
Fast Algorithms for Approximate Fréchet Matching
Queries in Geometric Trees

Joachim Gudmundsson∗ Michiel Smid†

October 31, 2014

Abstract

Let T be a tree in Rd and let ∆ > 0 be a real number. The aim is to preprocess
T into a data structure, such that for any polygonal query path Q, we can decide if T
contains a path P whose Fréchet distance δF (Q,P) to Q is at most ∆. For any real
number ε > 0, we present an efficient data structure that solves an approximate version
of this problem for the case when T is c-packed and each of the edges of T and Q has
length Ω(∆): If the query algorithm returns NO, then there is no such path P . If the
query algorithm returns YES, then T contains a path P for which δF (Q,P) ≤ (1+ε)∆
if Q is a line segment, and δF (Q,P) ≤ 3(1 + ε)∆ otherwise.

1 Introduction

The Fréchet distance [19] is a measure of similarity between two curves P and Q that takes
into account the location and ordering of the points along the curves. Let p and p′ be the
endpoints of P and let q and q′ be the endpoints of Q. Imagine a dog walking along P
from p to p′ and, simultaneously, a person walking along Q from q to q′. The person is
holding a leash that is attached to the dog. Neither the dog nor the person is allowed to
walk backwards along their curve, but they can change their speeds. The Fréchet distance
between P and Q is the length of the shortest leash such that the dog can walk from p to p′

and the person can walk from q to q′. To define this formally, assume the two curves are given
as functions P : [0, 1] → Rd and Q : [0, 1] → Rd, where P (0) = p, P (1) = p′, Q(0) = q, and
Q(1) = q′. A reparameterization is an injective and continuous function f : [0, 1] → [0, 1];
it is called orientation-preserving if f(0) = 0 and f(1) = 1. Let |xy| denote the Euclidean

∗School of IT, University of Sydney and NICTA, Australia. Research supported by the Australian Re-
search Council (grant FT100100755). NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.
†School of Computer Science, Carleton University, Ottawa, Canada. Research supported by NSERC.

1

distance between two points x and y. The Fréchet distance δF (P,Q) between the curves P
and Q is defined as

δF (P,Q) = inf
f

max
0≤t≤1

|P (f(t))Q(t)|,

where f ranges over all orientation-preserving reparameterizations.
Measuring the similarity between curves has been extensively studied in the last 20 years

in computational geometry [1, 4, 18, 25], as well as in other areas, such as data mining [21, 23],
GIScience [7, 10, 26] and image processing [24].

Alt and Godau [4] showed that the Fréchet distance between two polygonal paths P and
Q can be computed in O(n2 log n) time, where n is the total number of vertices of P and Q.
A lower bound of Ω(n log n) was given by Buchin et al. [11]. Despite extensive research, no
subquadratic algorithm is known for the problem of computing the Fréchet distance. In 2009,
Alt [2] conjectured the decision problem, i.e., for a given ∆ > 0, deciding if δF (P,Q) ≤ ∆,
to be 3SUM-hard. Recently, Bringmann [8] showed that, assuming the Strong Exponential
Time Hypothesis, the Fréchet distance cannot be computed in strongly subquadratic time,
i.e., in time O(n2−δ) for any δ > 0.

Agarwal et al. [1] showed how to achieve a subquadratic running time for the discrete
Fréchet distance, where only the vertices of the paths are considered. Buchin et al. [12]
showed how to extend their approach to the (continuous) Fréchet distance. Their decision
algorithm takes O(n2(log log n)3/2/

√
log n) expected time, which is subquadratic. Using this,

they compute the exact Fréchet distance in O(n2
√

log n(log log n)3/2) expected time.
Until recently, subquadratic algorithms for computing the Fréchet distance were only

known for restricted cases, such as closed convex curves and κ-bounded curves [5]. Driemel
et al. [18] introduced a new class of realistic curves, the so-called c-packed curves. A polygonal
path is c-packed if the total length of the edges inside any ball is bounded by c times the radius
of the ball. Note that this definition generalizes naturally to geometric graphs. Driemel et
al. showed that a (1 + ε)-approximation of the Fréchet distance between two c-packed curves
with a total of n vertices in Rd can be computed in O(cn/ε + cn log n) time. Bringmann

and Künnemann [9] improved the running time to Õ(cn/
√
ε), which is optimal in high

dimensions apart from lower order terms, unless the Strong Exponential Time Hypothesis
fails. The notion of c-packedness has been argued [13, 18] to capture many realistic settings
for geometric paths and graphs. For example, Chen et al. [13] experimentally verified that
maps of real world cities are φ-low density for a constant φ1. A geometric graph G is φ-low-
density, if for any radius ρ > 0, any ball with radius ρ intersects at most φ edges of G that
are longer than ρ. A c-packed curve is φ-low density for φ = 2c; see [18].

In many applications, it is important to find the path in a geometric graph G that is
most similar to a polygonal curve Q. Alt et al. [3] introduced this problem in 2003: Given
a planar geometric graph G with n vertices and a polygonal curve Q with m vertices, the
problem is to find the path P on G that has the smallest Fréchet distance to Q. They
presented an algorithm that finds such a path P , with both endpoints being vertices of G,
in O(nm log(nm) log n) time using O(nm) space; see also [7, 26]. The bound on the running

1In their experiments, φ varied between 16 and 28.

2

time is close to quadratic in the worst case and, hence, unsuitable for large road maps. Chen
et al. [13] considered the case when the embedding of G is φ-low density and the curve Q
is c-packed. In Rd, they presented a (1 + ε)-approximation algorithm for the problem with
running time O((φm+ cn) log(nm) log(n+m) + (φm/εd + cn/ε) log(nm)).

Very little is known about query variants of these problems. For any given polygonal
path P with n vertices, Driemel and Har-Peled [17] gave a data structure of O(n) size such
that for any given query segment Q and any two query points x and y on P , a (1 + ε)-
approximation to the Fréchet distance between Q and the subpath of P between x and y
can be computed in O(log n log log n) time. In the most general query setting, the aim is to
preprocess a given geometric graph G into a data structure, such that for a polygonal path
Q and a real value ∆ > 0 as a query, it can be decided if there exists a path P in G whose
Fréchet distance to Q is at most ∆. In this setting, the path P does not have to start or
end at a vertex of G. In [15], de Berg et al. studied the case when G is a polygonal path
in R2 with n vertices and Q is a straight-line segment. For any fixed value of ∆ and any
parameter s with n ≤ s ≤ n2, they show how to build, in O(n2 + s polylog(n)) time, a data
structure of size O(s polylog(n)), that can be used to approximately decide if G contains
a path with Fréchet distance less than ∆ to any given query segment. More precisely, for
any query segment Q of length more than 6∆, the query algorithm associated with the data
structure returns YES or NO in O((n/

√
s) polylog(n)) time.

1. If the output is YES, then there exists a path P in G such that δF (Q,P) ≤ (2+3
√

2)∆.
(In fact, their algorithm counts all such “minimal” paths.)

2. If the output is NO, then δF (Q,P) > ∆ for any path P in G.

By increasing the preprocessing time to O(n3 log n), they show that the same result holds
for the case when the threshold ∆ is part of the query.

Our results: We consider the same problem as de Berg et al. [15] for the case when the
graph G is a tree and a query consists of a polygonal path Q. We will write T instead of G.

Let T be a tree with n vertices in Rd. Thus, any vertex of T is a point in Rd and any
edge is the line segment joining its two vertices. If d = 2, then this tree is not necessarily
plane, i.e., edges of T may cross. A point x in Rd is said to be on T , if either x is a vertex
of T or x is in the relative interior of some edge of T . If x and y are two points on T , then
T [x, y] denotes the path on T from x to y.

Let ∆ be a fixed positive real number. We want to preprocess T such that queries of the
following type can be answered efficiently: Given a polygonal path Q in Rd with m vertices,
decide if there exist two points x and y on T , such that δF (Q, T [x, y]) ≤ ∆.

Assume that the tree T is c-packed, for some constant c. Also, assume that each edge
of T has length Ω(∆). For any constant ε > 0, we show that a data structure of size
O(n polylog(n)) can be built in O(n polylog(n)) time. For any polygonal path Q with m
vertices, each of whose edges has length Ω(∆), the query algorithm associated with the data
structure returns YES or NO in O(m polylog(n)) time.

3

1. If the output is YES and m = 2 (i.e., Q is a segment), then the algorithm also reports
two points x and y on T such that δF (Q, T [x, y]) ≤ (1 + ε)∆.

2. If the output is YES and m > 2, then the algorithm also reports two points x and y
on T such that δF (Q, T [x, y]) ≤ 3(1 + ε)∆.

3. If the output is NO, then δF (Q, T [x, y]) > ∆ for any two points x and y on T .

If T is a path, then we do not need the requirement that each of its edges has length Ω(∆).
Compared to the structure in [15], which only considers paths, the main drawbacks are

that we require the input tree T to be c-packed and all its edges to have length Ω(∆).
However, the advantages are that (1) our structure works in Rd for any constant d ≥ 2,
and can report a path T [x, y], (2) the approximation bound is improved from (2 + 3

√
2) to

(1 + ε) for query segments, (3) our query algorithm can handle polygonal query paths, (4)
the preprocessing time is improved from nearly quadratic to O(n polylog(n)), and (5) the
input graph can be a tree and is not restricted to being a polygonal path.

Organization: In Section 2, we consider a restricted version of the problem, in which a
query consists of a line segment Q and two points x and y on the tree T , and we want
to (approximately) decide if δF (Q, T [x, y]) ≤ ∆. For the case when T is a polygonal path,
Driemel and Har-Peled [17] have shown that, using O(n) space and O(n log2 n) preprocessing
time, a (1 + ε)-approximation to δF (Q, T [x, y]) can be computed in O(log n log log n) time,
where the constant factors depend on ε. Since in our restricted problem, the value of ∆ is
fixed, we show that their approach can be modified such that the query time, for a polygonal
path, becomes O(log n). We also show how to generalize the query algorithm to trees,
resulting in a query time of O(log2 n).

In Section 3, we present the general approach for querying a tree with a line segment, by
giving a generic query algorithm and proving its correctness. Since the running time of this
algorithm can be Ω(n2) for arbitrary trees, we recall c-packed trees and µ-simplifications in
Section 4 and prove some of their properties. In Section 5, we use µ-simplifications to show
how the generic algorithm can be implemented efficiently for querying a polygonal c-packed
path with a query segment. In Section 6, we generalize the result of Section 5 to c-packed
trees, all of whose edges have length Ω(∆). In Section 7, we use the previous results to query
polygonal paths and trees with a polygonal path. Finally, in Section 8, we conclude with
some directions for future work.

Remark: In the preliminary version [20] of this paper, we presented data structures with
approximation ratio

√
2(1 + ε) for querying polygonal paths or trees with a query segment.

These results hold in R2 and the space requirements and query times are a logarithmic factor
worse than the ones presented in the current paper. However, their preprocessing times are
faster by a logarithmic factor. The advantage of the results in [20] is that the presentation
is completely self-contained. The current version heavily uses the results from Driemel and
Har-Peled [17] that were mentioned before.

4

2 Approximate Subpath Fréchet Distance Queries

Let T be a tree with n vertices in Rd, and let ∆ > 0 and ε > 0 be fixed real numbers. We
consider queries of the following type: Given a line segment Q = [a, b] and two points x and
y on T (together with the edges of T that contain x and y), decide, in an approximate sense,
if δF (Q, T [x, y]) ≤ ∆. To be more precise, the query algorithm returns a Boolean value B
that satisfies the following two properties:

1. If B = true, then δF (Q, T [x, y]) ≤ (1 + ε)∆.

2. If B = false, then δF (Q, T [x, y]) > ∆.

If T is a polygonal path, then we can use the data structure of Driemel and Har-Peled [17]
to answer this type of query. This data structure has size O(n), can be built in O(n log2 n)
time, and has a query time of O(log n log log n), where the constant factors depend on ε. In
fact, this data structure can be used to compute a (1 + ε)-approximation to δF (Q, T [x, y]).
Since in our problem, the value of ∆ is fixed, we show that their approach can be modified
such that the query time becomes O(log n).

In Section 2.1, we consider the case when T is a polygonal path. In Section 2.2, we extend
the solution to the case of trees.

2.1 Queries in Polygonal Paths

Throughout this section, we assume that T is a polygonal path in Rd. We will write P
instead of T . Thus, we assume that P = (p1, p2, . . . , pn) is a polygonal path.

We will need the following result, which is Lemma 5.8 in Driemel and Har-Peled [17].

Lemma 1 Let P ′ be a polygonal path in Rd with n′ vertices and let ε > 0 be a real
number. In O((1/ε2d) log2(1/ε)n′ log n′) time, we can construct a data structure of size
O((1/ε2d) log2(1/ε)), such that for any query segment Q = [a, b], we can compute, in O(1)
time, a real number ∆Q such that

δF (Q,P ′) ≤ ∆Q ≤ (1 + ε) · δF (Q,P ′).

Recall that ∆ > 0 and ε > 0 are fixed real numbers. Our data structure is a simplified
version of the structure in Section 5.4 of [17]. It consists of the following:

1. A balanced binary search tree storing the n edges of the polygonal path P at its leaves,
sorted in the order in which they appear along P .

2. Each node of this tree stores the data structure of Lemma 1 (applied with ε/2) for the
subpath of P that is stored in its subtree.

It follows from Lemma 1 that this entire data structure has size O((1/ε2d) log2(1/ε)n) and
can be built in O((1/ε2d) log2(1/ε)n log2 n) time.

5

We now describe the query algorithm, which is a minor variation of the one in [17].
Consider a query segment Q = [a, b] and two points x and y on P , together with the two
edges of P that contain x and y.

Step 1: Use the binary search tree to partition the path P [x, y] into k = O(log n) subpaths
P [xi, xi+1], i = 0, 1, 2, . . . , k − 1, where x0 = x, xk = y, and each of x1, x2, . . . , xk−1 is a
vertex of P [x, y].

Step 2: Imagine partitioning the segment Q = [a, b] uniformly into subsegments of length
ε∆/3, except for possibly the last one, which may be shorter. Let Π be the set of vertices of
this imaginary partition. For each i with 1 ≤ i < k, compute the set

Vi = {u ∈ Π : |xiu| ≤ 2∆}.

Step 3: Construct the directed acyclic graph G with vertex multiset

{a} ∪ V1 ∪ V2 ∪ · · · ∪ Vk−1 ∪ {b}.

For any i with 1 ≤ i ≤ k − 2, and any two vertices u in Vi and v in Vi+1, (u, v) is a
directed edge in G if and only if the point v is on the line segment [u, b]. Observe that our
data structure stores the data structure of Lemma 1 for the subpath P [xi, xi+1]. We run
the query algorithm of this data structure for the query segment [u, v] and store the result,
which is a (1 + ε/2)-approximation to δF ([u, v], P [xi, xi+1]), as the weight of the directed
edge (u, v).

For each vertex v in V1, we add the directed edge (a, v) to G and compute its weight as
δF ([a, v], [x, x1]). Finally, for each vertex u in Vk−1, we add the directed edge (u, b) to G and
compute its weight as δF ([u, b], [xk−1, y]).

Step 4: Use dynamic programming to compute a bottleneck path in G from the vertex a to
the vertex b, i.e., a path from a to b whose heaviest edge is minimum. Let ∆′ be the weight
of the heaviest edge on this bottleneck path.

Step 5: If ∆′ ≤ (1 + ε)∆, then return true. Otherwise, return false.

We start by analyzing the running time of this query algorithm. Step 1 takes O(log n)
time. The set Vi that is computed in Step 2 is contained in the ball B of radius 2∆ that
is centered at xi. Since any two points in Π have distance at least ε∆/3, it follows that Vi
has size O(1/ε). To compute Vi, we first compute, in O(1) time, the part Q′ of the segment
Q = [a, b] that is contained in B. Then, using the floor function, we enumerate the vertices
of Vi = Q′ ∩ Π in O(|Vi|) = O(1/ε) time. Thus, the total time for Step 2 is O(k/ε) =
O((log n)/ε). For each i with 1 ≤ i ≤ k − 2, the graph G has O(1/ε2) edges connecting Vi
and Vi+1. As a result, the total number of edges in G is O(k/ε2) = O((log n)/ε2). Using
Lemma 1, the edge weights can be computed in O(1) time per edge. It follows that the
total time for Step 3 is O((log n)/ε2). The time for Step 4 is proportional to the sum of the
number of vertices and edges of G, which is O((log n)/ε2). Finally, Step 5 takes O(1) time.
To conclude, we have shown that the entire query algorithm takes O((log n)/ε2) time.

6

We now prove the correctness of the query algorithm. Let

a = a0, a1, a2, . . . , ak = b

be the bottleneck path that is computed in Step 4, let ∆′ be the weight of the heaviest edge
on this path and, for each i with 0 ≤ i < k, let Wi be the weight of (ai, ai+1) (which is an
edge in G). We have

δF (Q,P [x, y]) ≤ max
0≤i<k

δF ([ai, ai+1], P [xi, xi+1])

≤ max
0≤i<k

Wi

= ∆′.

Thus, if the query algorithm returns true, then

δF (Q,P [x, y]) ≤ ∆′ ≤ (1 + ε)∆.

Now assume that δF (Q,P [x, y]) ≤ ∆. We will show that the query algorithm returns
true.

Consider a matching between Q = [a, b] and P [x, y] that realizes δF (Q,P [x, y]). For each
i with 0 ≤ i ≤ k, let bi be the point on Q = [a, b] that is matched to xi. Observe that b0 = a,
bk = b and |xibi| ≤ ∆ for 0 ≤ i ≤ k.

For each i with 1 ≤ i < k, let ui be the element of Vi ∩ [bi, b] that is closest to bi. Since,
assuming that ε is sufficiently small,

|xiui| ≤ |xibi|+ |biui| ≤ ∆ + ε∆/3 ≤ 2∆,

the point ui exists. We also define u0 = a and uk = b.
Consider the path

a = u0, u1, u2, . . . , uk = b

in the graph G. For each i with 0 ≤ i < k, let W ′
i be the weight of the edge (ui, ui+1). We

have

W ′
i ≤ (1 + ε/2) · δF ([ui, ui+1], P [xi, xi+1])

≤ (1 + ε/2) (δF ([bi, bi+1], P [xi, xi+1]) + ε∆/3) .

Thus, the value ∆′ that is computed in Step 4 satisfies

∆′ ≤ max
0≤i<k

W ′
i

≤ (1 + ε/2) · ε∆/3 + (1 + ε/2) · max
0≤i<k

δF ([bi, bi+1], P [xi, xi+1])

= (1 + ε/2) · ε∆/3 + (1 + ε/2) · δF (Q,P [x, y])

≤ (1 + ε/2) · ε∆/3 + (1 + ε/2)∆

≤ (1 + ε)∆,

where we assumed in the last inequality that ε is sufficiently small. It follows that the query
algorithm returns true.

We summarize the result of this section:

7

Lemma 2 Let P be a polygonal path in Rd with n vertices and let ∆ > 0 and ε > 0 be
real numbers. In O((1/ε2d) log2(1/ε)n log2 n) time, we can construct a data structure of size
O((1/ε2d) log2(1/ε)n), such that for any query consisting of a line segment Q = [a, b] and
two points x and y on P (together with the edges of P that contain x and y), we can return,
in O((log n)/ε2) time, a Boolean value B that satisfies the following two properties:

1. If B = true, then δF (Q,P [x, y]) ≤ (1 + ε)∆.

2. If B = false, then δF (Q,P [x, y]) > ∆.

2.2 Queries in Trees

In this section, we extend the data structure of Lemma 2 from polygonal paths to trees. Let
T be a tree with n vertices in Rd.

2.2.1 The Path Decomposition

We start by recalling a technique due to Cole and Vishkin [14] that decomposes the tree T into
a collection of paths such that any path in T overlaps O(log n) paths in the decomposition.
(A detailed description of this technique can be found in Section 2.3.2 of Narasimhan and
Smid [22].)

Fix one vertex of T and call it the root. For any vertex v of T , the subtree of v is the set
of all vertices u of T such that v is on the path between u and the root. Let size(v) denote
the number of vertices in the subtree of v, and let `(v) = blog(size(v))c. Thus, `(v) is an
integer in {0, 1, . . . , blog nc}.

For a given integer `, consider a maximal connected subgraph of T consisting of vertices
v with `(v) = `. This subgraph is in fact a path which is contained in some root-to-leaf path.
Thus, the values `(v) induce a partition of the vertex set of V into a collection of paths.
Note that no two paths in this partition share a vertex. For any path in the partition, let
v be the vertex on this path that is closest to the root (with respect to distances along T).
If v is not the root, then we add the parent of v to the path. The resulting collection of
paths is called the path decomposition PD(T) of the tree T . Any two paths in PD(T) are
edge-disjoint and have at most one vertex in common.

For any two points x and y on T , the path T [x, y] overlaps O(log n) paths in PD(T).
More precisely, given x and y, in O(log n) time, a sequence v1, . . . , vk can be computed, such
that

1. k = O(log n),

2. v1 = x and vk = y,

3. for each i with 2 ≤ i ≤ k − 1, vi is an endpoint of some path in PD(T) (and, thus, a
vertex of T),

4. for each i with 1 ≤ i < k, the path T [vi, vi+1] is contained in some path in PD(T),

8

5. the path T [x, y] in T between x and y is equal to the concatenation of the paths
T [v1, v2], T [v2, v3], . . . , T [vk−1, vk].

Using this, the following type of query can be answered in O(log n) time: Given three points
x, y, and z on T , together with the edges that contain them, decide if z is on the path
T [x, y]. The following lemma states that such a query can be answered in O(1) time:

Lemma 3 Let T be a tree in Rd with n vertices. In O(n) time, we can construct a data
structure of size O(n), such that for any three points x, y, and z on T , together with the
edges that contain them, we can decide in O(1) time if z is on the path T [x, y].

Proof. Fix a vertex of T to be the root, and for each non-leaf vertex, fix a left-to-right
order of v’s children. Number the leaves of T from left to right as 1, 2, 3, . . . With each node
v, store the interval [Lv, Rv], where Lv and Rv are the indices of the leftmost and rightmost
leaves in the subtree rooted at v. Observe that for any two nodes v and w, v is in the subtree
of w if and only if Iv ⊆ Iw. Finally, preprocess T for O(1)–time lowest common ancestor
queries; see Bender and Farach-Colton [6].

Consider three points x, y, and z, together with the edges ex, ey, and ez that contain
them. Let x′ be the vertex of ex that is closest to the root. Define y′ and z′ similarly with
respect to y and z. Compute the lowest common ancestor v of x′ and y′. Then z is on the
path T [x, y] if and only if z′ is in the subtree of v, and x′ or y′ is in the subtree of z′.

2.2.2 The Data Structure

As before, we fix real numbers ∆ > 0 and ε > 0. To construct the data structure, we compute
the path decomposition PD(T) of T , which can be done in O(n) time. Then we construct
the data structure of Lemma 2 for each path in this decomposition. The preprocessing time
and size of this data structure are the same as in Lemma 2.

Consider a query consisting of a line segment Q = [a, b] and two points x and y on T ,
together with the edges of T that contain x and y. We first use the path decomposition
PD(T) to decompose the path T [x, y] into O(log n) paths. Then we use the binary search
tree associated with each such path to decompose it further into O(log n) subpaths. Thus,
the entire path T [x, y] is now decomposed into k′ = O(log2 n) subpaths. In the rest of the
query algorithm, we run Steps 2–5 of the query algorithm in Section 2.1, where the value of
k is replaced by k′. The same analysis as in Section 2.1 implies the following result:

Lemma 4 Let T be a tree in Rd with n vertices and let ∆ > 0 and ε > 0 be real numbers. In
O((1/ε2d) log2(1/ε)n log2 n) time, we can construct a data structure of size O((1/ε2d) log2(1/ε)n),
such that for any query consisting of a line segment Q = [a, b] and two points x and y on T
(together with the edges of T that contain x and y), we can return, in O((log2 n)/ε2) time,
a Boolean value B that satisfies the following two properties:

1. If B = true, then δF (Q, T [x, y]) ≤ (1 + ε)∆.

2. If B = false, then δF (Q, T [x, y]) > ∆.

9

a

b

R(a, b)

∆

∆

Cab

Cba

Figure 1: The cylinder R(a, b) and the half-spheres Cab and Cba corresponding to the line
segment ab.

3 A Generic Matching Algorithm for Query Segments

In this section, we present a generic algorithm that can be used to answer approximate
Fréchet matching queries with any query segment Q of length more than 2∆ in any tree T .
We start by presenting the main technical lemma that will be used to prove the correctness
of our approach. Afterwards, the generic algorithm itself will be presented.

Let T be a tree in Rd and let ∆ > 0 be a real number. We assume that a query consists
of a line segment Q with endpoints a and b, which we denote by Q = [a, b]. We also assume
that |ab| > 2∆.

Let R(a, b) be the cylinder with axis [a, b] and radius ∆; refer to Figure 1. Let Da be the
ball with center a and radius ∆, and let Cab be the part of the boundary of this ball that is
contained in R(a, b). Define Db and Cba similarly with respect to b.

Assume that there exist two points x and y on T such that δF (Q, T [x, y]) ≤ ∆. The
following lemma states that we may assume that x is on Cab, y is on Cba, and the “open”
path T (x, y) (i.e., the path obtained by removing the endpoints x and y from T [x, y]) is
disjoint from both Cab and Cba.

Lemma 5 Let Q = [a, b] be a line segment of length more than 2∆, and assume that there
exist two points x and y on T , such that δF (Q, T [x, y]) ≤ ∆. Then there exist two points x′

and y′ on T [x, y], such that the following are true:

1. x′ and y′ are on the half-spheres Cab and Cba, respectively, and x′ is on the path T [x, y′].

2. The open path T (x′, y′) is disjoint from Cab ∪ Cba.

3. δF (Q, T [x′, y′]) ≤ ∆.

Proof. Let R′(a, b) be the union of R(a, b), Da, and Db. Since δF (Q, T [x, y]) ≤ ∆, (i) the
path T [x, y] is completely contained in R′(a, b), (ii) the point x is in Da, and (iii) the point
y is in Db. Define x′ to be the last point on the path T [x, y] that is in Da, and define y′ to

10

be the first point on T [x, y] that is in Db. It is clear that the first two claims in the lemma
hold. The third claim follows from de Berg et al. [15, Lemma 1].

We now present our generic algorithm that approximately decides if there exist two points
x and y on T such that δF (Q, T [x, y]) ≤ ∆. The basic idea is to consider all pairs (x′, y′) of
points on T for which the three conditions in Lemma 5 hold.

Fix a real number ε > 0. Consider a query segment Q = [a, b] of length more than 2∆.

Step 1:

• Compute the set A of intersection points between the tree T and the half-sphere Cab.

• Compute the set B of intersection points between the tree T and the half-sphere Cba.

Step 2: Compute the set I = {(x, y) ∈ A×B : T (x, y) ∩ A = ∅ and T (x, y) ∩B = ∅}.
Step 3: For each pair (x, y) in I, do the following:

• Compute a Boolean value Bxy that satisfies the following two properties:

– If Bxy = true, then δF (Q, T [x, y]) ≤ (1 + ε)∆.

– If Bxy = false, then δF (Q, T [x, y]) > ∆.

• If Bxy = true, then return YES, together with the two points x and y, and terminate
the algorithm.

If, at the end of this third step, the algorithm did not terminate yet, then return NO and
terminate.

In the following lemma, we analyze the output of this algorithm.

Lemma 6 Let Q = [a, b] be a line segment of length more than 2∆ and consider the output
of the generic algorithm on input Q.

1. If the output is YES, then there exist two points x and y on T such that δF (Q, T [x, y]) ≤
(1 + ε)∆.

2. If the output is NO, then for any two points x and y on T , δF (Q, T [x, y]) > ∆.

Proof. Assume that the output of the algorithm is YES. Consider the two points x and y
that come with this output. It follows from the algorithm that

δF (Q, T [x, y]) ≤ (1 + ε)∆.

To prove the second claim, assume there exist two points x and y on T such that
δF (Q, T [x, y]) ≤ ∆. Let x′ and y′ be the two points on T that satisfy the three proper-
ties in Lemma 5. Then the pair (x′, y′) is contained in the set I that is computed in Step 2.
Consider the Boolean value Bx′y′ that is computed by the algorithm when it considers this

11

pair in Step 3. Since δF (Q, T [x′, y′]) ≤ ∆, we have Bx′y′ = true and, therefore, the algorithm
returns YES.

If n denotes the number of vertices of T , then the worst-case running time of the generic
algorithm will be Ω(n2), because the sets A and B computed in Step 1 may have size Θ(n)
and, thus, the set I computed in Step 2 may have size Θ(n2). In the next section, we recall
c-packed trees and prove some of their properties. As we will see, if the tree T is c-packed,
for some c that is polylogarithmic in n, and each of its edges has length Ω(∆), the running
time of the generic algorithm will be polylogarithmic in n.

4 c-Packed Trees and µ-Simplifications

The notion of a tree being c-packed was introduced by Driemel et al. [18]. We start by
recalling the definition.

Definition 1 Let c be a positive real number and let T be a tree in Rd. We say that T is
c-packed if for any ρ > 0 and any ball B of radius ρ, the total length of B ∩T is at most cρ.

The number of edges of a c-packed tree T that intersect a ball B can be as large as Ω(n).
The next lemma gives an upper bound on this number for the case when the length of each
edge of T is at least proportional to the radius of B.

Lemma 7 Let T be a c-packed tree, let ∆ > 0 and c′ ≥ 1 be real numbers, and assume that
each edge of T has length at least ∆/c′. Then for any ball B of radius ∆, the number of
edges of T that intersect B is O(cc′).

Proof. Let B′ be the ball of radius (1 + 1/c′)∆ that has the same center as B. Let e be an
edge of T that intersects B. Since |e| ≥ ∆/c′, at least ∆/c′ of the length of e is contained in
B′. If k is the number of edges of T that intersect B, then k(∆/c′) ≤ c(1 + 1/c′)∆, which
implies that k ≤ c(c′ + 1) = O(cc′).

In Section 5.3, we consider polygonal paths P that are c-packed, but do not have the
property that each edge has length Ω(∆). Since Lemma 7 does not hold for such a path,
we would like to simplify P , resulting in a path P ′, such that P ′ is O(c)-packed, each of its
edges has length Ω(∆), and P ′ is close to P with respect to the Fréchet distance. Driemel et
al. [18] gave a simple algorithm that computes such a path P ′. Before we state their result,
we formally define the notion of a simplification.

Definition 2 Let P = (p1, p2, . . . , pn) be a polygonal path in Rd and let µ > 0 be a real
number. A µ-simplification of P is a polygonal path P ′ = (pi1 , pi2 , . . . , pik) such that

1. 1 = i1 < i2 < . . . < ik = n and

2. each edge of P ′, except possibly the last one, has length at least µ.

12

Lemma 8 (Driemel et al. [18]) The following are true:

1. In O(n) time, a µ-simplification P ′ of P can be computed such that δF (P, P ′) ≤ µ.

2. If the polygonal path P is c-packed, then this µ-simplification P ′ is (6c)-packed.

Proof. A proof of the first claim can be found in Section 2.3 of [18]. The second claim is
Lemma 4.3 in [18].

We need one more result:

Lemma 9 Let T be a c-packed tree with n vertices in Rd, let ∆ > 0 and c′ ≥ 1 be real
numbers, and assume that each edge of T has length at least ∆/c′. In O(cn log n) time, we
can construct a data structure of size O(cn) such that for any query sphere S of radius ∆,
we can report all intersection points between T and S in O(log n+ c2c′) time.

Proof. Let B be the ball whose boundary is S. By Lemma 7, the number of edges of T
that intersect B is O(cc′). Since each such edge intersects S at most twice, the number of
intersection points between T and S is O(cc′) as well.

Driemel et al. [18] have shown that T is a (2c)-low density scene. De Berg and Strep-
pel [16] have shown how this type of convex range queries on low density scenes can be
handled efficiently using a binary space partition (Theorem 4.1 in [16]).

5 Matching Queries with Segments in Polygonal Paths

In this section, we assume that the tree T is a polygonal path and write P instead of T .
Thus, we assume that P = (p1, p2, . . . , pn) is a polygonal path in Rd. If x and y are two
points on P , then we write x ≤P y if x is on the subpath P [p1, y].

We fix a real number ∆ > 0 and consider queries of the following type: Given a query
segment Q = [a, b] of length more than 2∆, decide if there exist two points x and y on P
such that x ≤P y and δF (Q,P [x, y]) ≤ ∆.

We choose positive real numbers c, c′, and ε. Throughout this section, we assume that
P is c-packed. We also start by assuming that each edge of P , except possibly the last one,
has length at least ∆/c′. In Section 5.3, we will show how to remove the latter assumption.

5.1 Preprocessing

We construct the following two data structures:

Approximate subpath Fréchet distance structure: The data structure of Lemma 2
for the polygonal path P . We denote this structure by ASFD(P,∆).

13

Half-sphere intersection structure: The data structure of Lemma 9 for the polygonal
path P . We denote this structure by HSI (P,∆).

By Lemmas 2 and 9, the entire preprocessing takes

O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time and produces a data structure of size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)
.

5.2 The Query Algorithm

Let Q = [a, b] be a query line segment of length more than 2∆. Recall that we assume that
the polygonal path P is c-packed and each edge of P , except possibly the last one, has length
at least ∆/c′.

We show how our data structures can be used to implement the three steps of the generic
algorithm of Section 3.

Step 1: The data structure HSI (P,∆) allows us to compute the set A of all intersection
points between P and the half-sphere Cab in O(log n + c2c′) time. In the same time bound,
we obtain the set B of all intersection points between P and the half-sphere Cba. Observe
that, by Lemma 7, both A and B have size O(cc′).

Step 2: We sort the points of A∪B in the order in which they occur along the path P . By
scanning the sorted order, we obtain the set

I = {(x, y) ∈ A×B : x ≤P y, P (x, y) ∩ A = ∅ and P (x, y) ∩B = ∅}.
Since |A|+ |B| = O(cc′), this part of the query algorithm takes O(cc′ log(cc′)) time.

Step 3: For each pair (x, y) in the set I, we use the data structure ASFD(P,∆) to compute
a Boolean value Bxy. If Bxy = true, then return YES, together with the two points x and y,
and terminate the algorithm.

If, at the end of this third step, the algorithm did not terminate yet, then return NO and
terminate.

By Lemma 2, and since the size of I is O(cc′), this part of the query algorithm takes
O((cc′/ε2) log n) time.

This concludes the description of the query algorithm. It is clear that these three steps
correctly implement the generic algorithm of Section 3.

Lemma 10 The query algorithm takes

O
((
cc′/ε2

)
log n+ c2c′ + cc′ log(cc′)

)
time and correctly implements the generic algorithm of Section 3. Thus, the two claims in
Lemma 6 hold for the output of this algorithm.

Note that this result assumes that each edge of P , except possibly the last one, has length
at least ∆/c′. In the next subsection, we remove this assumption.

14

5.3 General c-Packed Paths

Let P = (p1, p2, . . . , pn) be a polygonal path and assume that P is c-packed for some real
number c > 0. As before, we choose real numbers ∆, ε, and c′.

Let µ = ∆/c′. In O(n) time, we compute a µ-simplification P ′ of P ; see Lemma 8.
Then we run the preprocessing algorithm of Section 5.1 on P ′. For any given query segment
Q = [a, b] of length more than 2∆, we run the query algorithm of Section 5.2 on the data
structure for P ′.

Assume the output of the query algorithm is YES. By Lemma 6, there exist two points
x′ and y′ on P ′ such that x′ ≤P ′ y′ and δF (Q,P ′[x′, y′]) ≤ (1 + ε)∆. Since, by Lemma 8,
δF (P, P ′) ≤ µ = ∆/c′, it follows that there exist two points x and y on P such that x ≤P y
and

δF (Q,P [x, y]) ≤ (1 + ε)∆ + ∆/c′ = (1 + ε+ 1/c′)∆. (1)

On the other hand, if the output of the query algorithm is NO, then we have, by Lemma 6,
δF (Q,P ′[x′, y′]) > ∆ for any two points x′ and y′ on P ′ with x′ ≤P ′ y′. Therefore, we have

δF (Q,P [x, y]) > ∆− µ = (1− 1/c′)∆ (2)

for any two points x and y on P with x ≤P y.
By taking c′ = 1/ε and defining ∆0 = (1 − 1/c′)∆, the right-hand side in (1) becomes

∆0(1 + O(ε)), whereas the right-hand side in (2) becomes ∆0. Thus, by replacing ε in
the entire construction by ε/c′′, for some sufficiently large constant c′′, we have proved the
following result2.

Theorem 1 Let P be a polygonal path in Rd with n vertices, let c and ∆ be positive real
numbers, and assume that P is c-packed. For any ε > 0, we can construct a data structure
of size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)

in
O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time. Given any segment Q of length more than 2∆, the query algorithm corresponding to
this data structure takes

O
((
c/ε3

)
log n+ c2/ε+ (c/ε) log(c/ε)

)
time and outputs either YES or NO.

1. If the output is YES, then there exist two points x and y on P with x ≤P y such that
δF (Q,P [x, y]) ≤ (1 + ε)∆.

2. If the output is NO, then δF (Q,P [x, y]) > ∆ for any two points x and y on P with
x ≤P y.

2In the theorem, we rename ∆0 as ∆.

15

6 Matching Queries with Segments in Trees

Let T be a tree with n vertices in Rd. We fix a real number ∆ > 0 and consider queries of
the following type: Given a query segment Q = [a, b] of length more than 2∆, decide if there
exist two points x and y on T such that δF (Q, T [x, y]) ≤ ∆.

We choose positive real numbers c, c′, and ε, and assume that T is c-packed and each
edge of T has length at least ∆/c′.

We construct the data structure ASFD(T,∆) of Lemma 4, the data structure B(T) of
Lemma 3, and the data structure HSI (T,∆) of Lemma 9 for the tree T .

Consider a query segment Q = [a, b] of length more than 2∆. We show how these data
structures can be used to implement the three steps of the generic algorithm of Section 3.

Step 1: In exactly the same way as in Section 5.2, we compute, in O(log n+ c2c′) time, the
sets A and B of intersection points between T and the half-spheres Cab and Cba, respectively.
Recall that both A and B have size O(cc′).

Step 2: For each x in A and each y in B, we do the following: For each point z in
(A ∪ B) \ {x, y}, use the data structure B(T) to decide if z is on the path T [x, y]. If this is
not the case for all such z, then we add the pair (x, y) to an initially empty set.

At the end of this step, we have computed the set

I = {(x, y) ∈ A×B : T (x, y) ∩ A = ∅ and T (x, y) ∩B = ∅}.

It follows from Lemma 3 that the total time for this step is O((cc′)3). Observe that the size
of the set I is O((cc′)2).

Step 3: This step is the same as in Section 5.2, except that we use the data structure
ASFD(T,∆). Since the size of I is O((cc′)2), the total time for this step is O((cc′/ε)2 log2 n).

This concludes the description of the query algorithm. Observe that it correctly imple-
ments the generic algorithm of Section 3. Therefore, we have proved the following result.

Theorem 2 Let T be a tree with n vertices in Rd, and let c, c′, and ∆ be positive real
numbers. Assume that T is c-packed and each of its edges has length at least ∆/c′. For any
ε > 0, we can construct a data structure of size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)

in
O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time. Given any segment Q of length more than 2∆, the query algorithm corresponding to
this data structure takes

O
(
(cc′/ε)2) log2 n+ (cc′)3

)
time and outputs either YES or NO.

1. If the output is YES, then there exist two points x and y on T such that δF (Q, T [x, y]) ≤
(1 + ε)∆.

16

2. If the output is NO, then δF (Q, T [x, y]) > ∆ for any two points x and y on T .

Remark 1 If we do not perform Step 2, then the result in Theorem 2 still holds, but without
the term (cc′)3 in the query time. The advantage of including Step 2 is that it allows us to
count all minimal paths T [x, y] whose Fréchet distance to Q is (approximately) at most ∆.

Unfortunately, the simplification technique of Section 4 cannot be used to remove the
assumption that each edge of T has length at least ∆/c′: The number of paths in the path
decomposition PD(T) of the tree T can be Ω(n). Therefore, if we apply the simplification
technique to each such path, as we did in Section 5.3, we may get Ω(n) simplified paths,
each of which contains one edge of length less than µ = ∆/c′. As a result, the sets A and B
that are computed in Step 1 of the query algorithm may have linear size.

7 Querying with a Polygonal Path

Until now, we have considered querying polygonal paths or trees with a line segment. In this
section, we generalize our results to queries Q consisting of a polygonal path. Unfortunately,
the approximation factor increases from 1 + ε to 3(1 + ε), and we need the requirement that
each edge of Q has length more than 5∆.

Let T be a tree in Rd and let ∆ > 0 be a real number. We consider polygonal query
paths Q = (q1, q2, . . . , qm), all of whose edges have length more than 5∆. As before, we fix a
real number ε > 0. The following lemma (which only needs the requirement that each edge
of Q has length more than 2∆) generalizes Lemma 5.

Lemma 11 Let Q = (q1, q2, . . . , qm) be a polygonal path, all of whose edges have length more
than 2∆. Assume there exist two points x and y on T , such that δF (Q, T [x, y]) ≤ ∆. Then
there exist points x′1, y

′
1, . . . , x

′
m−1, y

′
m−1 on T [x, y], such that the following are true:

1. By traversing the path T [x, y], we visit the points x′1, y
′
1, . . . , x

′
m−1, y

′
m−1 in this order.

2. For each integer i with 1 ≤ i < m,

(a) x′i and y′i are on the half-spheres Cqiqi+1
and Cqi+1qi, respectively,

(b) the open path T (x′i, y
′
i) is disjoint from Cqiqi+1

∪ Cqi+1qi,

(c) δF ([qi, qi+1], T [x′i, y
′
i]) ≤ ∆.

3. For each integer i with 1 ≤ i < m − 1, the path T [y′i, x
′
i+1] is completely contained in

the ball with center qi+1 and radius 3∆.

Proof. Consider a matching between Q and T [x, y] that realizes δF (Q, T [x, y]). For each i
with 1 ≤ i ≤ m, let xi be the point on T [x, y] that is matched to qi. Observe that x1 = x,
xm = y, and |qixi| ≤ ∆ for 1 ≤ i ≤ m.

Let i be any index such that 1 ≤ i < m. It is obvious that δF ([qi, qi+1], T [xi, xi+1]) ≤ ∆.
Therefore, we can apply Lemma 5 to the line segment [qi, qi+1] and the two points xi and

17

qi

xi

a
z

r

qi+1

xi+1

Dqi+1y′i

Figure 2: Illustrating the proof of the third claim in Lemma 11. The matching that realizes
δF (Q, T [x, y]) matches a with y′i and z with r.

xi+1 on T . We obtain two points x′i and y′i on the path T [xi, xi+1] such that the first and
second claims hold.

It remains to prove the third claim. Let i be any index such that 1 ≤ i < m− 1. Recall
from the proof of Lemma 5 that y′i is the first point on the path T [xi, xi+1] that is in the ball
Dqi+1

, whereas x′i+1 is the last point on T [xi+1, xi+2] that is in Dqi+1
. We have to show that

|qi+1r| ≤ 3∆ for each point r on the path T [y′i, x
′
i+1]. We will prove this for the case when r

is on T [y′i, xi+1]; the other case can be proved in a symmetric way.
In the following, refer to Figure 2. Consider an arbitrary point r on T [y′i, xi+1]. Let a be

the point on [qi, qi+1] that is matched to y′i and let z be the point on [a, qi+1] that is matched
to r. We have

|qi+1r| ≤ |qi+1z|+ |zr|
≤ |qi+1a|+ |zr|
≤ |qi+1y

′
i|+ |y′ia|+ |zr|

≤ 3∆.

This completes the proof of the lemma.

The following lemma is a sort of converse to Lemma 11. Again, this lemma only needs
the requirement that each edge of Q has length more than 2∆. We leave the easy proof to
the reader.

Lemma 12 Let Q = (q1, q2, . . . , qm) be a polygonal path, all of whose edges have length more
than 2∆. Assume there exist points x1, y1, . . . , xm−1, ym−1 on T , such that the following are
true:

1. By traversing the path T [x1, ym−1], we visit the points x1, y1, . . . , xm−1, ym−1 in this
order.

2. For each integer i with 1 ≤ i < m, δF ([qi, qi+1], T [xi, yi]) ≤ (1 + ε)∆.

18

3. For each integer i with 1 ≤ i < m − 1, the path T [yi, xi+1] is completely contained in
the ball with center qi+1 and radius 3(1 + ε)∆.

Then, δF (Q, T [x1, ym−1]) ≤ 3(1 + ε)∆.

Our algorithm will run the query algorithms of the previous sections separately on each
edge of the query path Q. Afterwards, we check if the partial paths in the tree T obtained
for the edges of Q can be combined into one global path that is close to the entire path Q
with respect to the Fréchet distance. The following lemma will imply that this combining
step leads to an efficient algorithm. We remark that this is where we need the assumption
that each edge of Q has length more than 5∆.

Lemma 13 Assume that 0 < ε ≤ 1/3. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm)
be polygonal paths and assume that each edge of Q has length more than 5∆. Let i be an
index with 1 ≤ i < m− 1 and assume that there exists a point y on P , such that y is on the
half-sphere Cqi+1qi. Then there exists at most one pair (x′, y′) of points on P such that

1. y ≤P x′ ≤P y′,

2. x′ and y′ are on the half-spheres Cqi+1qi+2
and Cqi+2qi+1

, respectively,

3. the open path P (x′, y′) is disjoint from Cqi+1qi+2
∪ Cqi+2qi+1

,

4. the path P [y, x′] is completely contained in the ball with center qi+1 and radius 3(1+ε)∆.

Proof. Assume that there exist two such pairs (x′, y′) and (x′′, y′′) of points on P . It follows
from the second and third items that the paths P [x′, y′] and P [x′′, y′′] do not overlap. Thus,
we may assume without loss of generality that y′ ≤P x′′. We have

5∆ < |qi+1qi+2| ≤ |qi+1y
′|+ |y′qi+2| = |qi+1y

′|+ ∆,

and, therefore,
|qi+1y

′| > 4∆ ≥ 3(1 + ε)∆.

Since y′ is on the path P [y, x′′], it follows that the path P [y, x′′] is not completely contained
in the ball with center qi+1 and radius 3(1 + ε)∆. Thus, the pair (x′′, y′′) does not satisfy the
fourth item in the lemma. This is a contradiction, because we assumed that (x′′, y′′) satisfies
all four items in the lemma.

7.1 Querying a Polygonal Path with a Polygonal Path

Assume that the tree T is a polygonal path. As before, we write P instead of T . Thus, we
assume that P = (p1, p2, . . . , pn) is a polygonal path in Rd.

We choose positive real numbers ∆, ε, c, and c′, and assume that P is c-packed. As
before, we start by assuming that each edge of P , except possibly the last one, has length
at least ∆/c′.

19

Preprocessing: We run the preprocessing algorithm of Section 5.1, resulting in the struc-
tures HSI (P,∆) and ASFD(P,∆). We also construct the data structure of Lemma 2, with
the value ∆ replaced by 3∆; we denote this structure by ASFD(P, 3∆).

The preprocessing algorithm takes

O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time and produces a data structure of size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)
.

Observe that ASFD(P, 3∆) can be used to approximately decide if a subpath of P is
contained in a ball of radius 3∆: Indeed, consider a point q in Rd and two points x and y on
P . The subpath P [x, y] is contained in the ball with center q and radius 3∆ if and only if
the Fréchet distance between the line segment [q, q] and the subpath P [x, y] is at most 3∆.
Therefore, we query ASFD(P, 3∆) with the line segment [q, q] and the points x and y. If
the query algorithm returns true, then, by Lemma 2, P [x, y] is contained in the ball with
center q and radius 3(1 + ε)∆. Otherwise, P [x, y] is not completely contained in the ball
with center q and radius 3∆.

Answering a query: Consider a query path Q = (q1, q2, . . . , qm) all of whose edges have
length more than 5∆.

For each integer i with 1 ≤ i < m, we run Steps 1 and 2 of the query algorithm of
Section 5.2 with the segment [qi, qi+1]. This gives the set Ii of all pairs (x, y) of points such
that

• x ≤P y,

• x is an intersection point between P and the half-sphere Cqiqi+1
,

• y is an intersection point between P and the half-sphere Cqi+1qi ,

• the open path P (x, y) is disjoint from Cqiqi+1
∪ Cqi+1qi .

Next, we modify Step 3 of the algorithm in Section 5.2, in the following way: We consider all
pairs in Ii. For each such pair (x, y), we query ASFD(P,∆) with the line segment [qi, qi+1]
and the subpath P [x, y]. If the Boolean value returned by the query algorithm is true, then
we insert the pair (x, y) into an initially empty set Ji.

After these steps have been performed for all values of i, we proceed as follows.

• Initialize K1 = J1.

• For i = 1, 2, . . . ,m− 2, do the following:

– At this moment, we have the set Ki.

20

– Initialize Ki+1 = ∅.
– For each pair (x, y) in Ki, do the following: Consider all pairs in Ji+1. For

each such pair (x′, y′), run the query algorithm of ASFD(P, 3∆) with the segment
[qi+1, qi+1] and the points y and x′. (Thus, we approximately decide if the subpath
P [y, x′] is contained in the ball with center qi+1 and radius 3∆.) If the query
algorithm returns true and y ≤P x′, then we insert the pair (x, y′) into the set
Ki+1.

At the end of this algorithm, we have obtained a set Km−1. If this set is non-empty, then
we return YES; otherwise, we return NO.

We first prove the correctness of this algorithm. Assume that the output of the algorithm
is YES. Then it follows from Lemmas 2 and 12 that there exist two points x and y on P
such that x ≤P y and δF (Q,P [x, y]) ≤ 3(1 + ε)∆.

On the other hand, assume there exist two points x and y on P such that x ≤P y
and δF (Q,P [x, y]) ≤ ∆. Consider the points x′1, y

′
1, . . . , x

′
m−1, y

′
m−1 that satisfy the three

properties of Lemma 11. We observe that, for each i with 1 ≤ i < m, the pair (x′i, y
′
i) is

contained in the set Ji. Using the third property of Lemma 11, it then follows that for each
i with 1 ≤ i < m, the pair (x′1, y

′
i) is in the set Ki. In particular, at the end of the query

algorithm, the pair (x′1, y
′
m−1) is in the set Km−1. Thus, since this set is non-empty, the

query algorithm returns YES.
We next analyze the running time of the query algorithm. By Lemma 7, each of the sets

I1, I2, . . . , Im−1 has size O(cc′). Since Ji ⊆ Ii, each of the sets J1, J2, . . . , Jm−1 has size O(cc′)
as well.

Let i be an integer with 1 ≤ i ≤ m− 2. We claim that |Ki+1| ≤ |Ki|. To prove this, let
(x, y) be an arbitrary element in Ki. If (x′, y′) is an element of Ji+1 for which our algorithm
inserts the pair (x, y′) into Ki+1, then the points y, x′, and y′ satisfy the properties in
Lemma 13. Thus, Lemma 13 implies that the pair (x, y) of Ki contributes at most one pair
(x, y′) to Ki+1. This proves that |Ki+1| ≤ |Ki|.

For each integer i with 1 ≤ i ≤ m− 1, we thus have

|Ki| ≤ |Ki−1| ≤ |Ki−2| ≤ . . . ≤ |K1| = |J1| = O(cc′).

The total query time is the sum of

• the total time for Steps 1 and 2, which is

O
(
m
(
log n+ c2c′ + cc′ log(cc′)

))
,

• the total time for the modified Step 3, which is

O

(
m−1∑
i=1

|Ii|(log n)/ε2

)
= O

(
(cc′/ε2)m log n

)
,

21

• the total time for the construction of the sets K1, K2, . . . , Km−1, which is

O

(
m−2∑
i=1

|Ki| · |Ji+1|(log n)/ε2

)
= O

(
(cc′/ε)2m log n

)
.

Thus, assuming that P is c-packed and each of its edges has length at least ∆/c′, we
obtain a data structure with

O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
preprocessing time,

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)

size, and
O
(
(cc′/ε)2m log n

)
query time.

To remove the assumption that each edge of P has length at least ∆/c′, we first compute
a µ-simplification P ′ of P , with µ = ∆/c′, as we did in Section 5.3. Then we build the above
data structure for the simplified path P ′. By choosing c′ to be proportional to 1/ε, for any
given ε > 0, we obtain the following result:

Theorem 3 Let P be a polygonal path in Rd with n vertices, let c and ∆ be positive real
numbers, and assume that P is c-packed. For any ε > 0, we can construct a data structure
of size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)

in
O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time. Given any polygonal path Q with m vertices, all of whose edges have length more than
5∆, the query algorithm corresponding to this data structure takes

O
(
(c2/ε4)m log n

)
time and outputs either YES or NO.

1. If the output is YES, then there exist two points x and y on P with x ≤P y such that
δF (Q,P [x, y]) ≤ 3(1 + ε)∆.

2. If the output is NO, then δF (Q,P [x, y]) > ∆ for any two points x and y on P with
x ≤P y.

22

7.2 Querying a Tree with a Polygonal Path

We finally consider a tree T with n vertices. Let ∆, ε, c, and c′ be positive real numbers,
and assume that T is c-packed and each of its edges has length at least ∆/c′.

We run the preprocessing algorithm of Section 6, resulting in the structures HSI (T,∆),
ASFD(T,∆), and B(T). We also construct the data structure of Lemma 4, with the value
∆ replaced by 3∆; we denote this structure by ASFD(T, 3∆).

The entire preprocessing algorithm takes

O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time and the resulting data structure has size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)
.

Let Q = (q1, q2, . . . , qm) be a query path all of whose edges have length more than 5∆.
For each integer i with 1 ≤ i < m, we run Steps 1 and 2 of the query algorithm of Section 6
with the segment [qi, qi+1]. This gives the set Ii of all pairs (x, y) of points such that

• x is an intersection point between T and the half-sphere Cqiqi+1
,

• y is an intersection point between T and the half-sphere Cqi+1qi ,

• the open path T (x, y) is disjoint from Cqiqi+1
∪ Cqi+1qi .

We modify Step 3 of the algorithm in Section 6, again with the segment [qi, qi+1], as follows.
We consider all pairs in Ii. For each such pair (x, y), we query the data structure ASFD(T,∆)
with the line segment [qi, qi+1]. If the Boolean value returned is true, then we insert the pair
(x, y) into an initially empty set Ji.

After these steps have been performed for all values of i, we proceed as follows.

• Initialize K1 = J1.

• For i = 1, 2, . . . ,m− 2, do the following:

– At this moment, we have the set Ki.

– Initialize Ki+1 = ∅.
– For each pair (x, y) in Ki, do the following: Consider all pairs in Ji+1. For each

such pair (x′, y′), run the query algorithm of ASFD(T, 3∆) with the segment
[qi+1, qi+1] and the points y and x′. If (i) the query algorithm returns true, (ii) y
is on the path T [x, x′] (which we decide using the structure B(T)), and (iii) x′ is
on the path T [y, y′] (which we again decide using B(T)), then we insert the pair
(x, y′) into the set Ki+1. (It follows from Lemma 13 that (x, y′) was not in Ki+1

yet.)

23

At the end of this algorithm, we have obtained a set Km−1. If this set is non-empty, then
we return YES; otherwise, we return NO.

The correctness proof of our query algorithm is the same as in Section 7.1. To analyze
the query time, first observe that each of the sets Ii and Ji has size O((cc′)2). The set Ki

contains pairs (x, y) of points on T with x on Cq1q2 and y on Cqi+1qi . Therefore, the size of
Ki is O((cc′)2) as well. An analysis similar to the one in Section 7.1 shows that the total
query time is

O
((

(cc′)4/ε2
)
m log2 n

)
.

We have proved our final result:

Theorem 4 Let T be a tree with n vertices in Rd, and let ∆, c, and c′ be positive real
numbers. Assume that T is c-packed and each of its edges has length at least ∆/c′. For any
ε > 0, we can construct a data structure of size

O
((
c+ (1/ε2d) log2(1/ε)

)
n
)

in
O
((

(1/ε2d) log2(1/ε)
)
n log2 n+ cn log n

)
time. Given any polygonal path Q with m vertices, all of whose edges have length more than
5∆, the query algorithm corresponding to this data structure takes

O
((

(cc′)4/ε2
)
m log2 n

)
time and outputs either YES or NO.

1. If the output is YES, then there exist two points x and y on T such that δF (Q, T [x, y]) ≤
3(1 + ε)∆.

2. If the output is NO, then δF (Q, T [x, y]) > ∆ for any two points x and y on T .

8 Concluding Remarks

We have presented data structures that store, for a fixed real number ∆ > 0, a geometric
tree T such that, for any given polygonal query path Q, we can approximately decide if the
tree contains a path whose Fréchet distance to Q is at most ∆. We obtained good bounds
on the preprocessing time, size, and query time for trees that are c-packed, for some small
value of c, and for queries Q in which each edge has length Ω(∆). For general trees, we also
need that each of its edges has length Ω(∆); for the case when T is a polygonal path, the
latter requirement is not needed. We leave as an open problem to remove this requirement
for general trees.

Our approximation factors are 1+ε if Q is a query segment, and 3(1+ε) if Q is a polygonal
path. We leave as an open problem to improve the approximation factor for polygonal query
paths.

All our results assume that the value ∆ is fixed. It would be interesting to obtain an
efficient data structure for which ∆ is part of the query.

24

Acknowledgment

We thank an anonymous referee for the conference version [20] of this paper for pointing
out reference [17] to us. We also thank the anonymous referees for this journal paper for
their constructive remarks that helped improve the presentation. In particular, we thank
the referee who suggested to us the algorithm in Section 2, which improved our query times
by a factor of log log n, as well as the algorithm in Lemma 9, which allowed us to prove all
our results in Rd.

References

[1] P. K. Agarwal, R. B. Avraham, H. Kaplan, and M. Sharir. Computing the discrete
Fréchet distance in subquadratic time. SIAM Journal on Computing, 43:429–449, 2014.

[2] H. Alt. The computational geometry of comparing shapes. In Efficient Algorithms,
Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 235–
248. Springer, 2009.

[3] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms,
49(2):262–283, 2003.

[4] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry & Applications,, 5:75–91, 1995.

[5] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves.
Algorithmica, 38(1):45–58, 2003.

[6] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of
the 4th Latin American Symposium on Theoretical Informatics, volume 1776 of Lecture
Notes in Computer Science, pages 88–94, Berlin, 2000. Springer-Verlag.

[7] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking
data. In 31st Conference on Very Large Data Bases (VLDB), pages 853–864. VLDB
Endowment, 2005.

[8] K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In Proceedings of the 55th IEEE Symposium
on Foundations of Computer Science, 2014.

[9] K. Bringmann and M. Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. CoRR, abs/1408.1340, 2014.

[10] K. Buchin, M. Buchin, and J. Gudmundsson. Constrained free space diagrams: a tool
for trajectory analysis. Int. Journal of GIS, 24(7):1101–1125, 2010.

25

[11] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it to walk the
dog? 23rd European Workshop on Computational Geometry (EuroCG), pages 170–173,
2007. Graz, Austria.

[12] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets walk the dog - with
an application to Alt’s conjecture. In Proceedings of the 25th ACM-SIAM Symposium
on Discrete Algorithms, pages 1399–1413, 2014.

[13] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and C. Wenk. Approximate map
matching with respect to the Fréchet distance. In Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 75–83. SIAM, 2011.

[14] R. Cole and U. Vishkin. The accelerated centroid decomposition technique for optimal
parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346, 1988.

[15] M. de Berg, A. F. Cook IV, and J. Gudmundsson. Fast Fréchet queries. Computational
Geometry – Theory and Applications, 46(6):747–755, 2013.

[16] M. de Berg and M. Streppel. Approximate range searching using binary space partitions.
Computational Geometry – Theory and Applications, 33:139–151, 2006.

[17] A. Driemel and S. Har-Peled. Jaywalking your dog: computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42:1830–1866, 2013.

[18] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic
curves in near linear time. Discrete & Computational Geometry, 48:94–127, 2012.

[19] M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathe-
matico di Palermo, 22:1–74, 1906.

[20] J. Gudmundsson and M. Smid. Fréchet queries in geometric trees. In Proceedings of the
21st European Symposium on Algorithms, volume 8125 of Lecture Notes in Computer
Science, pages 565–576, Berlin, 2013. Springer-Verlag.

[21] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive datasets.
In Proceedings of the 3rd European Conference on Principles and Practice of Knowledge
Discovery in Databases, pages 1–11. Springer, 1999.

[22] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, Cambridge, UK, 2007.

[23] C. A. Ratanamahatana and E. J. Keogh. Three myths about dynamic time warping
data mining. In Proceedings of the 5th SIAM International Data Mining Conference.
SIAM, 2005.

[24] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Proceedings of the 9th International
Conference on Document Analysis and Recognition, pages 461–465, 2007.

26

[25] C. Wenk. Shape matching in higher dimensions; chapter 5: Matching curves with
respect to the Fréchet distance. Dissertation, Freie Universität Berlin, Germany, 2003.

[26] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: Lo-
calizing global curve-matching algorithms. In Proceedings of the 18th Conference on
Scientific and Statistical Database Management (SSDBM), pages 379–388, 2006.

27

