
Computing the convex hull of
a planar point set

Michiel Smid∗

September 4, 2003

1 Introduction

We consider one of the oldest and most extensively studied problems in com-
putational geometry: Constructing the convex hull of a finite set of points in
the plane.

Definition 1 A subset T of R2 is called convex, if for any two points p and
q in T , the line segment joining p and q is entirely contained in T .

Definition 2 Let S be a finite set of points in the plane. The convex hull
of S is the smallest (with respect to the relation ⊆) convex set that contains
S.

What do we mean by constructing the convex hull of S? It is clear that the
boundary of the convex hull is a convex polygon whose vertices are points of
S, and whose edges are line segments joining pairs of points of S. We denote
this convex polygon by CH (S).

Convex hull problem: Given a set S of n points in the plane, compute
the vertices of CH (S), sorted in counterclockwise order.

In Figure 1, the set S consists of thirteen points. The output of a convex
hull algorithm should be the list (p1, p2, p3, p4, p5, p6). We remark that the
list storing the vertices of CH (S) can start with an arbitrary vertex. In the
example, the list (p3, p4, p5, p6, p1, p2) would also be a valid output.

∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

1

•

•

•

• •

•

••

•

•

•

•
•

p6

p1

p2

p3

p4

p5

@
@

@
@

@
@©©©©©©£

£
£
£
£
£
£
££

HHHHHHÃÃÃÃÃÃÃÃ
¥
¥
¥
¥
¥
¥
¥¥

Figure 1: An example: thirteen points, six of which determine the convex
hull.

Remark 1 If pq is an edge of the convex hull of S, and if this edge contains
a point r of S \ {p, q}, then, by definition, r is not a convex hull vertex.

Exercise 1 Prove that constructing the convex hull is at least as hard as
sorting. To be more precise, prove the following: Let T (n) be the worst-case
running time of an arbitrary convex hull algorithm. Then we can sort n real
numbers in T (n) + O(n) time.

Since in most standard models of computation, sorting takes Ω(n log n)
time in the worst case, the convex hull problem has the same lower bound in
these models.

Exercise 2 Let S be a finite set of points in the plane. For each point p ∈ S,
let F (p) be that point of S that is furthest away from p. Let V be the set of
vertices of the convex hull of S.
(i) Prove that {F (p) : p ∈ S} ⊆ V .
(ii) Is V ⊆ {F (p) : p ∈ S}?

In these notes, we will see several algorithms that solve the convex hull
problem.

2

2 Jarvis’ March

This algorithm, invented by Jarvis in 1973, is very intuitive. It is also known
as the gift wrapping method, because the algorithm proceeds from one convex
hull vertex to the next one, as if we were wrapping a sheet of paper around
the set of points. The algorithm works as follows.

We start by finding a point p1 of S that is guaranteed to be a vertex of
the convex hull. We take for p1 the lowest point of S. If S contains several
points with minimum y-coordinate, then we take the leftmost of these points.
Clearly, p1 can be found in O(n) time.

Since p1 is a convex hull vertex, there must be another point p2 in S, such
that p2 is a convex hull vertex, and p1p2 is a convex hull edge. Of course,
there are two such points1. We take for p2 that point such that p1p2 is a
“counterclockwise” edge.

How do we find p2? Let `1 be the horizontal line through p1. Then p2 is
the first point that is hit when we rotate `1 in counterclockwise order around
p1. That is, for each point q ∈ S \ {p1}, let αq be the angle between `1 and
the segment p1q. Hence, αq is the angle by which we have to rotate `1 in
counterclockwise order around p1 until it hits p1q. Note that 0 ≤ αq < 2π.
Then p2 is that point of S \{p1}, for which this angle is minimum. If there is
more than one point whose α-angle is minimum, then p2 is that point among
them having maximum distance from p1.

Hence, given p1, we can find the next convex hull vertex p2, by considering
all points q ∈ S \ {p1}, and selecting that point for which αq is minimum.
That is, we can find p2 in O(n) time.

Of course, we now proceed in the same way: Let `2 be the line through
the points p1 and p2. For each point q ∈ S \{p2}, let αq be the angle between
`2 and the segment p2q. (Now αq is the angle by which we have to rotate
`2 in counterclockwise order around p2 until it hits p2q.) Then p3—the next
convex hull vertex—is that point whose α-angle is minimum. Hence, p3 can
be found in O(n) time.

We continue computing convex hull vertices p4, p5, . . ., until we are back
in p1. More precisely, if ph+1 = p1, then we are done and output the list

(p1, p2, . . . , ph).

A complete description of Jarvis’ March is given in Figure 2. See also Figure 3
for an illustration.

3

Algorithm Jarvis March(S)
(∗ S is a set of n points in R2 ∗)
p1 := lowest point of S;
`1 := horizontal line through p1;
(∗ rotate `1 in counterclockwise order around p1 until it hits

at a point of S ∗)
for each q ∈ S \ {p1}
do αq := angle between `1 and the segment p1q
endfor;
q := point of S \ {p1} for which αq is minimum;
p2 := q;
`2 := line through p1 and p2;
k := 2;
while pk 6= p1

do (∗ rotate `k in counterclockwise order around pk until it
hits at a point of S ∗)

for each q ∈ S \ {pk}
do αq := angle between `k and the segment pkq
endfor;
q := point of S \ {pk} for which αq is minimum;
pk+1 := q;
`k+1 := line through pk and pk+1;
k := k + 1

endwhile;
output the points p1, p2, . . . , pk−1

Figure 2: Jarvis’ March computes the convex hull of a set of points.

It should be clear that this algorithm is correct. What is the run-
ning time? The first convex hull vertex p1 is found in O(n) time. Given
p1, p2, . . . , pk, we find the next convex hull vertex pk+1 in O(n) time. Hence,
if we denote the number of convex hull vertices by h, then the running time

1Are there always two such points?

4

p1

p2

p3

p4

p5

p6

`1

`2

`3

`4

`5

`6

Figure 3: Illustrating Jarvis’ March.

of the entire algorithm is

O

(
h+1∑

k=1

n

)
= O(n(h + 1)) = O(nh).

Theorem 1 Let S be a set of n points in the plane and let h be the number
of vertices of its convex hull. Jarvis’ March computes the convex hull of S in
O(nh) time.

Since h can take any value between 2 and n, the worst-case running time
of Jarvis’ March is Θ(n2).

Exercise 3 If h is a constant, then Jarvis’ March runs in O(n) time. Is this
a contradiction to the lower bound mentioned after Exercise 1?

We still have to fill in some details. In our algorithm, angles are mini-
mized. How do we do that?

Let a and b be two consecutive (counterclockwise) convex hull vertices,
and let ` be the line through them. We make ` a directed line, by giving it

5

a

b

q

`

αq

0

b− a

q− b

αq

Figure 4: How to compute the angle αq.

the direction from a to b. Note that all points of S are on or to the left of
this directed line `.

For any point q of S \ {b}, let αq be the angle between ` and the segment
bq. Our algorithm computes that point q for which αq is minimum. We can
do this, by computing all angles αq explicitly and then selecting the smallest
one.

Let us see how we can compute the angle αq. (Refer to Figure 4.) First
note that αq is the angle between the vectors b − a and q − b. We know
from linear algebra that

(b− a) · (q− b) = ‖b− a‖ × ‖q− b‖ × cos αq.

Hence,

αq = arccos

(
(bx − ax)(qx − bx) + (by − ay)(qy − by)√

(bx − ax)2 + (by − ay)2
√

(qx − bx)2 + (qy − by)2

)
.

Clearly, computing these angles explicitly is asking for (numerical) trouble.
Can we find the smallest angle αq without using the arccosine and square

root operations? Here is the basic observation: To minimize angles, it suffices
to compare them. That is, given two points q and r, it suffices if we can
determine whether αq < αr, αq > αr, or αq = αr. This can be done without
explicitly knowing these two angles. Consider the following determinant:

∆(b, q, r) :=

∣∣∣∣∣∣

bx by 1
qx qy 1
rx ry 1

∣∣∣∣∣∣
=

∣∣∣∣
qx − bx qy − by

rx − bx ry − by

∣∣∣∣ .

6

•
•

•

r
q

b

∆ > 0

ÃÃÃÃÃÃÃÃ
£

£
£

£
£

£
£

££T
T

T
T

T
T

TT
•

•

•

q
r

b

∆ < 0

ÃÃÃÃÃÃÃÃ
£

£
£

£
£

£
£

££T
T

T
T

T
T

TT

Figure 5: ∆ is twice the signed area of triangle bqr.

We know from analytic geometry (or linear algebra) that ∆(b, q, r) is equal
to twice the signed area of the triangle bqr, where the sign is

positive if αq < αr,

negative if αq > αr,

0 if αq = αr.

(See Figure 5.) Therefore, we can compare the angles αq and αr by computing
the sign of

∆(b, q, r) = (qx − bx)(ry − by)− (qy − by)(rx − bx).

This only takes five subtractions and two multiplications. It is certainly much
simpler than using the arccosine and square root operations.

Assume there is more than one point whose α-angle is minimum. Then we
want to select that point among them whose distance to b is maximum. Of
course, for each point q with minimum α-angle, we can compute the distance

d(b, q) =
√

(bx − qx)2 + (by − qy)2,

and then take that point q for which d(b, q) is maximum. However, we do
not have to take square roots: we only have to compare the distances d(b, q)
and d(b, r). Clearly,

d(b, q) < d(b, r) ⇐⇒ (bx − qx)
2 + (by − qy)

2 < (bx − rx)
2 + (by − ry)

2.

3 Graham’s Scan

The second convex hull algorithm we consider was invented by Graham in
1972. In fact, this was one of the first published computational geometry

7

algorithms. We give a variant of this algorithm, which is due to Andrew
(1979).

Let S be a set of n points in the plane. Let a and b be the leftmost
and rightmost points of S, respectively. (If there is more than one leftmost
(resp. rightmost) point, then we take for a (resp. b) the lowest (resp. highest)
point among the leftmost (resp. rightmost) points. Hence, a and b are the
lexicographically smallest and largest elements of S, respectively.) Note that
a and b are convex hull vertices.

Let (p1, p2, . . . , ph) be the vertices of CH (S), where p1 = a. Let r be the
index such that pr = b. The line through a and b partitions the convex hull of
S into two polygonal chains (p1, p2, . . . , pr) and (pr, pr+1, . . . , ph, p1). These
chains are called the lower hull and upper hull of S. See Figure 6.

Clearly, to construct the convex hull of S, it suffices to construct the lower
and upper hulls. We will show how to compute the upper hull. The lower
hull can be computed in a symmetric way.

All points of S \ {a, b} that are on or below the line through a and b
do not contribute to the upper hull. Therefore, we discard these points.
For simplicity, we denote the resulting set by S again. Also, we denote its
cardinality by n. If n = 2, then there is nothing to do: The upper hull
consists of the single edge (a, b).

Assume from now on that n ≥ 3. Note that all points of S \ {a, b} are
strictly above the line through a and b.

In the algorithm, we will use the following primitive operation: Let x, y,
and z be three distinct points. We say that (x, y, z) is a right turn, if z is to
the right of the directed line segment from x to y. If z is to the left of this
segment, then we call (x, y, z) a left turn. We saw in Section 2, that

(x, y, z) is a

{
right turn if ∆(x, y, z) < 0,
left turn if ∆(x, y, z) > 0.

If ∆(x, y, z) = 0, then the points x, y, and z are collinear.
Here is the algorithm that constructs the upper hull of S. First, we sort

the points of S lexicographically. Let

a = q1, q2, q3, . . . , qn = b

be the sorted sequence. Graham’s Scan computes the upper hull by consid-
ering the points q2, q3, . . . , qn one after another. It uses a stack x0, x1, . . . , xt

to store points that may be upper hull vertices. Point xt is on the top of the

8

•

•

•

•

•
•

p1

p2

p3

p4

p5

p6

@
@
@
@
@
@��

��
��
�
�
�
�
�
�
�
��
HH

HH
HH

�
�
�
�
�
�
��!!!!!!!!!!!!!!!

Figure 6: The line through a = p1 and b = p4 partitions the convex hull into
an upper and a lower hull.

stack. At the end of the algorithm, the stack contains the upper hull of S.
To be more precise, during the algorithm, we maintain the following

Invariant: The points x0, x1, . . . , xt on the stack form a subsequence of
qn, q1, q2, . . . , qs, such that

1. t ≥ 2, s ≥ 2, x0 = qn, x1 = q1, xt = qs,

2. x1, x2, . . . , xt is the upper hull of q1, q2, . . . , qs,

3. the points x1, x2, . . . , xt are sorted from left to right.

The variables t, x0, x1, . . . , xt do not occur in the algorithm. They are
defined implicitly by the stack, and are only used to prove the correctness of
the algorithm.

The complete algorithm is given in Figure 7. We prove the correctness of
algorithm Upper Hull . It is clear that the invariant holds immediately after
the initialization. Consider one iteration of the outer while-loop, and assume
that the invariant holds at the beginning of it.

First note that for all s, 2 ≤ s ≤ n− 1, (qs+1, x1, x0) is a left turn. This
implies that x1 is never popped from the stack. In particular, the stack

9

Algorithm Upper Hull
(∗ q1, q2, . . . , qn are sorted lexicographically, n ≥ 2, and

q2, q3, . . . , qn−1 are strictly above the line through q1 and qn ∗)
push(qn); push(q1); push(q2);
s := 2;
(∗ t = 2, x0 = qn, x1 = q1, xt = qs; the invariant holds ∗)
while s 6= n
do α := top element of stack;

β := second element of stack;
while (qs+1, α, β) is not a left turn
do pop the top element from the stack;

α := β;
β := second element of stack

endwhile;
push(qs+1);
s := s + 1
(∗ the invariant holds ∗)

endwhile;
output the stack

Figure 7: Graham’s Scan computes the upper hull of S.

always contains a second element, i.e., point β is always defined. At the end
of the iteration, we push qs+1 on the stack. Hence, at that moment, the stack
contains at least three points, i.e., t ≥ 2. It easily follows that part 1. of the
invariant still holds after the iteration.

Consider the contents x0, x1, . . . , xt of the stack at the beginning of the it-
eration. Let i be the index such that xt, xt−1, . . . , xi+1 are popped during this
iteration. Hence, immediately before we increment s, the stack contains the
points x0, x1, . . . , xi, qs+1. Note that 1 ≤ i ≤ t. Moreover, xi+1, xi+2, . . . , xt

all lie on or to the right of the line segment from xi to qs+1. See Figure 8.
Since (qs+1, xi, xi−1) is a left turn, it follows that x1, . . . , xi, qs+1 is the

upper hull of q1, q2, . . . , qs+1. Immediately before we increment s, the stack
just contains the points x0, x1, . . . , xi, qs+1. Therefore, parts 2. and 3. of the
invariant hold after we have incremented s.

We have shown that the invariant is correctly maintained during the outer

10

•

•
•

•

•

•

•

xi−1

xi

xi+1 xi+2

xt−1

xt = qs

qs+1

.
.
.
.
.

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

¤
¤
¤
¤
¤
¤
(((((((((XXXXXX

C
C
C
C
C
C

Figure 8: Illustrating one iteration of algorithm Upper Hull .

while-loop. Afterwards, we have s = n. The invariant implies that

1. x1, x2, . . . , xt is the upper hull of q1, q2, . . . , qn,

2. the points x1, x2, . . . , xt are sorted from left to right.

Hence, if we output the stack, starting at its top, then we get the upper
hull of S in counterclockwise order. This completes the correctness proof.

Finally, we analyze the running time. It takes O(n log n) time to sort the
points of S lexicographically. Consider algorithm Upper Hull . The initial-
ization takes O(1) time. The outer while-loop makes n− 2 iterations. Note
that one iteration may take a lot of time, because many elements may be
popped.

How do we analyze the total running time of the outer while-loop? It is
proportional to the total number of pops and pushes. During one iteration,
we push exactly one point. Hence, during the outer while-loop, there are
n−2 pushes, each one taking O(1) time. To count the total number of pops,
we observe that

1. each point is pushed only once, and

2. if a point is popped, then it must have been pushed on the stack before.

11

It follows that each point is popped at most once from the stack. (If it
is popped, then it never reappears on the stack.) Hence, during the outer
while-loop, there are at most n− 2 pops, each one taking O(1) time.

This proves that—after the sorting step—algorithm Upper Hull takes
O(n) time. We have proved the following result.

Theorem 2 Let S = {q1, q2, . . . , qn} be a set of n points in the plane, that
are sorted in lexicographical order. Assume that the points q2, q3, . . . , qn−1 are
strictly above the line through q1 and qn. Then the upper hull of S can be
computed in O(n) time.

Corollary 1 Let S be an arbitrary set of n points in the plane. The convex
hull of S can be computed in O(n log n) time. If the points of S are sorted
lexicographically, then the convex hull of S can be computed in O(n) time.

4 Computing the convex hull of two convex

polygons

Consider the following

Problem 1 Let P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qn) be two convex
polygons. Compute the convex hull of their union.

See Figure 9. It is clear that the convex hull of the union of P and Q is
the convex hull of the points p1, p2, . . . , pm, q1, q2, . . . , qn.

Let N := m + n. Of course, we can solve this problem in O(N log N)
time, using the algorithm of the previous section. Can we use the fact that
P and Q are convex polygons to design a faster algorithm? In this section,
we show that the problem can be solved in O(N) time. Here are the basic
observations:

1. If the entire sequence of vertices of P and Q is sorted lexicographically,
then, by Corollary 1, we can compute their convex hull in O(N) time.

2. Since p1, p2, . . . , pm are the vertices of a convex polygon, we can sort
them lexicographically in O(m) time. Similarly, we can sort the vertices
of Q in O(n) time.

12

Z
Z

Z
Z

ZZ¡
¡

¡

»»»»»»
¢

¢
¢

¢
¢

¢

¡¡
A

A
A

A
A

A
Z

Z
Z

Z
ZZ

Z
Z

Z
Z

ZZ¡
¡

¡

»»»»»»
¢

¢
¢

¢
¢

¢
A

A
A

A
A

A
Z

Z
Z

Z
ZZ

A
A
APPPPP��

��
�
E
E
E
E
E
E
E
EE

````
```̀�

�
�
�
�
�
�
��

Figure 9: Two convex polygons and their convex hull.

The details are as follows. Assume w.l.o.g. that p1 is the leftmost point of
P . Let r be the index such that pr is the rightmost point. Then P consists
of a lower chain p1, p2, . . . , pr, and an upper chain pr, pr+1, . . . , pm, p1.

Since P is convex, the points p1, p2, . . . , pr are sorted already. Also, the
inverse upper chain, i.e., the sequence pm, pm−1, . . . , pr+1 is sorted already.
We merge these sorted sequences, in O(m) time. This gives the vertices of
P , sorted in lexicographical order.

Similarly, in O(n) time, we obtain the vertices of Q in lexicographical
order. Then these two sorted lists are merged in O(m + n) = O(N) time.
Finally, we construct in O(N) time the convex hull of these N points, using
the algorithm of the previous section. This proves:

Theorem 3 Let P and Q be two convex polygons having m and n vertices,
respectively. The convex hull of their union can be computed in O(m + n)
time.

This immediately leads to a divide-and-conquer algorithm for construct-
ing the convex hull of an arbitrary set of points. See Figure 10.

It is clear that this algorithm correctly computes the convex hull of S. Let
T (n) denote the worst-case running time on an input set of size n. Assuming
that n is a power of two, we get the following recurrence relation, for some
constant c:

T (n) ≤
{

c if n = 1,
cn + 2 T (n/2) if n > 1.

13

Algorithm Div Con(S, n)
(∗ S is a set of n points in the plane ∗)
if n = 1
then output the only point of S
else m := bn/2c;

partition S arbitrarily into subsets S1 and S2

such that |S1| = m and |S2| = n−m;
P := Div Con(S1,m);
Q := Div Con(S2, n−m);
compute and output the convex hull of P and Q

endif

Figure 10: A divide-and-conquer algorithm that computes the convex hull of
a set of points.

This recurrence is solved by unfolding it:

T (n) ≤ cn + 2 T (n/2)

≤ cn + 2 (c · n/2 + 2 T (n/4))

= 2cn + 22 T (n/22)

≤ 2cn + 22
(
c · n/22 + 2 T (n/23)

)

= 3cn + 23 T (n/23)
...

≤ icn + 2i T (n/2i).

For i = log n, we get

T (n) ≤ cn log n + nT (1) = O(n log n).

Hence, we have another O(n log n)-time algorithm that computes the convex
hull of a set of n points in the plane.

Exercise 4 For arbitrary values of n, the running time T (n) satisfies

T (n) ≤
{

c if n = 1,
cn + T (bn/2c) + T (dn/2e) if n > 1.

Prove, e.g. by induction, that T (n) = O(n log n).

14

5 A variant of Graham’s Scan and triangula-

tions

In this section, we give a variant of Graham’s algorithm. As we will see,
the new algorithm computes more information than just the convex hull.
Instead of computing the upper and lower hulls separately, it computes the
entire convex hull in one pass along the points.

Let S be a set of n points in the plane, sorted in lexicographical order.
The algorithm constructs the convex hull incrementally, from left to right.
To be more precise, let p1, p2, . . . , pn be the sorted sequence of points. We
visit the points one after another.

Invariant: After we have visited the i-th point, we have constructed the
convex hull of {p1, p2, . . . , pi}.

What happens during one iteration? Assume we have the convex hull of
{p1, p2, . . . , pi−1}. Then we have to “add” point pi, i.e., we have to compute
the convex hull of

{p1, p2, . . . , pi} = {p1, p2, . . . , pi−1} ∪ {pi}.

This basically means that we have to find the two tangents from pi to the
current convex hull, see Figure 11. (Note that pi is outside the current hull.)

How do we find these tangents? Assume that the vertices of the current
hull are stored in a doubly-linked list, sorted in counterclockwise order. We
denote the successor and predecessor of an element p in this list by succ(p)
and pred(p), respectively. The upper tangent is found as follows:

α := pi−1; β := succ(α);
while (pi, α, β) is not a left turn
do α := β; β := succ(α)
endwhile

Similarly, the lower tangent is found by the following procedure:

γ := pi−1; δ := pred(γ);
while (pi, γ, δ) is not a right turn
do γ := δ; δ := pred(γ)
endwhile

15

•

•

•

•

• pi−1

•

•

• pi

upper tangent

lower tangent

•

•

•

•

•
c
c
c
c
c
c
cc�

�
�
��
�
�
�
�
�
�
@
@

@
@

@
@!!!!!!!!

�
�
�
�
�
�

©©©©©©©©©©©©©©©©©©

aaaaaaaaaaaaaaa

Figure 11: We have to find the two tangents from pi to the current convex
hull.

Consider the values of α and γ after these two procedures. The convex
hull of {p1, p2, . . . , pi} is obtained by replacing the sequence

succ(γ), succ(succ(γ)), . . . , pred(pred(α)), pred(α)

by point pi. This is done as follows, see Figure 12:

succ(γ) := pi; pred(pi) := γ; succ(pi) := α; pred(α) := pi;

Exercise 5 Convince yourself that in this way, we get an O(n)-time convex
hull algorithm. (Recall that we assume that the points are sorted already.)

By changing this algorithm slightly, it computes more information than
just the convex hull. Again, we maintain the convex hull of {p1, p2, . . . , pi−1}
in a doubly-linked list, which we denote by L. Moreover, we maintain an
initially empty graph G having the points p1, p2, . . . , pn as its vertices. The
new algorithm is given in Figure 13.

The only difference with the previous algorithm is the graph G. We not
only replace the sequence

succ(γ), succ(succ(γ)), . . . , pred(pred(α)), pred(α)

16

•

• γ

•succ(γ)

•

• pred(α)

•α

•

• pi

c
c
c
c
c
c
cc�

�
�
��
�
�
�
�
�
�
@

@
@

@
@
@!!!!!!!!

�
�
�
�
�
�

©©©©©©©©©©©©©©©©©©

aaaaaaaaaaaaaaa

Figure 12: To update the current convex hull, we replace the edges between
γ and α by the two tangents from pi.

by pi, we also add the edges

(γ, pi), (succ(γ), pi), . . . , (pred(α), pi), (α, pi)

to G. In Figure 14, you can see how this graph looks like at the end of the
algorithm.

Exercise 6 Prove that this algorithm still runs in O(n) time.

What kind of graph is G? Consider what happens during the i-th iteration
of the outer while-loop: we add edges (γ, pi), (succ(γ), pi), . . ., (α, pi) to G.
It is clear that these new edges do not intersect each other. Also, they do
not intersect edges that were added during previous iterations. Hence, G is
a planar graph. It is easy to see that each bounded face of G is a triangle.
Therefore, the graph G is called a triangulation of the point set S.

This observation leads to another proof of the fact that the running time
of algorithm Triangulate is linear: Consider one iteration of the outer while-
loop. It consists of three inner while-loops. During the third inner loop, we
visit the same points as during the other two inner loops. Therefore, the
time for one iteration of the outer loop is proportional to the time for the
third inner loop. The latter is proportional to the number of edges that are
added to G.

17

Algorithm Triangulate
(∗ p1, p2, . . . , pn are sorted lexicographically ∗)
if (p1, p2, p3) is a left turn
then L := 〈p1, p2, p3〉
else if (p1, p2, p3) is a right turn

then L := 〈p1, p3, p2〉
else L := 〈p1, p3〉
endif

endif;
add the edges (p1, p2), (p2, p3), and (p1, p3) to G;
i := 4;
while i ≤ n
do α := pi−1; β := succ(α);

while (pi, α, β) is not a left turn
do α := β; β := succ(α)
endwhile;
γ := pi−1; δ := pred(γ);
while (pi, γ, δ) is not a right turn
do γ := δ; δ := pred(γ)
endwhile;
x := γ;
while x 6= succ(α)
do add edge (x, pi) to G;

x := succ(x)
endwhile;
succ(γ) := pi; pred(pi) := γ;
succ(pi) := α; pred(α) := pi;
i := i + 1

endwhile

Figure 13: Computing the convex hull and a triangulation.

Hence, the entire running time of the algorithm is proportional to the
total number of edges that are added to G. Since G is a planar graph on
n vertices, we know from Euler’s formula that it has at most 3n − 6 edges.
This proves that the algorithm runs in O(n) time.

18

Q
Q

Q
Q

Q
Q

Q
QQ

ÃÃÃÃÃÃÃÃ
¯
¯
¯
¯
¯
¯
¯̄S

S
S

S
S
S

Q
Q

Q
Q

Q
Q

Q
QQ

XXXXXXXXXXXXXXXXXX

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

D
D
D
D
D
D
DD¯
¯
¯
¯
¯
¯
¯̄

½
½

½
½

½
½

½
½

½
½

½½

©©©©©©©©©©©©©©©©©©
(((((((((¢

¢
¢
¢
¢
¢
¢
¢¢

E
E
E
E
E
E
E
EE

e
e

e
e

e
e

e
ee

•

•

•

•

•
•

•

• •

Figure 14: The output of algorithm Triangulate.

Theorem 4 Let S be a set of n points in the plane, sorted in lexicographical
order. In O(n) time, we can compute a triangulation of S.

Exercise 7 Let S be a set of n points in the plane, and let h be the number
of vertices of its convex hull. Prove that any triangulation of S contains
exactly 3n− h− 3 edges and 2n− h− 2 bounded faces.

6 An optimal output-sensitive convex hull al-

gorithm

Until now, we have seen two types of algorithms that solve the convex hull
problem:

1. Graham’s Scan and a variation of it, and a divide-and-conquer algo-
rithm. These algorithms have a running time of O(n log n).

2. Jarvis’ March. If h denotes the number of vertices of the convex hull,
then this algorithm has a running time of O(nh). Such an algorithm,
whose running time depends both on n (the input size), and h (the
output size), is called output-sensitive.

19

There are two remarks to be made. First, Graham’s Scan is optimal, in
the sense that for any convex hull algorithm A, there is a set S of n points
in the plane, such that A needs Ω(n log n) time to compute CH (S).

Second, assume that h, the number of vertices of CH (S), is much smaller
than log n. Then, Jarvis’ March is faster than Graham’s Scan. E.g., if h is a
constant, then Jarvis’ March has linear running time, whereas Graham’s algo-
rithm takes Θ(n log n) time. On the other hand, if h is much larger than log n,
then Graham’s Scan is faster. E.g., if h = n, then Jarvis’ algorithm takes
quadratic time, whereas Graham’s algorithm takes only Θ(n log n) time.

This leads to the following problem: Is there a convex hull algorithm that
is at least as fast as both Jarvis’ March and Graham’s Scan, on any input?

Exercise 8 Show that this problem has a positive answer, by giving a convex
hull algorithm with running time

O(min(n log n, nh)).

In this section, we will show that there is an even faster algorithm. That
is, we will prove the following result.

Theorem 5 Let S be a set of n points in the plane, and let h be the number
of vertices of its convex hull. There is an algorithm that computes the convex
hull of S in O(n log h) time.

This theorem was proved in 1982 by David Kirkpatrick and Raimund Sei-
del. They gave a quite complicated algorithm. We will present an extremely
simple O(n log h)-time algorithm that was discovered in 1994 by Timothy
Chan. At that time, he was a 19-year old PhD student at the University
of British Columbia in Vancouver. Surprisingly, Chan’s algorithm only uses
techniques that have been known since the beginning of the eighties. Basi-
cally, his algorithm is a clever implementation of Jarvis’ March.

Before we can give Chan’s algorithm, we need some results on representing
convex polygons.

6.1 The hierarchical representation of convex polygons

We consider the following problem. Let S be a set of n points in the plane.
We want to store these points in a data structure, such that so-called extremal
queries can be answered. In such a query, we are given a point q in the plane,

20

•

•
•

•

•
•

•

• p

•q³³³³³³³³³³³³³³³³³³B
B

B
BBM

`

Figure 15: When we rotate ` around q, point p is hit first.

and a line ` through q, such that all points of S are on or above `. The answer
to the query is a point of S that is hit first when we rotate ` around q in
counterclockwise order. See Figure 15.

It is clear that a point p can be the answer to an extremal query only if it
is a vertex of the convex hull of S. Let P = (p0, p1, . . . , ph−1) be the vertices
of CH (S), enumerated in counterclockwise order. Then we only have to
consider the elements of P . We represent these points using the hierarchical
representation of P . (Invented by Chazelle and Dobkin (1980), and Dobkin
and Kirkpatrick (1983).) This representation is obtained as follows.

Let P0 := P . For i ≥ 1, let Pi be the sequence obtained from Pi−1, by
deleting every second point. Let k be the index such that Pk contains exactly
two elements. Then the sequence of sequences

H(P) = (P0, P1, . . . , Pk)

is called the hierarchical representation of P . See Figure 16. For 0 ≤ i ≤ k,
let hi := |Pi|, the number of elements of Pi.

Exercise 9 Prove that

1. hi ≤ 1
2
(hi−1 + 1),

2. hi ≤ (h + 2i − 1)/2i,

3. hi < 1 + h/2i,

4. k < log h.

21

@
@

@
@

@
@

@
@@»»»»»»»»»»»»©©©¡

¡
¡

B
B

B
BB

@
@

@
XXXXXX»»»»»»©©©©©©

·
·

·
·

·
·

··• p9

•
p10

•p0

•p1

• p2

• p3

• p4

• p5

•p6

•p7

•p8

Figure 16: The hierarchical representation of the convex polygon P consists
of P0 = P , P1 = (p0, p2, p4, p6, p8, p10), P2 = (p0, p4, p8), and P3 = (p0, p8).

Exercise 10 Prove that each Pi is a convex polygon.

We claim that this hierarchical representation can be used to answer
extremal queries. Indeed, let ` be a line such that all points of S are on or
above it, and let q be an arbitrary point on `. Let p be the point of S that
is hit first when we rotate ` around q in counterclockwise order. Our goal is
to find p. Note that p ∈ P0 = P .

For 0 ≤ i ≤ k, let qi be the point of Pi that is hit first when rotating `
around q. We compute point p as follows.

1. First, we find qk.

2. Then, for i = k, k − 1, . . . , 1, assuming that we know qi, we compute
qi−1.

3. At this moment, we know q0. Since q0 = p, we report this point.

How do we implement these steps? Since the sequence Pk contains only
two elements, point qk can easily be computed in constant time. Let 1 ≤

22

i ≤ k, and assume that we have computed point qi ∈ Pi already. How do we
compute qi−1? The following lemma gives the answer.

Lemma 1 Let a and b be the predecessor and successor of qi in Pi−1. Then
qi−1 ∈ {a, qi, b}.
Exercise 11 Prove Lemma 1. (Hint: Looking at some examples will give
you an idea why this lemma is true.)

Lemma 1 implies that given qi, we can compute qi−1 in constant time.
Hence, the entire algorithm to find p = q0 takes time O(k) = O(log h) =
O(log n). In order to implement the query algorithm, we have to specify how
to store the hierarchical representation. The straightforward solution is to
store each sequence Pi as a doubly-linked circularly ordered list, and give
each element in Pi a pointer to its occurrence in Pi−1.

Exercise 12 Convince yourself that by storing the hierarchical representa-
tion this way, the query algorithm can be implemented such that it runs in
O(log n) time.

How much space do we need to store the data structure? For each se-
quence Pi, we need O(|Pi|) = O(hi) space. Hence, the amount of space for
the entire data structure is

O

(
k∑

i=0

hi

)
= O

(
k∑

i=0

(1 + h/2i)

)
= O(k + h) = O(n).

The data structure can be built as follows.

1. Compute the convex hull of the set S using, e.g., Graham’s Scan. This
gives us the sequence P0.

2. For i = 1, 2, . . ., construct the sequence Pi from Pi−1, by deleting every
second point, and establish the pointers from Pi to Pi−1.

The first step of this algorithm takes O(n log n) time. The second step
takes time O(

∑k
i=0 hi) = O(n). We have proved the following result.

Theorem 6 Let S be a set of n points in the plane. The hierarchical repre-
sentation of S has size O(n), and can be built in O(n log n) time. It can be
used to solve extremal queries in O(log n) time.

Exercise 13 We stored the hierarchical representation using a sequence of
lists. Show that in fact, it can be stored in one single array.

23

6.2 Chan’s convex hull algorithm

Let S be a set of n points in the plane, and let h be the number of vertices
of the convex hull CH (S) of S. We show how to compute this convex hull in
O(n log h) time.

First assume that we know the value of h. (Of course, h is not known in
advance! But, let us assume for the moment that someone has told us this
value.) Here is the algorithm.

Step 1: Partition the set S (arbitrarily) into subsets S1, S2, . . . Sdn/he, each
of size h, except possibly the last one, which may be smaller.

Step 2: For each i, 1 ≤ i ≤ dn/he, construct the data structure of Theorem 6
for the set Si.

Step 3: Now we compute the convex hull of the entire set S using the gift
wrapping technique. Let p0 be the point of S having minimum y-coordinate.
(If there are several points with minimum y-coordinate, then we take the
leftmost of these points.) Note that p0 is a vertex of CH (S).

Let p1 be the point of S such that p0p1 is a “counterclockwise” edge of
CH (S). We find p1 as follows.

Let ` be the horizontal line through p0. Note that all points of S are
on or above `. For each i, 1 ≤ i ≤ dn/he, query the data structure for
Si, i.e., find the point qi ∈ Si that is hit first when rotating ` around p0 in
counterclockwise order. Then, by a linear search, find the point qj among
q1, q2, . . . , qdn/he for which the angle between ` and p0qj is minimum. (If
there are several points for which this angle is minimum, then we take the
one having maximum distance from p0.) It is easy to see that p1 = qj.

Given p1, we find the next convex hull vertex p2 in a similar way: Let `′

be the line through p0 and p1. Again, all points of S are on one side of `′. We
perform an extremal query in each subset Si, 1 ≤ i ≤ dn/he, by rotating `′

in counterclockwise order around the point p1. Then p2 is the point x among
the dn/he answers for which the angle between `′ and p1x is minimum. Of
course, we keep on making these gift wrapping steps, until we are back at
our starting point p0.

This concludes the description of the algorithm. It is easy to see that
this algorithm correctly computes the convex hull of S. What is the running
time? Step 1 takes O(n) time. By Theorem 6, the data structure for one
subset Si can be built in O(|Si| log |Si|) = O(h log h) time. Hence, Step 2

24

takes total time
O

(n

h
h log h

)
= O(n log h).

Let us consider Step 3. The lowest point p0 can be found in O(n) time.
To find p1, we perform one extremal query in each subset Si. Each such
query takes time O(log |Si|) = O(log h). Hence, all queries together take
O((n/h) log h) time. They give us dn/he candidates for the point p1. In
O(n/h) time, p1 is selected from these candidates. Hence, given p0, we find
p1 in O((n/h) log h) time. In general, given the k-th convex hull vertex pk,
we find the next convex hull vertex pk+1 in O((n/h) log h) time. Since there
are h convex hull vertices, the total time for Step 3 is

O
(
n + h

n

h
log h

)
= O(n log h).

Hence, the entire algorithm for constructing the convex hull of S takes
O(n log h) time.

Note that this only works if the value of h is known in advance. What
do we do if h is not known? The trick is to “guess” h in a clever way.

Assume H is our current guess value. Then we run the above algorithm
with h replaced by H. Steps 1 and 2 do not cause any problems; they are
completed in O(n log H) time. In Step 3, two things can happen:

1. We are back at the starting point p0 within H gift wrapping steps.
This happens if and only if h ≤ H. In this case, the convex hull of S
is constructed in Step 3, in time

O
(
n + h

n

H
log H

)
= O(n log H),

and we are done.

2. After H gift wrapping steps, we are not back at p0. This happens if
and only if h > H, i.e., our guess value for the number of convex hull
vertices is too small. In this case, we stop the algorithm after these H
gift wrapping steps. Note that in this case, we also spend O(n log H)
time, but we still do not have the convex hull of S. Since our guess
value was too small, we try a larger value for H, and run the entire
algorithm again.

Which guess values do we take? We start with H = 4, or any other small
integer greater than one. Each time we discover that H < h, we set H := H2.

25

Since the value of H strictly increases, it will become greater than or equal
to h. When this happens for the first time, we will compute the complete
convex hull of S, and we are done.

Let Hf be the final value of H. That is, when running the algorithm
with guess value Hf , we complete the convex hull construction within Hf

gift wrapping steps. Then we know that Hf ≥ h. The previous guess value,
which is equal to

√
Hf , was less than h. Hence, Hf < h2.

Now we can bound the running time of the complete algorithm. We
know that for each guess value H, we spend at most cn log H time, for some
constant c. Hence, for the final guess value Hf , we spend at most cn log Hf

time. For the second last guess value, we spend at most

cn log
√

Hf =
1

2
cn log Hf

time. In general, for the i-th last guess value, we spend at most

cn log H
(1/2)i−1

f =

(
1

2

)i−1

cn log Hf

time. Therefore, the total running time of our algorithm is bounded from
above by

∞∑
i=1

(
1

2

)i−1

cn log Hf = 2cn log Hf

< 2cn log h2

= 4cn log h

= O(n log h).

This proves Theorem 5.

7 Duality and computing the intersection of

halfplanes

In the previous sections, we have seen several convex hull algorithms. In this
section, we will see that we can use these algorithms to solve a seemingly
unrelated problem.

26

A halfplane is the set of all points in R2 that are on one side of a given
line. This line itself also belongs to the halfplane. The problem we will solve
is the following: We are given a set of n halfplanes, and want to compute
their intersection. It is easy to see that the intersection of n halfplanes is
a (possibly unbounded) convex polygon. We say that we have solved the
problem, if we have the vertices of this polygon, sorted in counterclockwise
order.

Exercise 14 Prove that the intersection of n halfplanes has at most n ver-
tices.

In order to show that this problem can be solved using any convex hull al-
gorithm, we need a duality transformation. This transformation maps points
to non-vertical lines, and non-vertical lines to points.

7.1 The duality transformation

Let ` be any non-vertical line, having equation y = ax + b. The dual of ` is
the point

D(`) := (a, b) ∈ R2.

Conversely, let p = (p1, p2) be any point in the plane. The dual of p is the
non-vertical line

D(p) : y = −p1x + p2.

Here is the basic property of this transformation.

Lemma 2 Let p = (p1, p2) be a point in the plane, and let ` : y = ax + b be
a non-vertical line.

1. p is below ` if and only if the point D(`) is above the line D(p).

2. p is above ` if and only if the point D(`) is below the line D(p).

3. p is on ` if and only if the point D(`) is on the line D(p).

Proof. We only prove the first claim. Point p is below ` if and only if
p2 < ap1 + b. This inequality is equivalent to b > −ap1 + p2, which holds if
and only if point D(`) is above line D(p).

27

7.2 Applying the duality transformation

If ` is a non-vertical line, then `+ and `− denote the halfplanes above and
below `, respectively.

Consider an input to the halfplane intersection problem. We assume for
simplicity that no halfplane is bounded by a vertical line2. The input consists
of a number of “upper” halfplanes, and a number of “lower” halfplanes.
Hence, there is an integer m, 0 ≤ m ≤ n, such that we can write the input
as

`+
1 , `+

2 , . . . , `+
m, `−m+1, `

−
m+2, . . . , `

−
n .

Let

S+ :=
m⋂

i=1

`+
i ,

and

S− :=
n⋂

i=m+1

`−i .

It is clear that the intersection of the n halfplanes is equal to the intersection
of S+ and S−. We will show how to compute S+. The intersection S− can
be computed in a symmetric way. At the end, we will show how to compute
the intersection of S+ and S−.

The set S+ is an unbounded convex polygon. Each edge of this polygon
is contained in a line `j, for some j, 1 ≤ j ≤ m. We call a line `i, where
1 ≤ i ≤ m, redundant, if it does not contribute to S+, i.e., there is no edge
of S+ that is contained in `i. See Figure 17.

We now prove two lemmas which show the relationship between S+ and
the upper hull of the points D(`i), 1 ≤ i ≤ m. Only the second lemma is
needed to prove the correctness of our algorithm that constructs S+. We
include the first lemma to illustrate the way duality is used.

Lemma 3 Let 1 ≤ i ≤ m. Line `i is redundant if and only if the point D(`i)
is not a vertex of the upper hull of the points D(`1), D(`2), . . . , D(`m).

Proof. Assume that `i is redundant. Then S+ ∩ `i is either empty, or a
vertex of S+. Let v be a vertex of S+ that is closest to `i. See Figure 17.

2In theory, this is a reasonable assumption, because we can always rotate the coordinate
system.

28

PPPPPPPPPPP

•v
PPPPPPPPPPPPPPPPPPPPPP
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

`j

­
­

­
­

­
­

­
­

­
­

­
­
­ `k

³³³³³³³³³³³³³³³³³³

`i

Figure 17: Illustrating the proof of Lemma 3. Line `i is redundant because
it does not contribute to the intersection S+.

There are two indices j and k, 1 ≤ j < k ≤ m, such that `j and `k are
non-redundant, and v is the intersection between `j and `k. Note that `j and
`k “witness” the redundancy of `i.

Since v is on or above `i, we know that the point D(`i) is on or below the
line D(v). Observe that D(v) contains the two points D(`j) and D(`k).

We claim that the x-coordinate of D(`i) is between the x-coordinates of
D(`j) and D(`k). This claim will prove that D(`i) is not a vertex of the
upper hull of D(`1), D(`2), . . . , D(`m). See the figure below.

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

D(v)

•
D(`j) •

D(`k)

•D(`i)

To prove the claim, let D(`i) be the point (ai, bi), and similarly, let
D(`j) = (aj, bj), and D(`k) = (ak, bk). Assume w.l.o.g. that aj < ak. Then
we have to show that aj ≤ ai ≤ ak.

First note that the slope of `j is smaller than that of `k. Assume that
ai > ak. Then the line `i has a larger slope than `k. Let `′i be the line through
v that is parallel to `i. (See the figure below.) Recall that v is a vertex of

29

S+ that is closest to `i. Hence, there are no vertices of S+ between `′i and
`i. Since S+ is above `i, it is in fact above `′i. But then, line `k is redundant,
which is a contradiction. Hence, ai ≤ ak. In a symmetric way, we can prove
that aj ≤ ai. This proves the first part of the lemma.

•v

��
��
��
��
��
��
��
��
��
��
��

`k

HHHHHHHHHHHHHHHHHHHHHH

`j

`i
­

­
­

­
­

­
­

­
­

­
­

­
­

`′i

The converse of the proof is similar. Assume that D(`i) is not a vertex of
the upper hull of the points D(`1), D(`2), . . . , D(`m). Then this upper hull
contains two vertices, say D(`j) and D(`k), such that D(`i) is below the edge
defined by these two vertices. Let v be the intersection of `j and `k. Then v
is above `i and the situation looks as follows:

•v

((((((((((((((((((
`i

PPPPPPPPP
`j

¡
¡

¡
¡¡`k

Since S+ is above `j and `k, it follows that `i does not contribute to S+.
That is, `i is redundant.

Lemma 4 Let v be any point in the plane. Then, v is a vertex of S+ if
and only if the line D(v) contains an edge of the upper hull of the points
D(`1), D(`2), . . . , D(`m).

Proof. Assume that D(v) contains edge e of the upper hull of D(`1), D(`2),
. . . , D(`m). Let D(`j) and D(`k) be the endpoints of e. Since the line D(v)
contains D(`j) and D(`k), we know that v is the intersection of `j and `k.

30

•

•
D(`j)

•
D(`k)

•

•

e

�
�
�
�
�
�
��
��
��
���QQ

Q
QQ
S
S
S
S
S
S

³³³³³³³³³³³³³³³³³³³³³³
D(v)

All points D(`i), 1 ≤ i ≤ m, are on or below the line D(v). Therefore, v
is on or above all lines `i, 1 ≤ i ≤ m. But this means that v ∈ S+.

Since S+ ⊆ `+
j ∩ `+

k , we conclude that v is a vertex of S+.

•v
PPPPPPPPPPPPP

`j

¡
¡

¡
¡

¡
¡

¡
¡¡

`k

The converse can be proved similarly.

7.3 The algorithm

Now we can give the algorithm that constructs S+. Recall that the input
consists of m non-vertical lines `1, `2, . . . , `m. We want to compute S+ =
∩m

i=1`
+
i .

Step 1: Compute the points pi := D(`i), 1 ≤ i ≤ m.

Step 2: Compute the upper hull of the points p1, p2, . . . , pm. Let e1, e2, . . . , eh

be the edges of this upper hull, sorted from left to right.

Step 3: For each i, 1 ≤ i ≤ h, compute the line Li that contains ei.

Step 4: Output the points D−1(Li), 1 ≤ i ≤ h.

Lemma 4 implies that in Step 4, all vertices of S+ are reported. The edges
e1, e2, . . . , eh are sorted from left to right. Since these edges are on the upper
hull, they are also sorted by slope. Of course, the same holds for the lines

31

L1, L2, . . . , Lh. Then, the definition of the duality transformation D implies
that the points D−1(L1), D

−1(L2), . . . , D
−1(Lh) are also sorted. Hence, the

algorithm computes all vertices of S+, sorted along its boundary. This proves
the correctness of the algorithm.

Exercise 15 The algorithm computes the vertices of S+. How can we find
the edges? In particular, how do we find the leftmost and rightmost edges
(which are unbounded)?

The running time of the algorithm is easy to estimate. Steps 1, 3 and
4 take O(m) time. If we use Graham’s Scan, then Step 2 takes O(m log m)
time. In fact, if the lines `1, `2, . . . , `m are sorted by slope, then the points
p1, p2, . . . , pm are sorted by x-coordinate, and Step 2 takes only O(m) time.
We have proved the following result.

Theorem 7 Let `1, `2, . . . , `m be non-vertical lines that are sorted by slope.
In O(m) time, we can compute the boundary of the intersection S+ = ∩m

i=1`
+
i .

Recall that we wanted to compute the boundary of

S+ ∩ S− =

(
m⋂

i=1

`+
i

)
∩

(
n⋂

i=m+1

`−i

)
.

Of course, the boundary of S− can be computed in a symmetric way: First
dualize the lines `i to points pi, m + 1 ≤ i ≤ n. Then compute the lower
hull of these points. Finally, compute the inverse D−1(L) of each line L that
contains a lower hull edge.

So it remains to show how the intersection of S+ and S− can be com-
puted. Let h+ and h− denote the number of vertices of S+ and S−, re-
spectively. Note that the edges of S+ and S− are sorted from left to right.
By walking simultaneously along these edges, we can easily compute the at
most two intersection points between the boundaries of S+ and S− in time
O(h+ + h−) = O(n). This solves our problem of computing the intersection
of halfplanes.

Theorem 8 The intersection of n halfplanes can be computed in O(n log n)
time. If the lines that bound the halfplanes are sorted by slope, then the
intersection can be computed in O(n) time.

32

8 Some final remarks

In these notes, we have only considered convex hull algorithms for points in
the plane. It follows from Euler’s theorem that the convex hull of n points
in R3 has size O(n), i.e., the total number of vertices, edges and facets is
O(n). Preparata and Hong proved in 1977 that the convex hull can be
computed in O(n log n) time. There are more practical algorithms for the
three-dimensional case. See the latest books on computational geometry.
Chan’s algorithm can be generalized to three dimensions. If h is the number
of hull vertices, then the entire convex hull can be computed in O(n log h)
time.

In dimensions larger than three, the situation becomes more complex. Let
S be a set of n points in Rd, where d is a constant. The total size (i.e., the
total number of vertices, edges, 2-dimensional facets, . . . , (d−1)-dimensional
facets) is Θ(nbd/2c) in the worst-case. In 1981, Seidel showed that the convex
hull can be computed in O(ndd/2e) time. Hence, for odd dimensions, there
is one factor n “too much”, whereas for even dimensions, this is optimal3.
In 1986, Seidel also gave an algorithm that computes the convex hull in
O(nbd/2c log n) time. For quite some time, these were the best general results
for the convex hull problem. In 1991, Chazelle solved the problem optimally:
he showed how to compute the convex hull in O(nbd/2c) time.

3this sounds odd, doesn’t it?

33

