A technique for adding range restrictions to
generalized searching problems

Prosenjit Gupta* Ravi Janardanf Michiel Smid?

Abstract

In a generalized searching problem, a set S of n colored geometric
objects has to be stored in a data structure, such that for any given
query object ¢, the distinct colors of the objects of S intersected by
q can be reported efficiently. In this paper, a general technique is
presented for adding a range restriction to such a problem. The tech-
nique is applied to the problem of querying a set of colored points
(resp. fat triangles) with a fat triangle (resp. point). For both prob-
lems, a data structure is obtained having size O(n'*¢) and query time
O((logn)? + C). Here, C denotes the number of colors reported by the
query, and € is an arbitrarily small positive constant.

Keywords: Computational geometry, data structures, intersection
searching, range restriction.

1 Introduction

Geometric searching problems arise in a large variety of application areas,
such as computer graphics, robotics, VLSI layout design, and databases. In
such a problem, a set S of n geometric objects has to be stored in a data

*Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974, U.S.A. E-mail:
prosenjit@lucent.com . Part of this work was done while at MPI-Informatik,
Saarbriicken, Germany.

tDepartment of Computer Science, University of Minnesota, Minneapolis, MN 55455,
U.S.A. E-mail: janardan@cs.umn.edu. This author was supported by a Grant—in—Aid of
Research from the Graduate School of the University of Minnesota.

{Department of Computer Science, University of Magdeburg, D-39106 Magdeburg,
Germany. E-mail: michiel@isg.cs.uni-magdeburg.de . Part of this work was done while
at MPI-Informatik, Saarbriicken, Germany, and the Department of Computer Science,
King’s College London, UK.

structure, such that for any given query object g, we can efficiently report
all objects of S that intersect g. The efficiency of such a data structure is
typically expressed by its size and query time, where the latter has the form
O(f(n) + K - g(n)), for some “small” functions f and g. In this expression,
K denotes the number of elements of S that intersect the query object. We
call these problems standard searching problems, in order to distinguish them
from generalized searching problems, which are the subject of this paper.

In many applications, a more general form of searching problem arises:
The objects in S come aggregated in disjoint groups and of interest are
questions regarding the intersection of ¢ with the groups rather than with
the objects. Here, we say that ¢ intersects a group if and only if it intersects
at least one object in the group. We will associate with each group a different
color and imagine that all the objects in the group have that color. Then,
in the generalized searching problem, we want to report the distinct colors
of those elements of S that intersect q. Note that the generalized problem
reduces to the standard one when each color class has cardinality one. For
applications of these generalized searching problems, see [1, 4, 6, 8].

We can solve a generalized searching problem by first determining the
objects of S that intersect ¢ and then reading off the distinct colors. How-
ever, the query time can be very high since ¢ could intersect Q(n) objects
but only O(1) distinct colors. For a generalized searching problem, we want
to obtain query times that are sensitive to the number C of distinct colors in-
tersected, rather than K. Typically, our goal is to obtain query times of the
form O(f(n)+C) or O(f(n)+ C-g(n)), where f and g are polylogarithmic.

Generalized searching problems first appeared in [6]. Subsequently, sev-
eral papers were published on this type of problem. See [1, 3, 4, 5, 7, 8].

In this paper, we consider the problem of transforming generalized search-
ing problems into other problems by adding a range restriction. This trans-
formation was introduced for standard searching problems by Bentley [2].

Let PR denote a generalized searching problem on a set S of objects.
To add a range restriction to PR, we give each object p in S an additional
parameter k, € IR. In the transformed searching problem, we only query
objects in S that have their parameter in a given range. We define this more
precisely.

Definition 1 Consider a generalized searching problem PR on a set S of
objects with a query object q drawn from a class Q of query objects of some
type. We denote this as PR(q, S) with the understanding that q is not fized
but ranges over all objects of Q. To add a range restriction, we associate

with each object p in S a real number ky. In the transformed generalized
searching problem TPR, a query consists of a query object q together with
an interval [a,b], and

TPR(q,|a,b],S) := PR(q,{p € S :a < k, <b}).

In the case where the range restriction is of the form (—oo,b] or [a,00), we
speak about a half-infinite range restriction.

As an example, consider the d-dimensional generalized orthogonal range
searching problem, in which we are given a set S of n colored points in IR%.
The query is an axes-parallel d-box ¢, and we want to report the distinct
colors of those points that are contained in ¢. This problem is obtained
by adding a range restriction to the (d — 1)-dimensional generalized range
searching problem.

We remark that generalized searching problems are not decomposable in
the sense of Bentley [2]: Because duplicate colors must be eliminated, the
solution to the original problem cannot be obtained in constant time from
the solutions to subproblems.

As mentioned, the notion of adding a range restriction (for standard
problems) first appeared in Bentley [2]. He gave a general technique that
transforms a data structure for solving the standard problem PR into a data
structure for the standard problem TPR. Later, other general techniques
were developed by Willard and Lueker [11], Scholten and Overmars [10],
van Kreveld [8], and Lenhof and Smid [9]. With the exception of [8], these
techniques can be applied to generalized searching problems, but this leads
to data structures in which each color may be reported a logarithmic number
of times. (That is, using the notation above, we have g(n) = ©(logn).)
The results in [8] provide structures where each color is reported at most a
constant number of times. We discuss this in more detail below.

The main result of this paper is a general technique that transforms
data structures DS and TDS solving the generalized searching problems
PR and TPR, respectively, into a data structure TDS’ solving TPR that
uses much less space than TDS does. More precisely, if we start with (i) a
data structure DS having O(polylog(n) + C) query time and using O(n!*¢)
space, and (ii) a data structure T'DS having O(polylog(n) + C) query time
and using (possibly high) polynomial space, and apply the transformation
several times, we get a data structure for TPR having O(polylog(n) + C)
query time and using only O(n!'t€) space. Here, € is an arbitrarily small
positive constant.

‘ Generalized Problem H Space ‘ Query Time ‘ Reference

Querying Points with Fat Triangles || n(logn)® | (logn)* + C(logn)? [5]

nite (logn)? + C this paper
Querying Fat Triangles with Points | n(logn)? | (logn)® + Clogn [5]

nlte (logn)? + C [5], this paper

Table 1: Overview of results for generalized problems on fat triangles. All
bounds given are “big—oh”. C denotes the output size, and € is an arbitrarily
small positive constant.

We remark that in earlier work, van Kreveld presented an alternative
approach for obtaining O(n'*€) space and O(polylog(n) + C) query time for
range-restricted colored problems; see Theorem 5.1(ii), Theorem 5.3(ii), and
Corollary 7.3(i) in [8]. His work is based on multiway balanced search trees
with secondary structures. Our approach is different: we construct T'DS’
iteratively from DS and TDS by using a “bootstrapping” approach, which
is interesting in its own right.

We illustrate our general technique by giving efficient data structures for
the following two problems: Store a set of colored points (resp. fat triangles)
in a data structure, such that for any query fat triangle (resp. point) ¢,
we can report the distinct colors of those points (resp. triangles) that are
contained in (resp. contain) ¢g. Here, a triangle is called fat, if all its angles
are at least equal to some fixed constant «. To our knowledge, this problem
was first considered in [5]. See Table 1 for this and our results in this paper.
While some of our results were known already, the techniques in this paper
allow us to now derive these results in a unified way.

The rest of this paper is organized as follows. In Section 2, we give the
general technique of adding a range restriction to a generalized searching
problem. In Section 3, we show how to apply this technique to generalized
problems for fat triangles. We conclude the paper in Section 4 with some
final remarks.

We now discuss one important issue that arises in the encoding and
handling of colors. Throughout the paper, we assume that our algorithms
incorporate the mechanisms that we describe here and so we will not repeat
them afterwards. The number of colors for a given problem can range from 1
to n. We encode each color as an integer in the range [1,n]. This allows us to

use colors as array indices. In many of our generalized searching problems,
when answering a query we may encounter the same color more than once
(but no more than O(1) times). Our goal is to eliminate the duplicate colors
efficiently before we output the answer. We can do this by using an array,
A[l : n], of colors to keep track of the distinct colors that are found during
a query. We also store the distinct colors found in a linked list. After the
query, A can be reset in time proportional to the output size by scanning
the list.

2 Adding a range restriction

Let S be a set of n colored objects, and let PR(q, S) be a generalized search-
ing problem for S with query object q. Let each object p of S have an ad-
ditional parameter k, € IR. Let TPR be the generalized searching problem
that is obtained by adding a range restriction to PR.

Assume we have a data structure DS that stores the set S, such that
generalized queries PR(q, S) can be solved in O((logn)*+ C) time, for some
positive constant u. Let the size of DS be bounded by O(n!*€), where ¢ is
an arbitrarily small positive constant.

Also, assume we have a data structure TDS for the set S, such that
generalized queries TPR(q,[a : o0),S) can be solved in O((logn)’ + C)
time, for some positive constant v. Let the size of TDS be bounded by
O(n") for some constant w > 1.

We will first show how to construct a data structure that solves gen-
eralized queries TPR(q,[a : o0),S) in O((logn)™*®¥:1) 4 C) time, using
O((n'*€) space, for an arbitrarily small positive constant e. Then, we will
show how to solve generalized queries TPR(q,[a : b],S) within the same
time and space bounds.

The basic transformation: We sort and store the elements of S in
non-increasing order of their parameter k,. Let the sorted set be § =

{plap2a s 7pn}7 i'e'7 kpl Z kp2 Z s Z kpn'
Let m be a parameter such that 1 <m < n. For 0 <i < n/m, let

Si = {p17p27 v apim}a

and
St = {pim+1, Pim+25 --P(i+1)m }-

For each i, 0 < i < n/m, we store the set S; in a data structure DS; (of
type DS) for solving generalized queries of the form PR(q,S;). Moreover,
we store the set S] in a data structure TDS; (of type TDS) for solving
generalized queries of the form TPR(qg,[a,), S}).

Having defined the transformed data structure, we show how to answer
generalized queries of the form TPR(q, [a,0),S). Without loss of generality
we may assume that a < k,, and a > kp,; otherwise, in the former case,
the answer is the empty set while in the latter case there is effectively no
range-restriction. Find the index 7 such that

k

Pim

>a > kp(i+1)m'

Then, solve the generalized query PR(q,S;) using the structure DS;, and
solve the generalized query TPR(q,[a,0),S;) using the structure TDS;.
Output the union of the colors reported by these two queries, after having
removed duplicate colors.

Lemma 1 The basic transformation results in a data structure for the gen-
eralized searching problem TPR(q,[a : 00),S)

1. with a query time of O((logn)™*®vh) 4),
2. using O(n?T¢/m + nm¥ 1) space.

Proof: To prove the correctness of the query algorithm, observe that all
elements p of S\ (S;US]) have a parameter k, that is smaller than a. Hence,
these elements certainly do not satisfy the query. Moreover, all elements p
of the set S; have a parameter k, that satisfies the range restriction.

The query time of the transformed data structure is upper-bounded by
the O(logn) time to compute the index ¢ plus the times to query DS; and
TDS;. Hence, the total query time is O((logn)™®<(®v:1) 4). (Note that
each color is reported at most once by the query on DS; and, similarly, once
by the query on TDS;.)

It remains to prove the space bound. The total size of the structures
DS;, 0 <i < n/m, is bounded by

1=0

n/m
0 (Z(im)He) =0 (m'*e- (n/m)'*< - (n/m)) = O(n**/m).

Similarly, the total size of the structures T'DS; is bounded by

n/m
0 (Z mw) = O(nm™™1).
i=0

This completes the proof.

Using this lemma, we can prove the main result of this section.

Theorem 1 Let DS be a data structure that stores a set S of n colored
objects, such that generalized queries PR(q,S) can be solved in O((logn)" +
C) time, for some positive constant u. Let the size of DS be bounded by
O(n'*€), where € is an arbitrarily small positive constant. Let TDS be a
data structure for the set S, such that generalized queries TPR(q, [a : 00), S)
can be solved in O((logn)® + C) time, for some positive constant v. Let the
size of TDS be bounded by O(n") for some constant w > 1.

There ezists a data structure that solves generalized queries TPR(q, [a :

00), 5)
1. with a query time of O((logn)™xwv:1) 4),

1+e)

2. using O(n space, for an arbitrarily small positive constant e.

Proof: First assume that w > 2, i.e., the data structure T'DS uses more than
quadratic space. Choosing m = n'/* in Lemma 1 gives a data structure for
solving queries TPR(q,[a : o), S), with a query time of O((log n)™ax(wv:1) 4
(), and using space

O(n2+6—1/w +7l2_1/w),

which is bounded by O(n?), provided € < 1/w.

Hence, we can assume that the generalized problem TPR can be solved
with quadratic space and O((log n)?*+C') query time, where z = max(u, v, 1).

We will prove by induction that for any positive integer constant £ there
is a data structure TDS* for the generalized problem TPR, with O((logn)*+
C) query time, using O(n't1/¢+€) space. Choosing / large enough, the space
bound becomes O(n!*2¢). Hence, starting with ¢/2 instead of € will complete
the proof.

For ¢ =1, the claim has been proved already. So, let £ > 1, and assume
the claim holds for £. Apply Lemma 1 to the structures DS and TDS,
choosing m = n¥*+1), This gives a data structure TDS**! for solving
queries TPR(q,[a :), S). Straightforward calculations show that TDS§*+!
has a query time of O((logn)? 4+ C), and uses O(n!T1/E+1)+€) gpace. B

Corollary 1 Let DS and TDS be as defined in Theorem 1. There exists a
data structure that solves generalized queries TPR(q,[a : 1], S)

1. with a query time of O((logn)™xwv:1) 4 (),
2. using O(n'T¢) space, for an arbitrarily small positive constant e.

Proof: By Theorem 1, there exists a data structure TDS’ that solves gen-
eralized queries TPR(q, [a : o0), S) with a query time of O((log n)™x(v:1) 4
C), and using O(n!*€) space. By a symmetric argument, there exists a data
structure TDS" that solves generalized queries TPR(q,(—o0,b],S) within
the same time and space bounds.

We store the objects of S at the leaves of a balanced binary search
tree, sorted in non-decreasing order of their parameter k,. For each non-
root node u of this tree, let S, denote the subset of S that is stored at
the leaves of w’s subtree. If u is a left child, then this node u contains a
pointer to a data structure TDS’, storing S, and that solves generalized
queries TPR(q,[a,0),S,). Otherwise, if u is a right child, then u contains
a pointer to a data structure T'DS! storing S, and that solves generalized
queries TPR(q, (—00,b],Sy).

It is easy to see that the entire data structure, i.e., the binary tree and
the associated structures, has size O(n!te).

A query TPR(q,[a :b],S) is solved as follows. Search in the tree for the
values ¢ and b. Let u be the node in which the two search paths diverge,
and let u; (resp. u,) be the left (resp. right) child of . Then we solve a
generalized query TPR(q,[a,00),S,,) in the data structure TDS;”, a gener-
alized query TPR(q, (—00,b], Sy,) in the data structure TDS, , and remove
duplicate colors in the two answers. Clearly, the query time is bounded by
O((log n)™ax(wv:1) 1). m

Theorem 1 and Corollary 1 imply that in order to solve the generalized
problem TPR, it suffices to have (i) a data structure for PR with polyloga-
rithmic query time and using roughly linear space, and (ii) a data structure
for TPR with polylogarithmic query time and (possibly high) polynomial
space. In many applications, the latter data structure is obtained from the
following result, which is due to van Kreveld [8] (Corollary 7.3 (ii)). For
convenience, we restate the result in [8] in a slightly different form.

Theorem 2 ([8]) Let S be a set of n colored points in RY, where d > 2 is
a constant, and let k be an integer constant. There exists a data structure of

size O(n?€), such that for any query region q in RY that is the intersection
of at most k halfspaces, we can in O(logn + C) time report the C distinct
colors of all points of S that are contained in q. Here € is an arbitrarily
small positive constant. i

3 Generalized query problems for fat triangles

Let S be a set of n colored points in the plane. We want to store these points
in a data structure, such that generalized fat triangle queries can be solved
efficiently. In such a query, we are given a fat triangle, and we have to report
the distinct colors of all points of S that are contained in the triangle. A
triangle is called fat, if all its angles are at least equal to some fixed constant
Q.

We start by solving a simpler problem. Then, we apply Theorem 1 twice
in order to get our result.

Let R be a fixed ray that starts in the origin. If ¢ is a point in the
plane, then R, denotes the ray that is obtained by translating R such that
its starting point coincides with ¢, i.e., Ry = R + q. Consider generalized
queries of the following form: Given a point ¢ and a ray T starting in ¢, such
that 7" makes an angle at most m with Ry, we want to report the distinct
colors of those points of S that are contained in the wedge defined by 7" and
R,. By Theorem 2, there is a data structure T'DS for this wedge problem
having O(logn + C) query time and using polynomial space.

Let DS be the data structure of [5] for solving the generalized halfplane
range searching problem with O((logn)? + C) query time using O(n logn)
space.

We show that we obtain the above wedge problem by adding a half-
infinite range restriction to DS. In a query, we want to report the distinct
colors of those points that are, say, below the line through 7" and, say, above
the line through R,. Let £ be the line through the origin orthogonal to R.
Project all points of S onto £. Each point of S gets this projection as the
additional parameter. Note that these parameters define an ordering along
¢ in the natural way. A point of S is above the line through R, if and
only if its additional parameter is “larger” than the projection of ¢ onto £,
where “larger” refers to the ordering along ¢. Hence, among all points that
are larger than ¢’s projection, we want the distinct colors of those that are
below the line through 7.

Therefore, applying Theorem 1 to DS and TDS, we get the following

result.

Lemma 2 Let S be a set of n colored points in the plane, and let R be
a fized ray that starts in the origin. There exists a data structure of size
O(n'*€) such that for any point g and any ray T starting in q, such that T
makes an angle at most m with Ry (i.e., the ray R translated to q), we can
report in O((logn)?+ C) time, all C distinct colors of those points of S that
are contained in the wedge defined by T and R,. Here, € is an arbitrarily
small positive constant. R

Next, we show how to solve generalized fat wedge queries. In such a
query, we are given a wedge whose angle is between a and 7, where « is a
constant.

Choose t = [2m/a] coordinate systems CS; = (z;,y;), all sharing the
origin, such that CS;4; is offset from CS; by an angle a.. For each i, let DS;
be the data structure of Lemma 2 storing the points of S, where we take
R = Zj.

A fat wedge query is solved as follows. Let g be the apex of the query
wedge, and let A and B be its bounding rays. Find an index 7, such that
(zi)q—i-e., z; translated by the vector ¢—is contained in the wedge. Then
we query the data structure DS; twice, once with the wedge defined by A
and (z;)q, and once with the wedge defined by B and (z;),. We output
the union of the colors reported by these two queries, after having removed
duplicate colors. This proves:

Lemma 3 Let S be a set of n colored points in the plane. There ezists a
data structure of size O(n'*€) such that for any fat query wedge, we can
report in O((logn)? + C) time, all C distinct colors of those points of S that
are contained in it. Here, € is an arbitrarily small positive constant. B

Now we are ready to consider generalized fat triangle queries. Let T
be a fat query triangle. We decompose T into two triangles 77 and 75 by
drawing a vertical line through the middle vertex. Hence, for ¢ = 1,2, T; has
a vertical side, and the vertex opposite to this side has angle at least a. We
can think of T; as a range-restricted fat-wedge query, where the additional
parameter of a point of S is its z-coordinate. Owur goal is to get a data
structure DS’ for such a query which uses O(n'*¢) space and has a query
time of O((logn)? + C). Given DS’, we can solve the fat triangle query for
T by querying DS’ with Ty and T%, and reporting the union of the colors
reported by these two queries.

10

Let DS be the data structure of Lemma 3. By Theorem 2, there is a data
structure T'DS for range-restricted fat-wedge queries having O(logn + C)
query time and using polynomial space. Then, Theorem 1 gives the data
structure DS’. This proves the following result.

Theorem 3 Let S be a set of n colored points in the plane. There exists a
data structure of size O(n'*€) such that for any fat query triangle, we can
report in O((logn)? + C) time, all C distinct colors of those points of S that
are contained in it. Here, € is an arbitrarily small positive constant. B

Using basically the same approach, we can solve the generalized searching
problem of querying fat triangles with points. We leave the details to the
reader.

Theorem 4 Let S be a set of n colored fat triangles in the plane. There
exists a data structure of size O(n'*€) such that for any query point q, we
can report in O((logn)? + C) time, all C distinct colors of those triangles
of S that contained q. Here, € is an arbitrarily small positive constant. B

4 Concluding remarks

We have given a general technique for adding a range restriction to a gen-
eralized searching problem. This results in data structures for generalized
searching problems on fat triangles having O((logn)? + C) query time using
O(n'*¢) space.

Our technique can also be used to solve the d-dimensional generalized or-
thogonal range searching problem with O(log n+C') query time and O(n'*¢)
space. (This was known already, see Corollary 7.3 (i) in [8].) It remains
open if this problem can be solved with O(polylog(n) + C) query time and
O(n(logn)°Mn) space for dimensions d > 4. (For efficient solutions in
dimensions d < 3, see [4, 6].)

The results of this paper only apply to generalized reporting problems.
In a generalized counting problem, we want to report the number of distinct
colors of the objects that intersect the query object. Is there a general tech-
nique for adding a range restriction to such generalized counting problems?

Acknowledgement

The authors would like to thank the referees for several suggestions that
helped improve the presentation.

11

References

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

P.K. Agarwal and M. van Kreveld. Polygon and connected component
intersection searching. Algorithmica 15 (1996), 1993, pp. 626—660.

J.L. Bentley. Decomposable searching problems. Information Processing
Letters 8 (1979), pp. 244-251.

P. Gupta, R. Janardan, and M. Smid. On intersection searching prob-
lems involving curved objects. Proceedings 4th Scandinavian Workshop
on Algorithm Theory, Lecture Notes in Computer Science, Vol. 824,
Springer-Verlag, Berlin, 1994, pp. 183-194.

P. Gupta, R. Janardan, and M. Smid. Further results on generalized
intersection searching problems: counting, reporting, and dynamization.
Journal of Algorithms 19 (1995), pp. 282-317.

P. Gupta, R. Janardan, and M. Smid. Algorithms for generalized half-
space range searching and other intersection searching problems. Com-
putational Geometry: Theory and Applications 5 (1996), pp. 321-340.

R. Janardan and M. Lopez. Generalized intersection searching prob-
lems. International Journal on Computational Geometry & Applica-
tions 3 (1993), pp. 39-69.

M. Katz. 3-D wvertical ray shooting and 2-D point enclosure, range
searching, and arc shooting amidst convex fat objects. Report INRIA,
Nr. 2583, 1995.

M. van Kreveld. New results on data structures in computational ge-
ometry. Ph.D. Thesis, Department of Computer Science, University of
Utrecht, the Netherlands, 1992.

H.-P. Lenhof and M. Smid. Using persistent data structures for adding
range restrictions to searching problems. RAIRO Theoretical Informat-
ics and Applications 28 (1994), pp. 25-49.

H.W. Scholten and M.H. Overmars. General methods for adding range
restrictions to decomposable searching problems. Journal of Symbolic
Computation 7 (1989), pp. 1-10.

D.E. Willard and G.S. Lueker. Adding range restriction capability to
dynamic data structures. Journal of the ACM 32 (1985), pp. 597-617.

12

