
Small Manhattan Networks and
Algorithmic Applications for the Earth Mover’s Distance

Joachim Gudmundsson∗ Oliver Klein† Christian Knauer† Michiel Smid‡

Abstract

Given a set S of n points in the plane, a Manhattan
network on S is a (not necessarily planar) rectilinear
network G with the property that for every pair of
points in S the network G contains a path between
them whose length is equal to the Manhattan distance
between the points. A Manhattan network on S can
be thought of as a graph G = (V,E) where the ver-
tex set V corresponds to the points of S and a set of
Steiner points S′. The edges in E correspond to hori-
zontal and vertical line segments connecting points in
S ∪ S′. A Manhattan network can also be thought of
as a 1-spanner (for the L1-metric) for the points in S.

We will show that there is a Manhattan network
on S with O(n log n) vertices and edges which can be
constructed in O(n log n) time. This allows us to to
compute the L1-Earth Mover’s Distance on weighted
planar point sets in O(n2 log3 n) time, which improves
the currently best known result of O(n4 log n). At the
expense of a slightly higher time and space complex-
ity we are able to extend our approach to any dimen-
sion d ≥ 3. We will further show that our construc-
tion is optimal in the sense that there are point sets
in the plane where every Manhattan network needs
Ω(n log n) vertices and edges.

1 Introduction

The problem to compute a minimum length Manhat-
tan network is a well-researched area, see Gudmunds-
son et al. [7], Benkert et al. [1] and Chepoi et al. [3].
Even though the problem has received considerable
attention the variant of minimizing the number of ver-
tices and edges of the graph has not been considered
(to the best of the authors’ knowledge).

Here we will show that for every point set in the
plane there is a Manhattan network with O(n log n)

∗National ICT Australia Ltd, Sydney, Australia. NICTA
is funded through the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Re-
search Council. joachim.gudmundsson@nicta.com.au

†Institut für Informatik, Freie Universität Berlin. This
research was supported by the Deutsche Forschungsgemein-
schaft within the European graduate program ’Combina-
torics, Geometry and Computation’ (No. GRK 588/3),
{oklein,christian}@inf.fu-berlin.de

‡This research was supported by NSERC. School
of Computer Science, Carleton University, Ottawa.
michiel@scs.carleton.ca

vertices and edges. This graph can be constructed
in O(n log n) time. We will also show that this up-
per bound is tight, meaning that there are point
sets where every Manhattan network on these points
will need at least Ω(n log n) vertices and edges. As
it turns out, the Manhattan network constructed is
not planar. We will show that if we force the net-
work to be planar, there are point sets where every
Manhattan network needs at least Ω(n2) vertices and
edges. Further we will show how to generalize the
construction of the network to higher dimensions. Fi-
nally, we will show that one can reduce the time
to compute the L1-Earth Mover’s Distance (EMD)
for weighted point sets. The EMD is a useful dis-
tance measure for, e.g., shape matching, color-based
image retrieval and music score matching, see Co-
hen and Guibas [4], Giannopoulos and Veltkamp [5],
Graumann and Darell [6], and Typke, Giannopou-
los, Veltkamp, Wiering and van Oostrum [11] for
more information. Work on the optimization prob-
lem for the EMD under transformations has been
done by Cabelloet al. [2] and Klein and Veltkamp [9].
An upper bound for the time to compute the EMD
is O(n4 log n) using a strongly polynomial minimum
cost flow algorithm by Orlin [10]. Cabello et al. [2]
gave a (1 + ε)-approximation algorithm with runtime
O(n2ε−2 log2(nε−1)). Recently, Indyk [8] gave an
O(n logO(1) n)-time randomized O(1)-approximation
algorithm if the two point sets consist of an equal
number of points in R2 of weight 1. Using the Man-
hattan network as a 1-spanner for the L1-distance,
we can compute the L1-EMD in d dimensions in
O(n2 log2d−1 n) time using Orlin’s algorithm on the
reduced graph. This improves the previously best
known runtime of O(n4 log n) significantly. Further,
it immediately leads to a

√
2-approximation with the

same runtime for the important case when the EMD
is based on the Euclidean distance. This algorithm
is conceptually easier than the slightly faster (1 + ε)-
approximation given by Cabello et al. [2].

2 Manhattan Networks

We will start formulating and proving the main result
of this paper.

Theorem 1 Let S be a set of n points in the plane.
Then, there is a Manhattan network on S with

1

p1

p2

p3

p4

p5

p6

p7

p8

l2 l1 l′
2

Figure 1: Construction of the Network.

O(n log n) vertices and edges. It can be computed
in O(n log n) time.

Proof. Let S be a set of n points in the plane
and assume that the points are sorted w.r.t. y-
coordinates S = {p1, . . . , pn}. Otherwise, the sort-
ing can be done in O(n log n) time. In the follow-
ing, L always denotes a list of points which is sorted
by y-coordinate. The i-th point in L will be de-
noted by L[i]. Now, run the following routine on S.
Algorithm 1 (ConstructNetwork(L))

1. Find median p∗ with respect to x-coordinate.
2. Set L1 := ∅, L2 := ∅.
3. For i = 1, . . . , |L| do

(a) Construct vertex v[i] := (p∗x, L[i]y).
(b) Construct edge eh[i] := (L[i], v[i]).
(c) If i ≥ 2:

Construct edge ev[i] := (v[i− 1], v[i]).
(d) If L[i]x ≤ p∗x: add L[i] at the end of L1

Else: add L[i] at the end of L2.

4. ConstructNetwork(L1)
5. ConstructNetwork(L2)

See Figure 1 for an illustration of the algorithm. We
have to prove that the algorithm constructs a Man-
hattan network.

Let p, q ∈ S be two arbitrary points. Let p∗ be
the first point chosen as a median in Step 1 with
px ≤ p∗x ≤ qx. Clearly, p and q are both contained
in L. W.l.o.g., let p = L[i] =: pi and q = L[j] =: pj

with i < j. In Step 3, pi is considered before
pj . Therefore, by construction, there are vertices
v[i], v[j], edges (v[i], pi), (v[j], qj) and a y-monotone
sequence of vertices v[i], . . . , v[j]. Now, the sequence
pi, v[i], . . . , v[j], pj is an x- and y-monotone path con-
sisting of two horizontal edges connected by a path of
vertical edges and therefore a Manhattan path. This
proves that the resulting graph is a Manhattan net-
work on S.

The median in a list of k := |L| numbers can be
computed in O(k). Steps (a) to (d) can be done in
constant time. Therefore, the runtime of Algorithm 1

without the two recursive calls is O(k). The insertion
in the lists L1, L2 is done in sorted order with respect
to the y-coordinate. No re-sorting is needed after the
initial sorting step.

The overall runtime can be described by the recur-
sion T (n) = O(n) + 2 · T (n/2), which gives T (n) =
O(n log n). The number of Steiner points and edges
in the construction obeys the same recursion, since in
every recursive call of Algorithm 1 O(k) vertices and
edges are added. ¤

In practice, paths with a small number of links are
often desirable. We will show how to construct a net-
work such that for every pair of points there is a short-
est path with a small number of links. Let α(n) denote
the inverse of Ackermann’s function, see [12].

Theorem 2 Let S be a set of n points in the plane.
Then, there is a Manhattan network on S with
O(n log n) vertices and edges, where the number of
edges on a shortest Manhattan path between any pair
of points is bounded by O(α(n)). The network can be
computed in O(n log n) time.

Proof. Consider one call of Algorithm 1. The Man-
hattan path between two input points pi, pj with
i < j always has the form pi, v[i], . . . , v[j], pj , where
v[i], . . . , v[j] is a sequence of Steiner points lying on a
vertical line. Now, using a result of Yao [12], we can
compute O(k) edges in O(k) time, each connecting
two Steiner points, such that for any pair of Steiner
points the number of links on the shortest path is
O(α(k)). That is, the total length of any path con-
structed is O(α(n))+2 = O(α(n)). Since we can com-
pute these O(k) edges in every recursive call in O(k)
time, the asymptotic runtime and number of Steiner
points does not change. ¤

At the expense of a slightly higher runtime we can
reduce the length of a shortest Manhattan path to a
constant number of edges.

Theorem 3 Let S be a set of n points in the plane.
Then, there is a Manhattan network on S with
O(n log2 n), O(n log n log log n) and O(n log n log∗ n)
vertices and edges where the number of edges on a
shortest Manhattan path between any pair of points
is bounded by 6, 7 and 8, respectively. The runtimes
are linear in the number of vertices and edges.

Proof. The proof is analogous to that of Theorem 2,
again using results of Yao [12]. ¤

The upper bound given in Theorem 1 is tight.

Theorem 4 There are n-point sets in R2 where every
Manhattan network needs Ω(n log n) vertices and
edges.

2

Proof. We construct a point set P in general po-
sition, such that any Manhattan network for P
consists of Ω(n log n) vertices and edges. We as-
sume that n is a power of two. Let ` be a ver-
tical line separating P into two point sets U :=
{u1, . . . , un/2} and V := {v1, . . . , vn/2}, such that
the points u1, v1, u2, v2, . . . , un/2, vn/2 are sorted by
y-coordinates, from top to bottom, see Figure 2. For

R3

R4

v2

R2

v3

v4

R1

u2

u3

u4

v1

u1

l

Figure 2: Lower Bound

1 ≤ i ≤ n/2, let Ri be the axes-parallel rectangle
with top-left corner ui and bottom-right corner vi.
Any Manhattan network on P must contain a path
between ui and vi that crosses ` and is completely
contained in Ri. Since the rectangles Ri are pairwise
disjoint, it follows that any Manhattan network on P
contains at least n/2 edges that cross `. Observe that
this remains true if we move the points of U and V
horizontally, as long as U stays to the left of ` and V
stays to the right of `. Thus, we can move the points
of U , such that they can be split into two subsets U1

and U2 that are separated by a vertical line `′ such
that the sorted y-order alternates between a point in
U1 and a point in U2. Any Manhattan network on
P must contain at least n/4 edges that cross `′ and
that are distinct from the above n/2 edges. Simi-
larly, we can move the points of V , and split them
into two subsets V1 and V2 that are separated by a
vertical line `′′ in such a way that any Manhattan
network on P must contain at least n/4 edges that
cross `′′ and are distinct from the above n/2 + n/4
edges. We continue this moving in a recursive way
and it can be shown that all these edges are distinct.
We omit a rigorous proof due to space limitations.
Then, it follows that the number T (n) of vertices and
edges in any Manhattan network on the final set P
satisfies T (n) ≥ n/2 + 2 · T (n/2), which proves that
T (n) = Ω(n log n). ¤

If the network is required to be planar the lower
bound can be improved.

Figure 3: Planar Construction.

Theorem 5 There are n-point sets in R2 where every
planar Manhattan network needs Ω(n2) vertices and
edges.

Proof. Let the set P of points in R2 be defined as
follows, see Figure 3:

P :=
n−1⋃

i=1

({(i

n
, 0)} ∪ {(i

n
, 1)} ∪ {(0,

i

n
)} ∪ {(1,

i

n
)})

Let G be a Manhattan network for this point set.
There must be a Manhattan path between every pair
of points (i

n , 0), (i
n , 1) and (0, i

n), (1, i
n). These paths

have to be straight lines, since in the first case the
x-coordinate and in the second case the y-coordinate
is the same. This forces the O(n2) cross points of the
straight lines to be Steiner points. ¤

A point set in general position giving the same lower
bound can be constructed easily by perturbing the
points slightly.

3 Higher Dimensions

The extension of the definition of a Manhattan path
and therefore of a Manhattan network to dimensions
d ≥ 3 is straightforward. In dimension d we can use a
similar divide-and-conquer approach as in the plane.

Theorem 6 Let S be a set of n points in Rd.
Then, there is a Manhattan network on S with
O(n logd−1 n) vertices and edges. It can be computed
in O(n logd−1 n) time.

Proof. Consider Algorithm 2 for point sets in Rd:
Algorithm 2 (ConstructNetwork(L, d))

1. Find median p∗ with respect to the d-th co-
ordinate.

2. Project any point on the hyperplane contain-
ing p∗ and orthogonal to the d-th coordinate.
Let P be the set of projected points.

3. Add an edge between the original points and
their projection.

4. ConstructNetwork(P, d − 1) (Compute the
Manhattan network on this hyperplane).

5. L1 := {p ∈ L : pd ≤ p∗d}. L2 := L \ L1.
6. ConstructNetwork(L1, d)
7. ConstructNetwork(L2, d)

3

Except for the recursive calls in the algorithm, any
call can be done in O(|L|) time. There are three recur-
sive calls, one call of the routine for the same number
of points in one dimension less and two calls for the
number of points halved in the same dimension. Anal-
ogous to the earlier proof, the runtime of this can be
expressed like

T (n, d) = O(n) + T (n, d− 1) + 2 · T (n/2, d)
= O(n logd−1 n).

The bound on the number of points and edges follows
analogously. ¤

4 Earth Mover’s Distance

We will now show that we can reduce the time to
compute the L1-Earth Mover’s Distance on weighted
point sets to O(n2 log2d−1 n), which improves the pre-
viously best known result of O(n4 log n).

A set A = {a1, . . . , an} is called a weighted point
set in Rd if ai = (pi, αi) for i = 1, . . . , n, where pi is
a point in Rd and αi ∈ R+

0 its corresponding weight;
WA =

∑n
i=1 αi denotes the total weight of A. Now,

let A = {(pi, αi)i=1,...,n} and B = {(qj , βj)j=1,...,m}
be two weighted point sets with total weights WA,
WB ∈ R+ and m ≤ n. Let D : Rd × Rd → R+

0 be a
distance measure on Rd. The D-EMD between A and
B is defined as

D-EMD(A, B) =
minF∈F

∑n
i=1

∑m
j=1 fijD(pi, qj)

min{WA,WB} ,

where F = {fij} is a feasible flow, i.e., for every
i = 1, . . . , n and j = 1, . . . ,m we have fij ≥ 0,∑m

j=1 fij ≤ αi,
∑n

i=1 fij ≤ βj and
∑n

i=1

∑m
j=1 fij =

min{WA, WB}.

Theorem 7 The L1-EMD can be computed in
O(n2 log2d−1 n) time.

Proof. Let A, B be weighted point sets. Using The-
orem 6 we can construct a 1-spanner of the complete
bipartite graph between the points of A and B for
the L1-metric in O(n logd−1 n) time. The number of
points and edges in the resulting network is bounded
by O(n logd−1 n). Now we proceed as in Cabello et
al. [2]. By the standard method of doubling each edge
and orienting the two copies in different directions we
get a flow network where between any pair of points
there is a directed path of minimum L1-length. Now
we can use the minimum cost flow algorithm by Or-
lin [10] on the 1-spanner. Given a network G = (V, E),
Orlin’s algorithm solves the minimum cost flow prob-
lem in O((|E| log |V |)(|E|+ log |V |)). Since the num-
ber of points and edges in our spanner is bounded
by |E| = |V | = O(n logd−1 n), the overall runtime is
bounded by O(n2 log2d−1 n). ¤

Theorem 7 immediately leads to a
√

2-
approximation with the same runtime for the
important case when the EMD is based on the
Euclidean distance. This algorithm is conceptually
easier than the slightly faster (1 + ε)-approximation
given by Cabello et al. [2].

Acknowledgments

We thank Günter Rote for the idea in Theorem 5.

References

[1] M. Benkert, A. Wolff, F. Widmann, and T. Shirabe.
The minimum Manhattan network problem: Approx-
imations and exact solution. Computational Geome-
try - Theory and Applications, 2006.

[2] S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote.
Matching point sets with respect to the earth mover’s
distance. In Proc. 13th ESA, 2005.

[3] V. Chepoi, K. Nouioua, and Y. Vaxes. A rounding al-
gorithm for approximating minimum manhattan net-
works. In Proc. 8th APPROX, 2005.

[4] S. D. Cohen and L. J. Guibas. The earth mover’s dis-
tance under transformation sets. In Proc. 7th IEEE
Int. Conf. Comp. Vision, 1999.

[5] P. Giannopoulos and R. C. Veltkamp. A pseudo-
metric for weighted point sets. In Proc. 7th Europ.
Conf. on Comp. Vision, 2002.

[6] K. Graumann and T. Darell. Fast contour matching
using approximate earth mover’s distance. In Proc.
1991 IEEE Comp. Society Conf. on Comp. Vision
and Pattern Recognition, 2004.

[7] J. Gudmundsson, C. Levcopoulos, and
G. Narasimhan. Approximating a minimum
Manhattan network. Nordic J. Comput. 8, 2001.

[8] P. Indyk. A near linear time constant factor approx-
imation for Euclidean bichromatic matching (cost),
to appear. In Proc. 18th Symp. on Disc. Alg., 2007.

[9] O. Klein and R. C. Veltkamp. Approximation algo-
rithms for the earth mover’s distance under transfor-
mations using reference points. In Proc. 16th ISAAC,
2005.

[10] J. B. Orlin. A faster strongly polynomial minimum
cost flow algorithm. Operations Research 41, 1993.

[11] R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wier-
ing, and R. Oostrum. Using transportation distances
for measuring melodic similarity. In Proc. 4th Int.
Conf. on Music Information Retrieval, 2003.

[12] A. C. Yao. Space-time trade-off for answering range
queries. In Proc. 14th STOC, 1982.

4

