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Abstract

Let T be a tree that is embedded in the plane and let ∆ > 0 be a real number. The
aim is to preprocess T into a data structure, such that, for any query polygonal path
Q, we can decide if T contains a path P whose Fréchet distance δF (P,Q) to Q is less
than ∆. For any real number ε > 0, we present an efficient data structure that solves
an approximate version of this problem, for the case when T is c-packed and each of
the edges of T and Q has length Ω(∆): If the data structure returns NO, then there is
no such path P . If it returns YES, then δF (P,Q) ≤

√
2(1 + ε)∆ if Q is a line segment,

and δF (P,Q) ≤ 3∆ otherwise.

1 Introduction

The Fréchet distance [15] is a measure of similarity between two curves P and Q that takes
into account the location and ordering of the points along the curves. Let p and p′ be the
endpoints of P and let q and q′ be the endpoints of Q. Imagine a dog walking along P and,
simultaneously, a person walking along Q. The person is holding a leash that is attached to
the dog. Neither the dog nor the person is allowed to walk backwards along their curve, but
they can change their speeds. The Fréchet distance between P and Q is the length of the
shortest leash such that the dog can walk from p to p′ and the person can walk from q to q′.
To define this formally, let |xy| denote the Euclidean distance between two points x and y.
Then the Fréchet distance δF (P,Q) between P and Q is defined as

δF (P,Q) = inf
f

max
z∈P
|zf(z)|,

where f ranges over all orientation-preserving homeomorphisms f : P → Q with f(p) = q
and f(p′) = q′.
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Measuring the similarity between curves has been extensively studied in the last 20 years
in computational geometry [1, 4, 14, 20], as well in other areas, such as data mining [16, 18],
GIScience [6, 7, 21] and image processing [19].

Alt and Godau [4] showed that the Fréchet distance between two polygonal curves P and
Q can be computed in O(n2 log n) time, where n is the total number of vertices of P and Q.
A lower bound of Ω(n log n) for the decision version of the problem was given by Buchin et
al. [8]. Despite extensive research, no subquadratic time algorithm is known for the problem.
In 2009, Alt [2] conjectured the decision problem to be 3SUM-hard.

Recently, Agarwal et al. [1] showed how to achieve a subquadratic running time for the
discrete Fréchet distance, where only the vertices of the curves are considered. Buchin et
al. [9] showed how to extend their approach to the (continuous) Fréchet distance. Their
algorithm takes O(n2

√
log n(log log n)3/2) expected time.

Until recently, subquadratic time algorithms were only known for restricted cases, such
as closed convex curves and κ-bounded curves [5]. In 2010, Driemel et al. [14] introduced a
new class of realistic curves, the so-called c-packed curves. A polygonal path is c-packed if
the total length of the edges inside any ball is bounded by c times the radius of the ball. Note
that the definition generalizes naturally to geometric graphs. Driemel et al. showed that a
(1 + ε)-approximation of the Fréchet distance between two c-packed curves with a total of
n vertices in Rd can be computed in O(cn/ε + cn log n) time. The notion of c-packedness
has been argued [10, 14] to capture many realistic settings for geometric paths and graphs.
Chen et al. [10] experimentally verified that maps of real world cities are φ-low density for
a constant φ1. A geometric graph G is φ-low-density, if for any radius ρ > 0, any ball with
radius ρ intersects at most φ edges of G that are longer than ρ. A c-packed curve is φ-low
density for φ = 2c; see [14].

In many applications, it is important to find the path in a geometric graph G that is
most similar to a polygonal curve Q. Alt et al. [3] introduced this problem in 2003: Given
a planar geometric graph G with n vertices and a polygonal curve Q with m vertices, the
problem is to find the path P on G that has the smallest Fréchet distance to Q. They
presented an algorithm that finds such a path P , with both endpoints being vertices of G,
in O(nm log(nm) log n) time using O(nm) space; see also [6, 21]. The bound on the running
time is close to quadratic in the worst case and, hence, unsuitable for large road maps. Chen
et al. [10] considered the case when the embedding of G is φ-low density and the curve Q
is c-packed. In Rd, they presented a (1 + ε)-approximation algorithm for the problem with
running time O((φm+ cn) log(nm) log(n+m) + (φm/εd + cn/ε) log(nm)).

Very little is known about query variants of these problems. In its most general setting,
the aim is to preprocess a given geometric graph G into a data structure, such that, for a
polygonal path Q and a real value ∆ > 0 as a query, it can be decided if there exists a path
P in G whose Fréchet distance to Q is less than ∆. In this setting, the path P does not have
to start or end at a vertex of G.

In [13], de Berg et al. studied the case when G is a polygonal path with n vertices and
Q is a single straight-line segment. For any fixed value of ∆ and any parameter s with

1In their experiments, φ varied between 16 and 28.
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n ≤ s ≤ n2, they show how to build, in O(n2 + s polylog(n)) time, a data structure of size
O(s polylog(n)), that can be used to approximately decide if G contains a path with Fréchet
distance less than ∆ to any given query segment. More precisely, for any query segment
Q of length more than 6∆, the query algorithm associated with the data structure returns
YES or NO in O((n/

√
s) polylog(n)) time.

1. If the output is YES, then there exists a path P in G such that δF (Q,P ) ≤ (2+3
√

2)∆.
(In fact, their algorithm counts all such “minimal” paths.)

2. If the output is NO, then δF (Q,P ) ≥ ∆ for any path P in G.

By increasing the preprocessing time to O(n3 log n), they show that the same result holds
for the case when the threshold ∆ is part of the query.

Our results: We consider the same problem as de Berg et al. [13] for the case when the
graph G is a tree and a query consists of a polygonal path Q. We will write T instead of G.

Let T be a tree with n vertices that is embedded in the plane. Thus, any vertex of T
is a point in R2 and any edge is the line segment joining its two vertices. This tree is not
necessarily plane, i.e., edges of T may cross. A point x in R2 is said to be on T , if either x
is a vertex of T or x is in the relative interior of some edge of T . If x and y are two points
on T , then T [x, y] denotes the path on T from x to y.

Let ∆ be a fixed positive real number. We want to preprocess T such that queries of
the following type can be answered efficiently: Given a (possibly crossing) polygonal path Q
with m vertices, decide if there exist two points x and y on T , such that δF (Q, T [x, y]) < ∆.

Assume that the tree T is c-packed, for some constant c. Also, assume that each edge
of T has length Ω(∆). For any constant ε > 0, we show that a data structure of size
O(n polylog(n)) can be built in O(n polylog(n)) time. For any polygonal path Q with m
vertices, each of whose edges has length Ω(∆), the query algorithm associated with the data
structure returns YES or NO in O(m polylog(n)) time.

1. If the output is YES and m = 2 (i.e., Q is a segment), then the algorithm also reports
two points x and y on T such that δF (Q, T [x, y]) ≤

√
2(1 + ε)∆.

2. If the output is YES and m > 2, then the algorithm also reports two points x and y
on T such that δF (Q, T [x, y]) ≤ 3∆.

3. If the output is NO, then δF (Q, T [x, y]) ≥ ∆ for any two points x and y on T .

If T is a path, then we do not need the requirement that each of its edges has length Ω(∆).
In this case, however, we have δF (Q, T [x, y]) ≤ 3(1 + ε)∆ if m > 2.

Compared to the structure in [13], the main drawbacks are that we require the input tree
T to be c-packed and all its edges to have length Ω(∆). However, the advantages are that
(1) our structure can report a path T [x, y], (2) the approximation bound is improved from
(2+3

√
2) to

√
2(1+ε) for query segments, (3) our query algorithm can handle polygonal query

paths Q, (4) the preprocessing time is improved from nearly quadratic to O(n polylog(n)),
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(5) the input graph can be a tree and is not restricted to being a polygonal path, and (6)
both the algorithm and the analysis are very simple.

The rest of this paper is organized as follows. In Section 2, we present the general
approach for querying a tree with a line segment, by giving a generic query algorithm and
proving its correctness. Since the running time of this algorithm can be Ω(n) for arbitrary
trees, we recall c-packed trees and µ-simplifications in Section 3 and prove some of their
properties. In Section 4, we use µ-simplifications to show how the generic algorithm can be
implemented efficiently for querying a polygonal c-packed path with a query segment. In
Section 5, we generalize the result of Section 4 to c-packed trees, all of whose edges have
length Ω(∆). In Section 6, we use the previous results to query polygonal paths and trees
with a polygonal path. Finally, in Section 7, we conclude with some directions for future
work.

2 A Generic Algorithm for Query Segments

In this section, we present a generic algorithm that can be used for any tree T and any query
segment Q of length more than 2∆. We start in Section 2.1 by presenting the main technical
lemmas that will be used to prove the correctness of our approach. The generic algorithm
itself is presented in Section 2.2.

2.1 Technical Lemmas

Let T be a tree embedded in the plane and let ∆ > 0 be a real number. We assume that a
query consists of a line segment Q with endpoints a and b, which we denote by Q = [a, b].
We also assume that |ab| > 2∆.

Throughout Section 2.1, we assume that Q is “almost” horizontal. In the generic algo-
rithm, we will use different coordinate systems, such that this assumption holds in one of
these systems for any segment Q.

Let R(a, b) be the rectangle with sides of length |ab| and 2∆ as indicated in Figure 1.
Let Da be the disk with center a and radius ∆, and let Cab be the part of the boundary of
this disk that is contained in R(a, b). Define Db and Cba similarly with respect to b.

Assume that there exist two points x and y on T such that δF (Q, T [x, y]) < ∆. The
first lemma states that we may assume that x is on Cab, y is on Cba, the path T [x, y] is in
the rectangle R(a, b), and, assuming that the query segment Q is almost horizontal, when
walking along T [x, y] from x to y, we never travel a distance of approximately 2∆ to the left.

Lemma 1 Let ε > 0 be a sufficiently small real number, let Q = [a, b] be a line segment
of length more than 2∆, and assume that the angle between Q and the positive X-axis is at
most ε. Assume there exist two points x and y on T , such that δF (Q, T [x, y]) < ∆. Then,
there exist two points x′ and y′ on T [x, y], such that the following are true:

1. x′ and y′ are on the half-circles Cab and Cba, respectively, and x′ is on the path T [x, y′].
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Figure 1: The rectangle R(a, b) and the half-circles Cab and Cba corresponding to the line
segment ab.

2. The path T [x′, y′] is completely contained in the region R(a, b) \ (Da ∪Db).

3. δF (Q, T [x′, y′]) ≤ ∆.

4. Let p and q be the first and last vertices of T on the path T [x′, y′], respectively. For
each vertex r on the path T [p, q], let Lr be the vertical line through r, and let L′r be
the vertical line that is obtained by translating Lr by a distance 2(1 + ε)∆ to the left.
Then, for each such r, the path T [r, q] does not cross the line L′r.

Proof. Throughout this proof, we assume, without loss of generality, that the slope of Q is
positive; thus, the Y -coordinate of b is at the least the Y -coordinate of a.

Let R′(a, b) be the union of R(a, b), Da, and Db. Since δF (Q, T [x, y]) < ∆, (i) the path
T [x, y] is completely contained in R′(a, b), (ii) the point x is in Da, and (iii) the point y is in
Db. Define x′ to be the last point on the path T [x, y] that is in Da, and define y′ to be the
first point on T [x, y] that is in Db. It is clear that the first two claims in the lemma hold.
The third claim follows from de Berg et al. [13, Lemma 1].

We prove the fourth claim by contradiction. Let p and q be the first and last vertices of
T on the path T [x′, y′], respectively. Assume there exists a vertex r on T [p, q] such that the
path T [r, q] crosses the line L′r. Then the path T [r, q] contains a vertex s that is to the left
of L′r.

In the following, refer to Figure 2. Let r′ and s′ be the orthogonal projections of r and
s onto the top side of the rectangle R(a, b), respectively. Observe that s′ is to the left of
r′. Let a′ be the intersection between the line L′r and the top side of R(a, b). Then a′ is
between s′ and r′. Let a′′ be the orthogonal projection of a′ onto the bottom side of R(a, b).
Let b′′ be the intersection between the line Lr and the bottom side of R(a, b), and let b′ be
the orthogonal projection of b′′ onto the top side of R(a, b). Observe that (i) a′′ and b′ are
between L′r and Lr, and (ii) a′ is to the left of b′ and both these points are between s′ and
r′ (on the top side of R(a, b)).

Finally, let α be the angle between Q and the positive X-axis, let ∆′ be the horizontal
distance between r and s, let h be the horizontal distance between L′r and a′′, and let h′ be
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∆

∆
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Figure 2: Proving the fourth claim in Lemma 1 by contradiction. We assume that the vertex
s of the path T [r, p] is to the left of the line L′r.

the horizontal distance between a′′ and Lr. We have

2(1 + ε)∆ = h+ h′

= |a′a′′| sinα + |a′′b′′| cosα

= 2∆ sinα + |a′b′| cosα

≤ 2∆α + |a′b′|
≤ 2∆ε+ |a′b′|,

which implies that |a′b′| ≥ 2∆. Since |r′s′| > |a′b′|, it follows that |r′s′| > 2∆.
We claim that δF (Q, T [x, y]) ≥ ∆. This will be a contradiction and, thus, complete the

proof of the fourth claim in the lemma. To prove this claim, let f : Q → T [x, y] be an
arbitrary orientation-preserving homeomorphism with f(a) = x and f(b) = y. Let c and c′

be the points on Q such that f(c) = r and f(c′) = s. Since s is on the path T [r, q], the point
c′ is on the line segment [c, b]; refer to Figure 3. Below, we will show that

max
z∈Q
|zf(z)| > ∆. (1)

Since f is arbitrary, this will imply our claim that δF (Q, T [x, y]) ≥ ∆ and, thus, complete
the proof of the fourth claim in the lemma.

To prove (1), first assume that c is to the left of L′r. Then we have

|cf(c)| = |cr| > 2(1 + ε)∆ > ∆
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Figure 3: While traversing the path T [x, y] from x to y, vertex r is visited before vertex s.
While traversing the segment ab from a to b, point c is visited before point c′.

and, thus, (1) holds. If c is on or to the right of L′r, then we have

2∆ < |r′s′|
≤ |rs|
≤ |rc|+ |cs|
< |rc|+ |c′s|
= |cf(c)|+ |c′f(c′)|.

It follows that |cf(c)| > ∆ or |c′f(c′)| > ∆ and, thus, (1) holds in this case as well.

The next lemma considers the converse to Lemma 1 for horizontal line segments Q. It
states that if there exist points x and y on T satisfying the first, second, and fourth claims
in Lemma 1, then the Fréchet distance between Q and T [x, y] is bounded.

Lemma 2 Let ∆′′ > 0 be a real number and let Q = [a, b] be a horizontal line segment of
length more than 2∆ such that a is to the left of b. Assume there exist two points x and y
on T , such that the following are true:

1. x and y are on the half-circles Cab and Cba, respectively.

2. The path T [x, y] is completely contained in the region R(a, b) \ (Da ∪Db).

3. Let p and q be the first and last vertices of T on the path T [x, y], respectively. For
each vertex r on the path T [p, q], let Lr be the vertical line through r, and let L′′r be the
vertical line that is obtained by translating Lr by a distance ∆′′ to the left. Then, for
each such r, the path T [r, q] does not cross the line L′′r .

Then, δF (Q, T [x, y]) ≤
√

∆2 + (∆′′/2).
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Figure 4: Illustrating the proof of Lemma 2.

Proof. First assume that |ab| ≤ ∆′′/2. Then for each point z on Q and each point z′ in
R(a, b), we have |zz′| ≤

√
∆2 + (∆′′/2)2. Thus, for any orientation-preserving homeomor-

phism f : T [x, y]→ Q with f(x) = a and f(y) = b, we have

max
z∈T [x,y]

|zf(z)| ≤
√

∆2 + (∆′′/2).

As a result, the lemma holds for this case. In the rest of the proof, we assume that |ab| >
∆′′/2. For any path P , let α(P ) be the X-coordinate of the rightmost point of P , and let
α′(P ) = α(P )−∆′′/2. Let L be the vertical line at distance ∆′′/2 to the right of a. Assume
that y is to the right of L. Let r be the first point along T [x, y] that is on or to the right
of L. Imagine a dog starting at x and walking along T [x, y], and a person starting at a and
walking along Q, in the following way (see Figure 4):

1. The dog walks from x to r, while the person stays at a.

2. The dog walks from r to y. The person walks along Q such that for any position z of
the dog, the person will be at the point on Q with X-coordinate α′(T [r, z]).

3. Let c be the point on Q with X-coordinate α′(T [r, y]). The dog stays at y, while the
person walks from c to b.

Observe that the dog never walks backwards along T [x, y] and the person never walks back-
wards along Q. Also, both the dog and the person make continuous walks. We claim that
at any moment, the distance between the dog and the person is at most

√
∆2 + (∆′′/2)2.

Consider the first part of the walk. If r = x, then neither the dog nor the person moves
in this part. Since r is on Cab, their distance is equal to ∆, which is at most

√
∆2 + (∆′′/2)2.

Assume that r 6= x. Then the dog is within a horizontal distance of ∆′′/2 from the person.
Therefore, their distance is at most

√
∆2 + (∆′′/2)2.

Consider the second part of the walk. Because of the third property in the statement of
the lemma, the horizontal distance between any point z on T [r, y] and the point on Q with
X-coordinate α′(T [r, z]) is at most ∆′′/2. As a result, the distance between the dog and the
person is at most

√
∆2 + (∆′′/2)2.

In the third part of the walk, as long as the person does not enter the half-circle Cba,
the horizontal distance to the dog will be at most ∆′′/2 and, thus, the distance to the dog

8



will be at most
√

∆2 + (∆′′/2)2. After the person enters Cba, the person will stay within

distance ∆ ≤
√

∆2 + (∆′′/2)2 from the dog.
The walks of the dog and the person do not define an orientation-preserving homeomor-

phism between T [x, y] and Q. However, it is not difficult to see that for every ε > 0, there
exists an orientation-preserving homeomorphism f : T [x, y] → Q with f(x) = a, f(y) = b
and

max
z∈T [x,y]

|zf(z)| ≤
√

∆2 + (∆′′/2)2 + ε.

Therefore, we have shown that δF (Q, T [x, y]) ≤
√

∆2 + (∆′′/2).
It remains to consider the case when |ab| > ∆′′/2 and y is on or to the left of L. In this

case, we set r = x and observe that the above analysis is still valid.

The final lemma in this section generalizes Lemma 2 to the case when the line segment
Q is almost horizontal.

Lemma 3 Let ε > 0 be a sufficiently small real number, let Q = [a, b] be a line segment
of length more than 2∆, and assume that the angle between Q and the positive X-axis is at
most ε. Assume there exist two points x and y on T , such that the following are true:

1. x and y are on the half-circles Cab and Cba, respectively.

2. The path T [x, y] is completely contained in the region R(a, b) \ (Da ∪Db).

3. Let p and q be the first and last vertices of T on the path T [x, y], respectively. For
each vertex r on the path T [p, q], let Lr be the vertical line through r, and let L′r be
the vertical line that is obtained by translating Lr by a distance 2(1 + ε)∆ to the left.
Then, for each such r, the path T [r, q] does not cross the line L′r.

Then, δF (Q, T [x, y]) ≤
√

2(1 + 3ε)∆.

Proof. Throughout this proof, we assume, without loss of generality, that the slope of Q is
positive; thus, the Y -coordinate of b is at the least the Y -coordinate of a.

In the following, refer to Figure 5. Let r be an arbitrary vertex on the path T [p, q], and
let s 6= r be any vertex on the path T [r, q]. Consider the vertical lines Lr and Ls through
r and s, respectively. Let r′ and s′ be the orthogonal projections of r and s onto the top
side of the rectangle R(a, b), respectively, and assume that s′ is to the left of r′. Let a′′ be
the intersection between Ls and the line through the bottom side of R(a, b), and let a′ be
the orthogonal projection of a′′ onto the line through the top side of R(a, b). Let b′ be the
intersection between Lr and the line through the top side of R(a, b). Let c′ be the intersection
between Ls and the line through the top side of R(a, b). Let α be the angle between Q and
the positive X-axis. Finally, let ∆′ be the horizontal distance between r and s. By the
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Figure 5: Illustrating the proof of Lemma 3.

assumption in the lemma, we have ∆′ ≤ 2(1 + ε)∆. We have

|r′s′| ≤ |a′b′|
= |a′c′|+ |c′b′|
= |a′a′′| tanα + ∆′/ cosα

= 2∆ tanα + ∆′/ cosα

≤ 2∆ tan ε+ ∆′/ cos ε

≤ 2∆ (tan ε+ (1 + ε)/ cos ε) .

Since, for sufficiently small values of ε, tan ε ≤ 2ε and cos ε ≥ 1/(1 + ε), it follows that

|r′s′| ≤ 2∆
(
2ε+ (1 + ε)2

)
≤ 2∆ (1 + 5ε) .

Let ∆′′ = 2∆(1 + 5ε). If we consider the line through the top side of R(a, b) to be the
horizontal axis, then we have shown that the conditions in Lemma 2 are satisfied. It follows
that

δF (Q, T [x, y]) ≤
√

∆2 + (∆′′/2)2 ≤
√

∆2 + ∆2(1 + 5ε)2.

If ε is sufficiently small, then (1 + 5ε)2 ≤ 1 + 12ε. Thus, we have shown that

δF (Q, T [x, y]) ≤
√

2∆
√

1 + 6ε ≤
√

2∆(1 + 3ε).

This completes the proof.
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2.2 The Generic Algorithm

As before, let T be a tree embedded in the plane and let ∆ > 0 be a real number. Recall
that, for any two points x and y on T , T [x, y] denotes the path on T from x to y. We define
T (x, y) to be the “open” path obtained by removing the endpoints x and y from T [x, y].

We choose a sufficiently small real number ε > 0 such that π/ε is an integer. For each
integer m with 0 ≤ m < π/ε, consider the coordinate system, with axes Xm and Ym, that is
obtained by rotating the X-axis and Y -axis by an angle of 2mε.

Consider a query segment Q = [a, b] of length more than 2∆. Recall the rectangle R(a, b),
the disks Da and Db, and the half-circles Cab and Cba that were defined in Section 2.1.

Below, we present our generic algorithm that approximately decides if there exist two
points x and y on T such that δF (Q, T [x, y]) < ∆. The basic idea is to choose a coordinate
system in which Q is approximately horizontal. Then, using this system, we find all pairs
(x, y) of points on T for which the three conditions in Lemma 3 hold.

Step 1:

• Compute the set A of intersection points between the tree T and the half-circle Cab.

• Compute the set B of intersection points between the tree T and the half-circle Cba.

Step 2: Compute the set I = {(x, y) ∈ A×B : T (x, y) ∩ A = ∅ and T (x, y) ∩B = ∅}.
Step 3: Compute the set J = {(x, y) ∈ I : T [x, y] is completely contained in R(a, b)}.
Step 4:

• Let m be an index with 0 ≤ m < π/ε, such that the angle between Q and the positive
Xm-axis is at most ε.

• For each pair (x, y) in J , do the following:

– Let p and q be the first and last vertices of T on the path T [x, y], respectively.

– For each vertex r on T [p, q], let Lr be the line through r that is parallel to the
Ym-axis, and let L′r be the line obtained by translating Lr by a distance 2(1+ε)∆
in the negative Xm-direction.

– Decide if, for each vertex r on T [p, q], the path T [r, q] does not cross the line L′r.
If this is the case, then return YES together with the two points x and y, and
terminate the algorithm.

If, at the end of this fourth step, the algorithm did not terminate yet, then return NO and
terminate.

In the following lemma, we analyze the output of this algorithm.

Lemma 4 Let Q = [a, b] be a line segment of length more than 2∆ and consider the output
of the generic algorithm on input Q.
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1. If the output is YES, then there exist two points x and y on T such that δF (Q, T [x, y]) ≤√
2(1 + 3ε)∆.

2. If the output is NO, then for any two points x and y on T , δF (Q, T [x, y]) ≥ ∆.

Proof. Assume that the output of the algorithm is YES. Consider the two points x and
y that come with this output. It follows from the algorithm that x and y satisfy the three
conditions in Lemma 3. Therefore, we have δF (Q, T [x, y]) ≤

√
2(1 + 3ε)∆.

To prove the second claim, assume there exist two points x and y on T such that
δF (Q, T [x, y]) < ∆. Let x′ and y′ be the two points on T that satisfy the four proper-
ties in Lemma 1. Then the pair (x′, y′) is contained in the set J that is computed in Step 3.
When the algorithm considers this pair in Step 4, it returns YES.

If n denotes the number of vertices of T , then the worst-case running time of the generic
algorithm will be Ω(n), because the sets A and B in Step 1 may have size Θ(n). In the
following section, we recall c-packed trees and prove some of their properties. As we will see,
if the tree T is c-packed, for some c that is polylogarithmic in n, and each of its edges has
length Ω(∆), the running time of the generic algorithm will be polylogarithmic in n.

3 c-Packed Trees and µ-Simplifications

The notion of a tree being c-packed was introduced by Driemel et al. [14]. We start by
recalling the definition.

Definition 1 Let c be a positive real number and let T be a tree that is embedded in the
plane. We say that T is c-packed if for any ρ > 0 and any disk D of radius ρ, the total
length of D ∩ T is at most cρ.

In general, the arrangement induced by a tree can have a complexity that is quadratic
in the number of vertices of T . The following lemma states that this cannot happen if T is
c-packed.

Lemma 5 Let T be a c-packed tree with n vertices. Then the arrangement induced by T has
size O(cn).

Proof. Let e be an edge of T and let p and q be the endpoints of e. We will prove an upper
bound on the number of edges that intersect e and have length at least |e|.

Consider the two disksDp andDq with radius |e| that are centered at p and q, respectively.
Consider any edge f of T with |f | ≥ |e| that intersects e. As can be seen in Figure 6, at
least (

√
3/2)|e| of the length of f is contained in Dp ∪Dq. If k is the number of such edges

f , then k(
√

3/2)|e| ≤ 2c|e|, i.e., k ≤ (4/
√

3)c.
Since T has n−1 edges, it follows that the arrangement induced by T has O(cn) vertices.

Since this arrangement is a plane graph, its number of edges and faces is O(cn) as well.
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p q

Dp Dq

(
√
3/2)|pq|

Figure 6: Any line segment that intersects pq and has length at least |pq| must have at least
(
√

3/2)|pq| of its length in Dp ∪Dq.

Even if a tree T is c-packed, the number of intersection points between T and a circle C
may be Ω(n). The next lemma gives an upper bound on the number of intersections for the
case when the length of each edge of T is at least proportional to the radius of C.

Lemma 6 Let T be a c-packed tree, let ∆ > 0 and c′ ≥ 1 be real numbers, and assume that
each edge of T has length at least ∆/c′. Then, for any circle C of radius ∆, the number of
intersection points between T and C is O(cc′).

Proof. Let C ′ be the circle of radius (1 + 1/c′)∆ that has the same center as C. Let e be
an edge of T that intersects C. Since |e| ≥ ∆/c′, at least ∆/c′ of the length of e is contained
in C ′. If k is the number of edges of T that intersect C, then k(∆/c′) ≤ c(1 + 1/c′)∆,
which implies that k ≤ c(c′ + 1) = O(cc′). Each of these k edges intersects C at most twice.
Therefore, the number of intersection points between T and C is at most 2k, which is O(cc′).

In Section 4.3, we consider polygonal paths P that are c-packed, but do not have the
property that each edge has length Ω(∆). Since Lemma 6 does not hold for such a path,
we would like to simplify P , resulting in a path P ′, such that P ′ is O(c)-packed, each of its
edges has length Ω(∆), and P ′ is close to P with respect to the Fréchet distance. Driemel
et al. [14] gave a simple algorithm that computes such a path P ′. Before we recall their
algorithm, we formally define the notion of a simplification.

Definition 2 Let P = (p1, p2, . . . , pn) be a polygonal path in the plane and let µ > 0 be a
real number. A µ-simplification of P is a polygonal path P ′ = (pi1 , pi2 , . . . , pik) such that

1. 1 = i1 < i2 < . . . < ik = n and
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2. each edge of P ′, except possibly the last one, has length at least µ.

In order to be self-contained, we include the algorithm of [14]. The input to this algorithm
is the polygonal path P = (p1, p2, . . . , pn) and the real number µ > 0.

k := 1; ik := 1; j := ik + 1;
while j < n
do while j < n and |pikpj| < µ

do j := j + 1
endwhile;
if j < n
then k := k + 1; ik := j; j := ik + 1
endif

endwhile;
k := k + 1;
ik := n;
return the path P ′ = (pi1 , pi2 , . . . , pik)

Lemma 7 (Driemel et al. [14]) The following are true:

1. In O(n) time, a µ-simplification P ′ of P can be computed such that δF (P, P ′) ≤ µ.

2. If the polygonal path P is c-packed, then this µ-simplification P ′ is (6c)-packed.

Proof. A proof of the first claim can be found in Section 2.3 of [14]. The second claim is
Lemma 4.3 in [14].

4 Polygonal Paths and Query Segments

In this section, we assume that the tree T is a polygonal path and write P instead of T .
Thus, we assume that P = (p1, p2, . . . , pn) is a polygonal path in the plane. If x and y are
two points on P , then we write x ≤P y if x is on the subpath P [p1, y].

We fix a real number ∆ > 0 and consider queries of the following type: Given a query
segment Q = [a, b] of length more than 2∆, decide if there exist two points x and y on P
such that x ≤P y and δF (Q,P [x, y]) < ∆.

We choose positive real numbers c, c′, and ε. Throughout this section, we assume that
P is c-packed. We also start by assuming that each edge of P , except possibly the last one,
has length at least ∆/c′. In Section 4.3, we will show how to remove the latter assumption.
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4.1 Preprocessing

Arrangement A(P ): We construct the arrangement A(P ) induced by the path P and
preprocess it for point-location queries. By Lemma 5, A(P ) has size O(cn) and, therefore,
can be constructed in O(cn log n) time using a plane-sweep algorithm. After an additional
O(cn log n) preprocessing time, a data structure of size O(cn) can be built that supports
point location queries in O(log n) time.

Circular ray shooting structures: Observe that each face of A(P ) is a simple polygon.
For each such face F , we construct the data structure CRS (F ) of Theorem 9 in Cheng et
al. [11], which supports the following type of queries: Given any two points a and z, where z
is in F and on the circle C of radius ∆ centered at a, determine the first intersection between
the boundary of F and the (clockwise or counter-clockwise) circular ray along C that starts
at z.

If the face F has m vertices, then CRS (F ) has query time O(logm) (which is O(log n)),
size O(m), and can be constructed in O(m logm) time. Since the entire arrangement A(P )
has size O(cn), the total size of all structures CRS (F ) is O(cn) and their total construction
time is O(cn log n).

Subpath rectangle intersection structure: We construct a balanced binary search tree
storing the points p1, p2, . . . , pn at its leaves (sorted by their indices). At each node v of this
tree, we store the convex hull CH v of all points stored in the subtree of v.

We denote the resulting data structure by SRI (P ). Both its size and construction time
are O(n log n). Using this structure, we can answer the following type of query in O(log2 n)
time: Given any rectangle R (not necessarily axes-parallel) and any two indices i and j with
1 ≤ i ≤ j ≤ n, decide if the subpath P [pi, pj] = (pi, pi+1, . . . , pj) of P is completely contained
in R. To answer such a query, we compute k = O(log n) canonical nodes in T whose subtrees
span the vertices on the subpath. For each canonical node v, we compute the four points of
CH v that are extreme in the four directions defined by the sides of R. Over all these nodes
v, this gives us 4k points. The subpath P [pi, pj] is completely in R if and only if all these
4k points are in R.

Priority search trees: In Section 2.2, we defined, for each m with 0 ≤ m < π/ε, the
coordinate system with axes Xm and Ym that is obtained by rotating the X-axis and Y -axis
by an angle of 2mε.

For each index m with 0 ≤ m < π/ε, we do the following: For any k with 1 ≤ k ≤ n, let
Lkm be the line through the point pk that is parallel to the Ym-axis, and let L′km be the line
obtained by translating Lkm by a distance 2(1 + ε)∆ in the negative Xm-direction.

For each integer k with 1 ≤ k ≤ n, define

fm(k) = min{` : k < ` ≤ n and p` is to the left (w.r.t. the Xm-direction) of L′km}.
(We define the minimum of the empty set to be∞.) Consider the set Sm = {(k, fm(k)) : 1 ≤
k ≤ n} of n points in the plane. We construct a priority search tree PSTm(P ) for the set Sm
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that supports range queries for three-sided rectangles that are unbounded in the negative
Y -direction; see McCreight [17].

We can use PSTm(P ) to answer the following query in O(log n) time: Given any two
indices i and j with 1 ≤ i ≤ j ≤ n, decide if, for each k with i ≤ k ≤ j, the subpath P [pk, pj]
does not cross the line L′km. Indeed, observe that this is the case if and only if no point of
Sm is in the three-sided rectangle [i, j]× (−∞, j].

Given the set Sm, the priority search tree PSTm(P ) can be constructed in O(n log n) time.
To compute the set Sm, we need the values fm(k), 1 ≤ k ≤ n. These values are computed
in the following way: For each integer k with 1 ≤ k ≤ n, let p1km be the first coordinate of
the point pk in the (Xm, Ym)-coordinate system. Define S ′m = {(k, p1km) : 1 ≤ k ≤ m}. Then
fm(k) is equal to the first coordinate of the leftmost point of S ′m in the south-east quadrant
[k,∞)× (−∞, p1km − 2(1 + ε)∆]. In O(n log n) time, we construct a priority search tree for
the set S ′m. We can use this structure to compute, for any k with 1 ≤ k ≤ n, the value fm(k)
in O(log n) time.

Thus, it takes O((n/ε) log n) time to construct all priority search trees PSTm(P ). Their
total size is O(n/ε).

Lemma 8 The entire preprocessing algorithm takes O((c + 1/ε)n log n) time and produces
a data structure of size O(n log n+ (c+ 1/ε)n).

4.2 The Query Algorithm

Let Q = [a, b] be a query line segment of length more than 2∆. Recall that we assume that
the polygonal path P is c-packed and each edge of P , except possibly the last one, has length
at least ∆/c′.

We show how the data structures from Section 4.1 can be used to implement the four
steps of the generic algorithm of Section 2.2.

Step 1: Consider the half-circle Cab and let z be one of its endpoints. We first find the
face F in the arrangement A(P ) that contains z. Then we use CRS (F ) to find the first
intersection between the boundary of F and the circular ray along Cab that starts at z. This
gives us the first intersection, say x, between P and Cab. We then set z to x and repeat this
procedure. In this way, we obtain the set A of intersection points between P and Cab. In a
similar manner, we obtain the set B of intersection points between P and the half-circle Cba.

By Lemma 6, both A and B have size O(cc′). Therefore, the time for this part of the
query algorithm is O((|A|+ |B|) log n), which is O(cc′ log n).

Step 2: We sort the points of A∪B in the order in which they occur along the path P . By
scanning the sorted order, we obtain the set

I = {(x, y) ∈ A×B : x ≤P y, P (x, y) ∩ A = ∅ and P (x, y) ∩B = ∅}.

Since |A|+ |B| = O(cc′), this part of the query algorithm takes O(cc′ log(cc′)) time.
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Step 3: For each element (x, y) in I, we use the data structure SRI (P ) to decide if the
subpath P [x, y] is completely contained in the rectangle R(a, b). If this is the case, then we
add the pair (x, y) to an initially empty set.

At the end of this step, we have computed the set

J = {(x, y) ∈ I : P [x, y] is completely contained in R(a, b)}.

Since the size of I is O(cc′), this part of the query algorithm takes O(cc′ log2 n) time.

Step 4: Let m be an index with 0 ≤ m < π/ε, such that the angle between Q and the
positive Xm-axis is at most ε. For each pair (x, y) in the set J , we do the following: If x
and y are on the same edge of P , then return YES together with the two points x and y,
and terminate the algorithm. Otherwise, let pi and pj be the first and last vertices of P on
the path P [x, y], respectively. Observe that i ≤ j. Use the priority search tree PSTm(P ) to
decide if, for each k with i ≤ k ≤ j, the subpath P [pk, pj] does not cross the line L′km. If
this is the case, then return YES together with the two points x and y, and terminate the
algorithm.

If, at the end of this fourth step, the algorithm did not terminate yet, then return NO
and terminate.

Since the size of J is O(cc′), this part of the query algorithm takes O(cc′ log n) time.

This concludes the description of the query algorithm. It is clear that these four steps
correctly implement the generic algorithm of Section 2.2.

Lemma 9 The query algorithm takes O(cc′ log2 n) time and correctly implements the generic
algorithm of Section 2.2. Thus, the two claims in Lemma 4 hold for the output of this
algorithm.

Note that this result assumes that each edge of P , except possibly the last one, has length
at least ∆/c′. In the next section, we remove this assumption.

4.3 General c-Packed Paths

Let P = (p1, p2, . . . , pn) be a polygonal path and assume that P is c-packed for some real
number c > 0. As before, we choose real numbers ∆, ε, and c′.

Let µ = ∆/c′. In O(n) time, we compute a µ-simplification P ′ of P ; see Lemma 7.
Then we run the preprocessing algorithm of Section 4.1 on P ′. For any given query segment
Q = [a, b] of length more than 2∆, we run the query algorithm of Section 4.2 on the data
structure for P ′.

Assume the output of the query algorithm is YES. By Lemma 4, there exist two points
x′ and y′ on P ′ such that x′ ≤P ′ y′ and δF (Q,P ′[x′, y′]) ≤

√
2(1 + 3ε)∆. Since, by Lemma 7,

δF (P, P ′) ≤ µ = ∆/c′, it follows that there exist two points x and y on P such that x ≤P y
and

δF (Q,P [x, y]) ≤
√

2(1 + 3ε)∆ + ∆/c′ =
√

2∆(1 + 3ε+ 1/(c′
√

2)). (2)
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On the other hand, if the output of the query algorithm is NO, then we have, by Lemma 4,
δF (Q,P ′[x′, y′]) ≥ ∆ for any two points x′ and y′ on P ′ with x′ ≤P ′ y′. Therefore, we have

δF (Q,P [x, y]) ≥ ∆− µ = (1− 1/c′)∆ (3)

for any two points x and y on P with x ≤P y.
By taking c′ = 1/ε and defining ∆0 = (1− 1/c′)∆, the right-hand side in (2) becomes

√
2∆0(1 +O(ε)),

whereas the right-hand side in (3) becomes ∆0. Thus, by replacing ε in the entire construction
by ε/c′′, for some sufficiently large constant c′′, we have proved the following result2.

Theorem 1 Let P be a polygonal path in the plane with n vertices, let c and ∆ be positive
real numbers, and assume that P is c-packed. For any ε > 0, we can construct a data
structure of size O(n log n + (c + 1/ε)n) in O((c + 1/ε)n log n) time. Given any segment
Q of length more than 2∆, the query algorithm corresponding to this data structure takes
O((c/ε) log2 n) time and outputs either YES or NO.

1. If the output is YES, then there exist two points x and y on P with x ≤P y such that
δF (Q,P [x, y]) ≤

√
2(1 + ε)∆.

2. If the output is NO, then δF (Q,P [x, y]) ≥ ∆ for any two points x and y on P with
x ≤P y.

5 Trees and Query Segments

Let T be a tree with n vertices that is embedded in the plane. We fix a real number ∆ > 0
and consider queries of the following type: Given a query segment Q = [a, b] of length more
than 2∆, decide if there exist two points x and y on T such that δF (Q, T [x, y]) < ∆.

We choose positive real numbers c, c′, and ε, and assume that T is c-packed and each
edge of T has length at least ∆/c′.

5.1 The Path Decomposition

In this section, we recall a technique due to Cole and Vishkin [12] that decomposes the
tree T into a collection of paths such that any path in T overlaps O(log n) paths in the
decomposition.

Fix one vertex of T and call it the root. For any vertex v of T , the subtree of v is the set
of all vertices u of T such that v is on the path between u and the root. Let size(v) denote
the number of vertices in the subtree of v, and let `(v) = blog(size(v))c. Thus, `(v) is an
integer in {0, 1, . . . , blog nc}.

2In the theorem, we rename ∆0 as ∆.
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For a given integer `, consider a maximal subtree of T consisting of vertices v with
`(v) = `. This subtree is in fact a path which is contained in some root-to-leaf path. Thus,
the values `(v) induce a partition of the vertex set of V into a collection of paths. Note that
no two paths in this partition share a vertex. For any path in the partition, let v be the
vertex on this path that is closest to the root (with respect to distances along T ). If v is not
the root, then we add the parent of v to the path. The resulting collection of paths is called
the path decomposition PD(T ) of the tree T . Any two paths in PD(T ) are edge-disjoint and
can have at most one vertex in common.

For any two points x and y on T , the path T [x, y] overlaps O(log n) paths in PD(T ).
More precisely, given x and y, in O(log n) time, a sequence v1, . . . , vk can be computed, such
that

1. k = O(log n),

2. v1 = x and vk = y,

3. for each i with 2 ≤ i ≤ k − 1, vi is an endpoint of some path in PD(T ) (and, thus, a
vertex of T ),

4. for each i with 1 ≤ i < k, the path T [vi, vi+1] is contained in some path in PD(T ),

5. the path T [x, y] in T between x and y is equal to the concatenation of the paths
T [v1, v2], T [v2, v3], . . . , T [vk−1, vk].

Using this, the following type of query can be answered in O(log n) time: Given three points
x, y, and z on T , together with the edges that contains them, decide if z is on the path
T [x, y].

5.2 Preprocessing

We construct the arrangement A(T ) induced by the tree T and preprocess it for point-
location queries. For each face F of A(T ), we construct the data structure CRS (F ) for
circular ray shooting queries, as in Section 4.1. Using Lemma 5, this takes O(cn log n) time
and uses O(cn) space.

Next, we compute the path decomposition PD(T ) of T , which can be done in O(n) time.
For each path P in PD(T ), we construct the data structure SRI (P ) of Section 4.1. Also, for
each path P in PD(T ) and for each m with 0 ≤ m < π/ε, we construct two data structures
PST→M(P ) and PST←M(P ), as in Section 4.1, one structure for each direction in which the
path P can be traversed. This part of the preprocessing takes O((n/ε) log n) time and results
in a data structure of size O(n/ε+ n log n).

Additionally, we do the following:
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Leftmost and rightmost structures: Consider the (Xm, Ym)-coordinate systems, 0 ≤
m < π/ε. For each such index m and each path P in PD(T ), we construct a balanced binary
search tree LRm(P ) storing the points of P at its leaves, in the order in which they appear
along P . At each node v of this tree, we store the point in the subtree of v that is extreme
in the positive Xm-direction and the point in the subtree of v that is extreme in the negative
Xm-direction.

The total time to compute all trees LRm(P ) is O((n/ε) log n) and their total size is
O(n/ε).

For any given path P in PD(T ), any index m, and any two points x and y on P , we
can use LRm(P ) to compute, in O(log n) time, the point on P [x, y] that is extreme in the
positive Xm-direction and the point on P [x, y] that is extreme in the negative Xm-direction.

The entire preprocessing algorithm takes O((c + 1/ε)n log n) time. The resulting data
structure has size O(n log n+ (c+ 1/ε)n).

5.3 The Query Algorithm

Consider a query segment Q = [a, b] of length more than 2∆. We show how the data
structures can be used to implement the four steps of the generic algorithm of Section 2.2.

Step 1: In exactly the same way as in Section 4.2, we compute, in O(cc′ log n) time, the
sets A and B of intersection points between T and the half-circles Cab and Cba, respectively.
Observe that both A and B have size O(cc′).

Step 2: For each x in A and each y in B, we do the following: Consider all points z ∈
(A∪B) \ {x, y} and, for each such point, decide if it is on the path T [x, y]. If this is not the
case for all such z, then we add the pair (x, y) to an initially empty set.

At the end of this step, we have computed the set

I = {(x, y) ∈ A×B : T (x, y) ∩ A = ∅ and T (x, y) ∩B = ∅}.

The total time for this step is O((cc′)3 log n) and the size of the set I is O((cc′)2).

Step 3: For each (x, y) in I, we do the following: Use the path decomposition PD(T ) to
compute the sequence of O(log n) paths in PD(T ) that overlap T [x, y]. For each such path
P , use the data structure SRI (P ) to decide if the maximal subpath of P that is on T [x, y]
is completely contained in the rectangle R(a, b). If this is the case for each such P , then we
add the pair (x, y) to an initially empty set.

At the end of this step, we have computed the set

J = {(x, y) ∈ I : T [x, y] is completely contained in R(a, b)}.

To bound the running time of this step, observe that, for each pair (x, y) in I, we spend
O(log2 n) time for each of the O(log n) paths P . Thus, since I has size O((cc′)2), the total
time for this step is O((cc′)2 log3 n).
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Step 4: Let m be an index with 0 ≤ m < π/ε, such that the angle between Q and the
positive Xm-axis is at most ε. Consider any pair (x, y) in the set J . Let p and q be the first
and last vertices on the path T [x, y], respectively. For each vertex r on T [p, q], let Lr be the
line through r that is parallel to the Ym-axis, and let L′r be the line obtained by translating
Lr by a distance of 2(1 + ε)∆ in the negative Xm-direction. We have to decide if for each
such vertex r, the path T [r, q] does not cross the line L′r.

We compute the sequence v1, . . . , vk as in Section 5.1. For each integer i with 1 ≤ i < k,
let Pi be the path in the path decomposition PD(T ) that contains T [vi, vi+1].

Assume there are two vertices r and s on T [p, q], such that s is on T [r, q] and s is to the
left of L′r (with respect to the Xm-direction). Let i and j be the indices such that r is on
the path Pi and s is on the path Pj. Observe that i ≤ j. There are two possibilities:

1. If i = j, then we use one of the two priority search trees PST→M(Pi) and PST←M(Pi) to
find such vertices r and s in O(log n) time.

Thus, by considering each of the k = O(log n) values of i, we can handle this case in
O(log2 n) time.

2. If i < j, then we may assume that r is the vertex on Pi ∩ T [p, q] that is extreme in
the positive Xm-direction, whereas s is the vertex on the concatenation of the paths
Pi+1 ∩ T [p, q], . . . , Pk−1 ∩ T [p, q] that is extreme in the negative Xm-direction. Thus,
we handle this case in the following way:

For each integer i with 1 ≤ i < k, use the data structure LRm(Pi) to find the two points
ri and si on Pi ∩ T [p, q] that are extreme in the positive and negative Xm-direction,
respectively. Then for i = k− 2, k− 3, . . . , 1, find the point s′i on the concatenation of
the paths Pi+1∩T [p, q], . . . , Pk−1∩T [p, q] that is extreme in the negative Xm-direction.
Finally, for each i with 1 ≤ i < k, check if the point s′i is to the left of the line L′ri .

The total time to handle this case is O(log2 n).

Thus, for each of the O((cc′)2) pairs (x, y) in the set J , we spend O(log2 n) in this step of
the query algorithm. It follows that the total time for Step 4 is O((cc′)2 log2 n).

This concludes the description of the query algorithm. Observe that it correctly imple-
ments the generic algorithm of Section 2.2. Therefore, we have proved the following result.

Theorem 2 Let T be a tree with n vertices that is embedded in the plane, and let c, c′, and
∆ be positive real numbers. Assume that T is c-packed and each of its edges has length at
least ∆/c′. For any ε > 0, we can construct a data structure of size O(n log n+(c+1/ε)n) in
O((c+ 1/ε)n log n) time. Given any segment Q of length more than 2∆, the query algorithm
corresponding to this data structure takes O((cc′)2 log3 n+(cc′)3 log n) time and outputs either
YES or NO.

1. If the output is YES, then there exist two points x and y on T such that δF (Q, T [x, y]) ≤√
2(1 + ε)∆.

21



2. If the output is NO, then δF (Q, T [x, y]) ≥ ∆ for any two points x and y on T .

Unfortunately, the simplification technique of Section 3 cannot be used to remove the
assumption that each edge of T has length at least ∆/c′: The number of paths in the path
decomposition PD(T ) of the tree T can be Ω(n). Therefore, if we apply the simplification
technique to each such path, as we did in Section 4.3, we may get Ω(n) simplified paths,
each of which contains one edge of length less than µ = ∆/c′. As a result, the sets A and B
that are computed in Step 1 of the query algorithm may have linear size.

6 Querying with a Polygonal Path

Until now, we have considered querying polygonal paths or trees with a line segment. In this
section, we generalize our results to queries Q consisting of a polygonal path. Unfortunately,
the approximation factor increases from

√
2(1 + ε) to 3, and we need the requirement that

each edge of Q has length more than 4∆.
Let T be a tree embedded in the plane and let ∆ > 0 be a real number. We consider

polygonal query paths Q = (q1, q2, . . . , qm), all of whose edges have length more than 4∆. As
before, we fix a sufficiently small real number ε > 0. The following two lemmas (which only
need the requirement that each edge of Q has length more than 2∆) generalize Lemmas 1
and 3.

Lemma 10 Let Q = (q1, q2, . . . , qm) be a polygonal path, all of whose edges have length more
than 2∆. Assume there exist two points x and y on T , such that δF (Q, T [x, y]) < ∆. Then,
there exist points x′1, y

′
1, . . . , x

′
m−1, y

′
m−1 on T [x, y], such that the following are true:

1. By traversing the path T [x, y], we visit the points x′1, y
′
1, . . . , x

′
m−1, y

′
m−1 in this order.

2. For each integer i with 1 ≤ i < m,

(a) x′i and y′i are on the half-circles Cqiqi+1
and Cqi+1qi, respectively,

(b) the path T [x′i, y
′
i] is completely contained in the region R(qi, qi+1) \ (Dqi ∪Dqi+1

).

3. For each integer i with 1 ≤ i < m − 1, the path T [y′i, x
′
i+1] is completely contained in

the disk with center qi+1 and radius 3∆.

4. δF (Q, T [x′1, y
′
m−1]) ≤ ∆.

5. For each integer i with 1 ≤ i < m, let mi be an index such that the angle between
the line segment [qi, qi+1] and the positive Xmi

-axis is at most ε. Let pi and qi be the
first and last vertices of T on the path T [x′i, y

′
i], respectively. For each vertex r on the

path T [pi, qi], let Lr be the line through r that is parallel to the Ymi
-axis, and let L′r

be the line that is obtained by translating Lr by a distance 2(1 + ε)∆ in the negative
Xmi

-direction. Then, for each such r, the path T [r, qi] does not cross the line L′r.
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qi

xi
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z

r

qi+1

xi+1

Dqi+1y′i

Figure 7: Illustrating the proof of the third claim in Lemma 10. The points a and y′i are
matched by the orientation-preserving homeomorphism f : Q→ T [x, y]. The points z and r
are matched by f .

Proof. Since δF (Q, T [x, y]) < ∆, there exists an orientation-preserving homeomorphism
f : Q→ T [x, y] such that f(q1) = x, f(qm) = y and maxz∈Q |zf(z)| < ∆. For each integer i
with 1 ≤ i ≤ m, define xi = f(qi).

Let i be any index such that 1 ≤ i < m. It is obvious that δF ([qi, qi+1], T [xi, xi+1]) < ∆.
Therefore, we can apply Lemma 1 to the line segment [qi, qi+1] and the two points xi and
xi+1 on T . We obtain two points x′i and y′i on the path T [xi, xi+1] such that the first, second,
and fifth claims hold. It is not difficult to see that the fourth claim also holds.

It remains to prove the third claim. Let i be any index such that 1 ≤ i < m− 1. Recall
from the proof of Lemma 1 that y′i is the first point on the path T [xi, xi+1] that is in the disk
Dqi+1

, whereas x′i+1 is the last point on T [xi+1, xi+2] that is in Dqi+1
. We have to show that

|qi+1r| ≤ 3∆ for each point r on the path T [y′i, x
′
i+1]. We will prove this for the case when r

is on T [y′i, xi+1]; the other case can be proved in a symmetric way.
In the following, refer to Figure 7. Consider an arbitrary point r on T [y′i, xi+1]. Let a

be the point on [qi, qi+1] such that f(a) = y′i, and let z be the point on [a, qi+1] such that
f(z) = r. We have

|qi+1r| ≤ |qi+1z|+ |zr|
≤ |qi+1a|+ |zr|
≤ |qi+1y

′
i|+ |y′ia|+ |zr|

= ∆ + |af(a)|+ |zf(z)|
≤ 3∆.

This completes the proof of the lemma.

Lemma 11 Let Q = (q1, q2, . . . , qm) be a polygonal path, all of whose edges have length more
than 2∆. Assume there exist points x1, y1, . . . , xm−1, ym−1 on T , such that the following are
true:
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1. By traversing the path T [x1, ym−1], we visit the points x1, y1, . . . , xm−1, ym−1 in this
order.

2. For each integer i with 1 ≤ i < m,

(a) xi and yi are on the half-circles Cqiqi+1
and Cqi+1qi, respectively,

(b) the path T [xi, yi] is completely contained in the region R(qi, qi+1) \ (Dqi ∪Dqi+1
).

3. For each integer i with 1 ≤ i < m − 1, the path T [yi, xi+1] is completely contained in
the disk with center qi+1 and radius 3∆.

4. For each integer i with 1 ≤ i < m, let mi be an index such that the angle between
the line segment [qi, qi+1] and the positive Xmi

-axis is at most ε. Let pi and qi be the
first and last vertices of T on the path T [xi, yi], respectively. For each vertex r on the
path T [pi, qi], let Lr be the line through r that is parallel to the Ymi

-axis, and let L′r
be the line that is obtained by translating Lr by a distance 2(1 + ε)∆ in the negative
Xmi

-direction. Then, for each such r, the path T [r, qi] does not cross the line L′r.

Then, δF (Q, T [x1, ym−1]) ≤ 3∆.

Proof. It follows from Lemma 3 that

δF ([qi, qi+1], T [xi, yi]) ≤
√

2(1 + 3ε)∆ ≤ 3∆,

for each i with 1 ≤ i < m, assuming that ε is sufficiently small. By the third requirement
in the lemma, we have |qi+1r| ≤ 3∆ for each i with 1 ≤ i < m− 1 and each point r on the
path T [yi, xi+1]. From these two claims, the lemma follows.

Our algorithm will run the query algorithms of the previous sections separately on each
edge of the query path Q. Afterwards, we check if the partial paths in the tree T obtained for
the edges of Q can be combined into one global path that is close to the entire path Q with
respect to the Fréchet distance. The following lemma will imply that this combining step is
possible if such a global path exists. We remark that this is where we need the assumption
that each edge of Q has length more than 4∆.

Lemma 12 Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm) be polygonal paths and assume
that each edge of Q has length more than 4∆. Let i be any index with 1 ≤ i < m − 1 and
assume that there exists a point y on P , such that y is on the half-circle Cqi+1qi. Then there
exists at most one pair (x′, y′) of points on P such that

1. y ≤P x
′ ≤P y

′,

2. x′ and y′ are on the half-circles Cqi+1qi+2
and Cqi+2qi+1

, respectively,

3. the path P [x′, y′] is completely contained in the region R(qi+1, qi+2) \ (Dqi+1
∪Dqi+2

),

4. the path P [y, x′] is completely contained in the disk with center qi+1 and radius 3∆.
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Proof. Assume that there exist two such pairs (x′, y′) and (x′′, y′′) of points on P . It follows
from the second and third items that the paths P [x′, y′] and P [x′′, y′′] do not overlap. Thus,
we may assume without loss of generality that y′ ≤P x

′′. We have

4∆ < |qi+1qi+2| ≤ |qi+1y
′|+ |y′qi+2| = |qi+1y

′|+ ∆,

and, therefore, |qi+1y
′| > 3∆. Since y′ is on the path P [y, x′′], it follows that the path

P [y, x′′] is not completely contained in the disk with center qi+1 and radius 3∆. This is a
contradiction.

6.1 Querying a Polygonal Path with a Polygonal Path

Assume that the tree T is a polygonal path. As before, we write P instead of T . Thus, we
assume that P = (p1, p2, . . . , pn) is a polygonal path in the plane.

We choose positive real numbers ∆, c, c′, and ε, and assume that P is c-packed. As
before, we start by assuming that each edge of P , except possibly the last one, has length
at least ∆/c′.

Preprocessing: We run the preprocessing algorithm of Section 4.1. Additionally, we do
the following:

Subpath furthest point structure: We construct a balanced binary search tree storing
the points p1, . . . , pn at its leaves, sorted by their indices. At each node v of this tree, we
store the furthest-point Voronoi diagram FVDv of all points stored in the subtree of v.

We denote the resulting data structure by SFP(P ). This structure has size O(n log n)
and can be constructed in O(n log2 n) time. For any disk D in the plane (given by its center
and radius) and any two indices i and j with 1 ≤ i ≤ j ≤ n, we can use SFP(P ) to decide
if the subpath P [pi, pj] is completely contained in D. The time to answer such a query is
O(log2 n).

The entire preprocessing algorithm takes O(n log2 n + (c + 1/ε)n log n) time and results
in a data structure of size O(n log n+ (c+ 1/ε)n).

Answering a query: Consider a query path Q = (q1, q2, . . . , qm) all of whose edges have
length more than 4∆.

For each integer i with 1 ≤ i < m, we run Steps 1, 2, and 3 of the query algorithm of
Section 4.2 with the segment [qi, qi+1]. This gives the set Ji of all pairs (x, y) of points such
that

• x ≤P y,

• x is an intersection point between P and the half-circle Cqiqi+1
,

• y is an intersection point between P and the half-circle Cqi+1qi ,
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• the path P [x, y] is completely contained in the region R(qi, qi+1) \ (Dqi ∪Dqi+1
).

Next, we change Step 4 of the algorithm in Section 4.2, again with the segment [qi, qi+1], as
follows. We consider all pairs (x, y) in Ji. For each such pair, if the test in Step 4 is positive,
then we insert this pair into an initially empty set Ki.

At the end of Step 4, Ki is the set of all pairs (x, y) satisfying the three properties in
Lemma 3, with respect to the line segment [qi, qi+1].

After this fourth step, we proceed as follows. Initialize K ′1 = K1. For i = 1, 2, . . . ,m− 2,
do the following: At this moment, we have a set K ′i. Initialize K ′i+1 = ∅. Consider each pair
in K ′i. For each such pair (x, y), decide if there exists a pair (x′, y′) in Ki+1 such that (i)
y ≤P x′ and (ii) the path P [y, x′] is completely contained in the disk with center qi+1 and
radius 3∆. If this is the case, then we insert the pair (x, y′) into the set K ′i+1. At the end of
this algorithm, we have obtained a set K ′m−1. If this set is non-empty, then we return YES;
otherwise, we return NO.

The set K ′1 (which is equal to K1) has size O(cc′). It then follows from Lemma 12 that
each of the sets K ′1, K

′
2, . . . , K

′
m−1 has size O(cc′) as well. This implies that the total time

to answer a query is O((cc′)2m log2 n).
Assume that the output of the algorithm is YES. Then it follows from Lemma 11 that

there exist two points x and y on P such that x ≤P y and δF (Q,P [x, y]) ≤ 3∆.
On the other hand, assume there exist two points x and y on P such that x ≤P y and

δF (Q,P [x, y]) < ∆. Consider the points x′1, y
′
1, . . . , x

′
m−1, y

′
m−1 that satisfy the five properties

of Lemma 10. We observe that, for each i with 1 ≤ i < m, the pair (x′i, y
′
i) is contained in

the set Ki. Using the third property of Lemma 10 and Lemma 12, it then follows that for
each i with 1 ≤ i < m, the pair (x′1, y

′
i) is in the set K ′i. In particular, at the end of the

query algorithm, the pair (x′1, y
′
m−1) is in the set K ′m−1. Thus, since this set is non-empty,

the query algorithm returns YES.
For this result, we can take ε to be a sufficiently small constant. Thus, assuming that P

is c-packed and each of its edges has lenght at least ∆/c′, we obtain a data structure with
O(n log2 n + cn log n) preprocessing time, O(n log n + cn) size, and O((cc′)2m log2 n) query
time.

To remove the assumption that each edge of P has length at least ∆/c′, we first compute
a µ-simplification P ′ of P , with µ = ∆/c′, as we did in Section 4.3. Then we build the
above data structure for the simplified path P ′. For any given real number ε′ > 0, if we take
c′ = 1/ε′, we obtain the following result3.

Theorem 3 Let P be a polygonal path in the plane with n vertices, let c and ∆ be positive real
numbers, and assume that P is c-packed. For any ε > 0, we can construct a data structure
of size O(n log n + cn) in O(n log2 n + cn log n) time. Given any polygonal path Q with m
vertices, all of whose edges have length more than 4∆, the query algorithm corresponding to
this data structure takes O((c/ε)2m log2 n) time and outputs either YES or NO.

3In the theorem, we rename ε′ as ε.
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1. If the output is YES, then there exist two points x and y on P with x ≤P y such that
δF (Q,P [x, y]) ≤ 3(1 + ε)∆.

2. If the output is NO, then δF (Q,P [x, y]) ≥ ∆ for any two points x and y on P with
x ≤P y.

6.2 Querying a Tree with a Polygonal Path

We finally consider a tree T with n vertices. Let ∆, c, and c′ be positive real numbers, and
assume that T is c-packed and each of its edges has length at least ∆/c′.

We choose a constant ε > 0 and preprocess T as in Section 5.2. Additionally, for each path
P in the path decomposition PD(T ), we construct the data structure SFP(P ) of Section 6.1.
For any disk D in the plane (given by its center and radius) and any two points x and y on
T , we can use PD(T ) and the structures SFP(P ) to decide, in O(log3 n) time, if the path
T [x, y] is completely contained in D.

The entire preprocessing algorithm takes O(n log2 n + cn log n) time and the resulting
data structure has size O(n log n+ cn).

Let Q = (q1, q2, . . . , qm) be a query path all of whose edges have length more than 4∆.
For each integer i with 1 ≤ i < m, we run Steps 1, 2, and 3 of the query algorithm of
Section 5.3 with the segment [qi, qi+1]. This gives the set Ji of all pairs (x, y) of points such
that

• x is an intersection point between T and the half-circle Cqiqi+1
,

• y is an intersection point between T and the half-circle Cqi+1qi ,

• the path T [x, y] is completely contained in the region R(qi, qi+1) \ (Dqi ∪Dqi+1
).

We change Step 4 of the algorithm in Section 5.3, again with the segment [qi, qi+1], as follows.
We consider all pairs (x, y) in Ji. For each such pair, if the test in Step 4 is positive, then
we insert this pair into an initially empty set Ki.

At the end of Step 4, Ki is the set of all pairs (x, y) satisfying the three properties in
Lemma 3, with respect to the line segment [qi, qi+1].

After initializing K ′1 = K1, we do the following for i = 1, 2, . . . ,m − 2: Set K ′i+1 = ∅.
Then consider each pair in K ′i. For each such pair (x, y), find all pairs (x′, y′) in Ki+1 such
that (i) y is on the path T [x, x′], (ii) x′ is on the path T [y, y′], and (iii) the path T [y, x′] is
completely contained in the disk with center qi+1 and radius 3∆. For each such pair (x′, y′)
found, insert the pair (x, y′) into the set K ′i+1. (It follows from Lemma 12 that (x, y′) was
not in K ′i+1 yet.) At the end of this algorithm, we have obtained a set K ′m−1. If this set is
non-empty, then we return YES; otherwise, we return NO.

Before we analyze the query time, observe that each of the sets Ki has size O((cc′)2).
The set K ′i contains pairs (x, y) of points on T with x on Cq1q2 and y on Cqi+1qi . Therefore,
the size of K ′i is O((cc′)2) as well.
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The total time for Steps 1, 2, and 3 is O((cc′)2m log3 n + (cc′)3m log n). The modified
Step 4 takes O((cc′)2 log2 n) time. The time to compute the set K ′i+1 is O(|K ′i| · |Ki+1| log3 n),
which is O((cc′)4 log3 n). It follows that the total query time is O((cc′)4m log3 n).

If the output of the query algorithm is YES, then it follows from Lemma 11 that there
exist two points x and y on T such that δF (Q, T [x, y]) ≤ 3∆.

Assume there exist two points x and y on T such that δF (Q, T [x, y]) < ∆. Consider the
points x′1, y

′
1, . . . , x

′
m−1, y

′
m−1 that satisfy the five properties of Lemma 10. For each integer

i with 1 ≤ i < m, the pair (x′i, y
′
i) is contained in the set Ki. Using the third property of

Lemma 10 and Lemma 12, it follows that for each i with 1 ≤ i < m, the pair (x′1, y
′
i) is in

the set K ′i. Thus, at the end of the query algorithm, the pair (x′1, y
′
m−1) is in the set K ′m−1.

As a result, the query algorithm returns YES.
We have proved our final result:

Theorem 4 Let T be a tree with n vertices that is embedded in the plane, and let c, c′, and
∆ be positive real numbers. Assume that T is c-packed and each of its edges has length at
least ∆/c′. We can construct a data structure of size O(n log n+cn) in O(n log2 n+cn log n)
time. Given any polygonal path Q with m vertices, all of whose edges have length more than
4∆, the query algorithm corresponding to this data structure takes O((cc′)4m log3 n) time
and outputs either YES or NO.

1. If the output is YES, then there exist two points x and y on T such that δF (Q, T [x, y]) ≤
3∆.

2. If the output is NO, then δF (Q, T [x, y]) ≥ ∆ for any two points x and y on T .

7 Concluding Remarks

We have presented data structures that, for a fixed real number ∆ > 0, store a geometric
tree T such that, for any given polygonal query path Q, we can approximately decide if the
tree contains a path whose Fréchet distance to Q is less than ∆. We obtained good bounds
on the preprocessing time, size, and query time for trees that are c-packed, for some small
value of c, and for queries Q in which each edge has length Ω(∆). For general trees, we also
need that each of its edges has length Ω(∆); for the case when T is a polygonal path, the
latter requirement is not needed. We leave as an open problem to remove this requirement
for general trees.

Our approximation factors are
√

2(1+ε) if Q is a query segment, and 3 if Q is a polygonal
path. We leave as an open problem to improve these approximation factors.

All our results assume that the value ∆ is fixed. It would be interesting to obtain an
efficient data structure for which ∆ is part of the query.
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