the projection
algorithm (dotted), and the SMACOF algorithm (dashed) for the Alien. The number of objects n is
shown along the x-axis and the space and time requirements are shown along the y-axis.

5.3.4 Summary

We conclude that both the embedding algorithm and the projection algorithm can compute an
embedding of lower quality than the SMACOF embedding using significantly less storage. In most
of our experiments, the error of the embedding computed using the embedding algorithm is about
twice the error of the embedding computed using SMACOF. As expected, the embedding algorithm
yields an embedding of higher quality than the projection algorithm.

Due to its linear space requirement, the embedding algorithm can be applied to compute em-
beddings for large datasets where storing a full dissimilarity matrix is no longer feasible as shown
using the gamma telescope dataset. The embedding algorithm is especially useful to compute a
low-dimensional embedding of a large dataset where the dissimilarity function can be evaluated fast.
In this case, the embedding algorithm was shown to outperform the SMACOF algorithm in terms of
running time. If the evaluation of the dissimilarity function is a large constant or a function whose
running time grows as a function of n, then the embedding algorithm is slower than the SMACOF
algorithm.

In all of our experiments, non-optimized code was used. The running time of the embedding
algorithm possibly can be improved by embedding multiple clusters in parallel.

20

(a) (b) (c) (d)

Figure 8: The Figure shows the swiss roll and its embeddings. Figure (a): swiss roll with n = 500
vertices. Figure (b): embedding computed by the embedding algorithm. Figure (c): embedding
computed by the projection algorithm. Figure (d): embedding computed by SMACOF.

(a) (b) (c) (d)

Figure 9: Alien model used for evaluation of results. Figure (a) shows the original model, Figure
(b) shows the embedding using the projection algorithm, Figure (c) shows the embedding using the
embedding algorithm, and Figure (d) shows the embedding using SMACOF algorithm.

6 Conclusions and Future Work

In this paper we considered the problem of embedding the vertices of a given weighted graph onto
points in d-dimensional Euclidean space for a constant d such that for each edge the distance between
their corresponding endpoints is as close as possible to the weight of the edge. We considered the
case that the given graph is complete. Although MDS or PCO are powerful techniques for this
purpose, they require quadratic space.

In this paper, we proposed a linear-space algorithm assuming that the dissimilarity for any pair of
objects can be computed in constant time. Our experiments show that the quality of the embedding
computed using the proposed linear-space algorithm is only lower by a factor of two than the quality
of the embedding computed using the SMACOF algorithm. However, the space requirement of
the embedding algorithm was shown to be significantly lower than the space requirement of the
SMACOF algorithm.

An important open question is to find an algorithm to compute an embedding in a low-dimensional
space that has provably low distortion using linear space.

21

References

[1] Tetsuo Asano, Binay Bhattacharya, Mark Keil, and Frances Yao. Clustering algorithms based
on minimum and maximum spanning trees. In SCG ’88: Proceedings of the fourth annual
symposium on Computational geometry, pages 252–257, 1988.

[2] Tetsuo Asano, Prosenjit Bose, Paz Carmi, Anil Maheshwari, Chang Shu, Michiel Smid, and
Stefanie Wuhrer. Linear-space algorithm for distance preserving graph embedding with appli-
cations. In Proceedings of the 19th Canadian Conference on Computational Geometry, pages
185–188, 2007.

[3] Zouhour Ben Azouz, Prosenjit Bose, Chang Shu, and Stefanie Wuhrer. Approximations of
geodesic distances for incomplete triangular manifolds. In Proceedings of the 19th Canadian
Conference on Computational Geometry, pages 177–180, 2007.

[4] Holger Bast. Dimension reduction: A powerful principle for automatically finding concepts in
unstructured data. In In Proc. International Workshop on Self-Properties in Complex Infor-
mation Systems (SELF-STAR 2004), pages 113–116, 2004.

[5] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling Theory and Applications.
Springer, 1997.

[6] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Expression-invariant 3d
face recognition. Proceedings of the Audio- and Video-based Biometric Person Authentication,
Lecture Notes in Computer Science, 2688:62–69, 2003.

[7] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Three-dimensional face
recognition. International Journal of Computer Vision, 64(1):5–30, 2005.

[8] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Robust expression-invariant
face recognition from partially missing data. In Proceedings of the European Conference on
Computer Vision, pages 396–408, 2006.

[9] Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, and Irad Yavneh. Multigrid mul-
tidimensional scaling. Numerical Linear Algebra with Applications, Special issue on multigrid
methods, 13(2–3):149–171, 2006.

[10] Andreas Buja, Deborah Swayne, Michael Littman, Nate Dean, Heike Hofmann, and Lisha
Chen. Interactive data visualization with multidimensional scaling. Journal of Computational
and Graphical Statistics, page to appear, 2008.

[11] Mihai Bǎdoiu, Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Piotr Indyk. Low-
dimensional embedding with extra information. In SCG ’04: Proceedings of the twentieth
annual symposium on Computational geometry, pages 320–329, 2004.

[12] Mihai Bǎdoiu, Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich, Harald Räcke, R. Ravi,
and Anastasios Sidiropoulos. Approximation algorithms for low-distortion embeddings into low-
dimensional spaces. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 119–128, 2005.

22

[13] Trevor Cox and Michael Cox. Multidimensional Scaling, Second Edition. Chapman & Hall
CRC, 2001.

[14] Richard Duda, Peter Hart, and David Stork. Pattern Classification, Second Edition. John
Wiley & Sons, Inc., 2001.

[15] Asi Elad and Ron Kimmel. On bending invariant signatures for surfaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(10):1285–1295, 2003.

[16] Teofilo Gonzalez. Clustering to minimize the maximum inter cluster distance. Theoretical
Computer Science, 38:293–306, 1985.

[17] John C. Gower. Adding a point to vector diagrams in multivariate analysis. Biometrika,
55(3):582–585, 1968.

[18] Patrick Groenen and Philip H. Franses. Visualizing time-varying correlations across stock
markets. Journal of Empirical Finance, 7:155–172, 2000.

[19] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

[20] Ron Kimmel and James Sethian. Computing geodesic paths on manifolds. National Academy
of Sciences, 95:8431–8435, 1998.

[21] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.

[22] Joseph Kruskal and Myron Wish. Multidimensional Scaling. Sage, 1978.

[23] Dong C. Liu and Jorge Nocedal. On the limited memory method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

[24] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 190(5500):2323–2326, 2000.

[25] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 190(5500):2319–2323, 2000.

23

