Computing the diameter of a point set:
sequential and parallel algorithms

Michiel Smid*
November 4, 2003

1 Introduction

Let S be a set of n points in the plane. We want to compute the diameter
D(S) of S, which is defined as the largest distance between any two points
of S. That is, if d(p, ¢) denotes the Euclidean distance between the points p
and ¢, then we want to compute

D(S) = max{d(p,q) : p,q € S},

together with two points a and b of S such that d(a,b) = D(S). Such a pair
is called a diametral pair.

A trivial way to solve this problem is to compute the distance between
every pair of points and select the largest distance. Since one distance compu-
tation takes constant time, this gives an algorithm with running time O(n?).

Is there a faster algorithm? The answer is “yes”: In these notes, we will
give an O(nlogn)-time algorithm for computing the diameter of a set of n
points in the plane. It can be shown that this is optimal in the algebraic
computation tree model. In the second part of these notes, we will design an
optimal parallel algorithm for the diameter problem.

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

2 Some properties of the diameter

In order to avoid looking at each pair of points explicitly, we have to find
some properties of diametral pairs.

Recall the definition of the convex hull of a point set S: It is the smallest
convex set that contains all points of S. The convex hull consists of vertices
and edges. An edge is bounded by two vertices, which are points of S. If
S contains a point p that is in the interior of a convex hull edge, then, by
definition, p is not a convex hull vertex.

Lemma 1 Let S be a finite set of points in the plane and let S’ be the set
of points of S that are on its convex hull. The diameter of S is equal to the
diameter of S'.

Proof. Let p and ¢ be two distinct points of S that are not both contained
in S’. Assume without loss of generality that ¢ & S’. We prove that there is
a point r in S’ such that d(p, q) < d(p,r).

Assume without loss of generality that the line through p and ¢ is hori-
zontal and that p is to the left of ¢g. Since ¢ is not on the convex hull of S,
there must be a convex hull vertex r that is on or to the right of the vertical
line through ¢. It is easy to see that d(p,q) < d(p,).

Hence, we have shown the following: If p and ¢ are two distinct points
of S that are not both contained in S’, then d(p,q) < D(S). It follows
that the diameter of S is determined by two points of S’. This proves that
D(S) = D(5). [|

This lemma suggests the following approach for computing the diameter
of S:

1. Compute the vertex set S’ of the convex hull of S.
2. Compute the diameter of S'.

We know how the set S’ can be computed in O(nlogn) time. How do we
compute the diameter of S’? As we will see, the fact that the points of S’
are the vertices of a conver polygon allows us to compute the diameter of S’
in O(]S’]) = O(n) time.

3 Computing the diameter of a convex poly-
gon

In order to simplify the notation, we will write S instead of S’. Hence,
S = {p1,p2,---,pn} is a set of n points in the plane that form the vertices
of a convex polygon, given in, say, counterclockwise order. Our goal is to
compute the diameter of S.

Exercise 1 Draw a convex polygon with n vertices and look at the sequence
of distances

d(p17p2)7 d(plap3): d(plap4)a RN d(pl:pn)

By looking at your polygon, it seems reasonable to conjecture that this se-
quence is uni-modal, i.e., it consists of one (possibly empty) increasing part
followed by one (possibly empty) decreasing part. Prove that this is not true
in general.

(If this conjecture would have been true, then the following algorithm
would have computed the diameter of S: Using binary search, compute a
point p; that is furthest away from p;. In a similar way, for each k£ with
1 < k < n, use binary search to compute a point of S that is furthest away
from the point p;. This gives n pairs of points and the pair having the largest
distance determines the diameter of S.)

This exercise sounds like bad news. It turns out, however, that a variation
of it is true:

Lemma 2 Let ¢ be the line through p; and py. The sequence
d(p37 E)’ d(p4’ E): ey d(pna g)
s uni-modal.

Proof. This follows immediately from the fact that the points of S form the
vertices of a convex polygon. [|

If e is an edge of our convex polygon, then we denote by ¢, the line
through e. Let L be the set of all pairs (p, ¢) for which there is an edge e on
our convex polygon having p as one of its endpoints, such that

d(q,t.) = max{d(r,l.) : r € S}.

3

Figure 1: Illustrating the definition of the set L. Edge e has p as one of its
endpoints and q is furthest away from {.. Hence, L contains the pair (p,q).

See Figure 1 for an illustration. In this figure, point ¢ is at maximum distance
from the line /.. In other words, if ¢¢ is the line through ¢ that is parallel to
£, then all points of S are on or between ¢, and ¢2. (Because of convexity,
there can be only one other point on ¢2.) Hence, the pair (p, q) is contained
in the set L.

Lemma 3 The diameter of S is equal to the largest distance determined by
any element of L.

Proof. Let a and b be two points of S such that d(a,b) = D(S). We will
show that the pair (a,b) or (b,a) is contained in L. This will prove the
lemma.

Assume without loss of generality that the line through a and b is horizon-
tal. All points of S'\ {a, b} are strictly between the two vertical lines through
a and b. (Otherwise, the diameter of S would be larger than d(a,b).) Rotate
these two lines simultaneously in clockwise order around a and b, and stop
as soon as one of them hits an edge of the convex hull of S. (Hence, while
rotating, the two lines remain parallel.) See Figure 2.

Let e be the edge that is hit first. If a is an endpoint of this edge, then
it is not hard to see that b has maximum distance to the line through e.
Therefore, the pair (a,b) is contained in L. By a symmetric argument, if b
is an endpoint of e, then the pair (b, a) is contained in L. [|

Figure 2: Illustrating the proof of Lemma 3. The line through a is the first
one that hits an edge of the convex hull.

3.1 The algorithm

Lemma 3 tells us that we can compute the diameter of S in the following
way:

Step 1: Compute the set L.

Step 2: Compute all distances determined by the elements of L, and select
the largest one.

Step 2 is easy. First observe that L contains at most 4n elements: The
convex polygon S contains n edges. Consider one such edge e. It is bounded
by two points. There are at most two points of S at maximum distance from
the line /. through e. Hence, this edge “delivers” at most four pairs to L.

As a result, Step 2 takes only O(n) time. Of course, the problem is how
to compute the set L. We will show that this can also be done in O(n) time.

Recall that we numbered the points of S as p1, pa, . . ., pn, in counterclock-
wise order. Let e be the edge bounded by p; and ps, and let £, be the line
that contains e. We want to find the (at most two) points of S that are at

5

maximum distance from /.. Lemma 2 implies that there is an easy way to
find these points:

J =3

while d(pj+1, Ee) > d(pja Ee)
doj:=j5+1

endwhile

In this procedure, indices are to be read modulo n, i.e., p,.1 = p1. At the
end of this while-loop, we have

d(ps, le) < d(ps,Le) < ... < d(pj_1,Le) < d(p;,Le)

and
d(pjt1,£e) < d(pj, Le)-

Then it follows from Lemma 2 that

d(pn,ee) < d(pnflaee) <...< d(pj+2a€e) < d(pj—l—l:ge)-

Hence, if d(p;+1, %) < d(pj,Le), then p; is the only point having maximum
distance to ¢., and we insert the two pairs (p1,p;) and (ps,p;) into L. Oth-
erwise, we have d(pj;1,%.) = d(p;,%e), and we insert the four pairs (pi,p;),
(p1,Pj+1), (p2,p;) and (p2, pj+1) into L.

Hence, we now have “handled” the first edge e. The total time spent is
O(n), because the index j may be as large as n.

Let €' be the next convex hull edge, having endpoints p, and p;. How do
we find the (at most two) points of S that are at maximum distance from
L7 Of course, we can use the same procedure as for edge e, starting with
j = 4. There is, however, a better way:

Lemma 4 Let j be an index such that p; has mazimum distance to line £..
Similarly, let i be an index such that the point p; has maximum distance to
L. Then j <i<nori=1.

Proof. Assume without loss of generality that the line through p; and p, is
horizontal. Observe that p; is to the left of p,. Let £; (resp. £;) be the line
through p; that is parallel to £, (resp. £.). See Figure 3.

Since p; has maximum distance to ¢., we know that p4,ps,...,p;_1 are
all on or below ¢;. Then, convexity implies that these points must be to the

6

I
gj
P1 e P2

Figure 3: Illustrating the proof of Lemma 4.

right of line ;. (Convince yourself that this is also true if the angle at p, is
less than 7/2.) As a result, d(pj,fe) > d(pk,ler), k = 4,5,...,5 — 1. This
proves that ¢ ¢ {4,5,...,5 — 1}. It is clear that 7 # 2 and 7 # 3. [

This lemma has the following consequence. In order to find the index 1,
we do not have to start at ps while walking along the convex polygon; rather,
we can start at p;.

In general, let e, be the convex hull edge with endpoints py and py1, and
let p, be a point that is at maximum distance from the line ¢, through e.
Then, in order to find the point that has maximum distance to the line £,
that contains the next edge ey, 1, we scan the convex polygon, starting at p,,
and consider

Pus Pu+1s---53PnsP1,02,- - -, Dk,

until we have found the maximal element of the uni-modal sequence

d(pua Ek-l—l)a d(pu—|—1a gk—kl)a RN d(pTw gk—kl)a d(pla Ek—l—l)a RN d(pk7 gk—kl)-

In this way, we compute the entire set L, by walking at most twice around
the convex polygon. This proves that this set can be computed in O(n) time.
We summarize our result:

Theorem 1 Let S be a set of n points in the plane. The diameter of S can
be computed in O(nlogn) time. If the points of S are given as the vertices

7

of a convex polygon, sorted along its boundary, then the diameter of S can
be computed in O(n) time.

Remark 1 There can be more than one pair of points that determines the
diameter. All these pairs, however, must be contained in the set L. (This
follows from the proof of Lemma 3.) As a result, there are at most 4n pairs
of points that are at distance D(S), and our algorithm finds them all.

In the analysis of our algorithm, we assumed that the following operation
can be performed in constant time:

Given a line £ through points a and b, that is directed from a to b,
and given two points x and y that are both to the left of £, decide
whether d(z,) > d(y,?), d(z,£) < d(y,£), or d(z,) = d(y, {).

How do we implement this operation? Here is the answer. Let ¢ be the
directed line through z that is parallel to £ and that has the same direction
as £. Then d(z,¢) > d(y, ¢) if and only if y is to the right of #'. Observe that
¢’ contains the two points x and z + b — a and that ¢ is directed from z to
x + b — a. It follows that d(x,£) > d(y,£) if and only if the three points z,
x4+ b—a, and y form a right-turn.

4 A parallel algorithm

In this section, we consider the problem of designing a parallel algorithm for
computing the diameter of a planar point set. The model of computation
we use is the CREW PRAM. We will show that in this model, the diameter
can be computed in O(logn) time, using O(n) processors. We will also show
that this is optimal.

Let S be a set of n points in the plane. Our general approach is the same
as before: First, we compute the convex hull of S. Then, we compute the
diameter of the convex hull.

Let us look at the second step first. Hence, S = {p1,p2,-..,pn} is given
as the set of vertices of a convex polygon, sorted in counterclockwise order
along its boundary. The algorithm for computing the diameter of S consists
of two steps.

Step 1: We use Lemma 2 to compute the set L of Lemma 3. This is done
using n processors. For each 7 with 1 < ¢ < n, the i-th processor handles

8

the i-th edge e; of our convex polygon. To be more precise, if e; has p; and
pit+1 as its endpoints!, then the i-th processor makes a binary search in the
uni-modal sequence

d(pi—l—?, g); d(pi-i—?n f)’ LRI d(pna E)a d(pla E)a d(p?a E)a ey d(pi—la E)a

where / is the line that contains e;. In this way, this processor finds the at
most two maximal elements of this sequence, and these give rise to at most
four pairs of points that have to be inserted into the set L. The processor
writes these pairs in the locations 41 — 3, 47 — 2, 4 — 1 and 47 of an array
L[1...4n]. (Hence, each array entry contains at most one pair of points.)
This concludes Step 1. Convince yourself that this step can be imple-
mented on a CREW PRAM. In particular, where do we need concurrent
reads?
Step 2: We know that the diameter of S is equal to the largest distance
determined by any element of L. This largest distance is computed using a
CREW PRAM algorithm that simulates a knock-out tournament.

This concludes the description of the algorithm. It is easy to analyze the
complexity. The number of processors used is bounded by O(n). Consider
Step 1. Each processor makes a binary search in a set of size n — 2. Clearly,
this takes O(logn) time. Regarding Step 2, the maximum of 4n numbers—
the distances in L—can be computed in O(logn) time, even using O(n/logn)
processors. Hence, we have proved the following result.

Theorem 2 Let S be a set of n points in the plane. Assume that the points
of S are given as the vertices of a conver polygon, sorted along its boundary.
On a CREW PRAM, the diameter of S can be computed in O(logn) time,
using O(n) processors.

Hence, in order to show how to compute the diameter of an arbitrary

point set S, it remains to give a parallel algorithm that computes the convex
hull of S.

4.1 A parallel convex hull algorithm

In this section, S is an arbitrary set of n points in the plane. We will give
a parallel multiway divide-and-conquer algorithm that computes the convex

Lobserve that p,i 1 = p1

hull of S. This algorithm first sorts the points of S by their xz-coordinates.
Then it divides the sorted sequence into /n subsequences, each of size y/n,
and recursively computes the convex hull of each subsequence. Finally, it
computes the convex hull of the /n subhulls.

We will not give any details about the first step. We just mention that
on a CREW PRAM, the points of S can be sorted by their z-coordinates in
O(logn) time, using O(n) processors. Let S = {py, pa,...,pn} be the sorted
sequence. Assume that these points are stored in an array S[1...n], so that
S[i] =pi, 1 <i<n.

The convex hull of S consists of an upper hull and a lower hull. We will
show how the upper hull can be computed. The lower hull can be computed
in a symmetric way.

We do the following in parallel: For each i with 1 < i < \/n, using
O(y/n) processors, we recursively compute the upper hull of the points in the
subarray S[(i—1)y/n+1...iy/n]. (So, in total, O(n) processors are working
simultaneously. Also, in each subarray, the points are sorted already.)

Let ¢, 45, ..., q., be the vertices of the i-th upper hull, sorted from left
to right. Then, n; < /n. We assume that each such sequence is stored in an
array Q;[1...n4.

It remains to compute the upper hull of the y/n upper hulls. For each i
and j with 1 < i </n,1 <j <./n,i# j, one processor computes the upper
common tangent of the i-th and j-th upper hulls. (Hence, /n(y/n—1) <n
processors are working in parallel.) One tangent can be computed in O(logn)
time by a binary search. (We do not give the details here. Draw some figures
for yourself, and try to find out how the binary search works.)

Hence, at this moment, for each fixed value of i, we have \/n — 1 upper
common tangents. Using O(y/n) processors, we find the upper tangent V;
that is tangent to the i-th upper hull and an upper hull to the left of it,
and that has the largest slope, where slopes are measured by their angles (in
[—7/2,7/2]) with the negative z-axis. Then, again using O(y/n) processors,
we find the upper tangent W; that is tangent to the i-th upper hull and an
upper hull to the right of it, and that has largest slope, where now slopes
are measured by their angles (in [—7/2,7/2]) with the positive z-axis. Let
v; (resp. w;) be the point of the i-th upper hull that lies on V; (resp. W;).
Let «; be the angle between V; and W;. See Figure 4.

If o;; < 7, then none of the points of the i-th upper hull is on the upper hull
of S. Otherwise, if a; > 7, then all points on the i-th upper hull between v;
and w;—both endpoints included—belong to the upper hull of S; moreover,

10

Figure 4: Illustrating the algorithm that computes the upper hull of upper
hulls.

11

these are the only points on the upper hull of S that are on the i-th upper
hull. (Again, we do not give a proof; by looking at Figure 4, convince yourself
that this is true.)

What do we know at this moment? For each i with 1 < i < \/n, we either
know that all points on the i-th upper hull do not belong to the upper hull
of S, or we have a chain v; ... w; that contains exactly the points of the i-th
upper hull that are on the upper hull of S. Hence, the upper hull of S can be
obtained by concatenating all these chains. Here we have to be careful: How
do we represent the upper hull of S? After the recursive step, we assumed
that each of the \/n upper hulls was stored in an array. (We need an array
in order to find upper common tangents using binary search.) Therefore, at
the end of the current merge step—during which we compute the upper hull
of S—we also have to take care that the points on the upper hull of S are
stored in an array, sorted from left to right. This array is obtained as follows.

We will use an array A[l...n], and n processors. For each ¢ and j with
1 <i<y/nand1<j<./n,the (iy/n+ j)-th processor checks whether the
j-th point on the i-th upper hull, i.e., the point q;'-, lies on the upper hull of
S. (This is done by testing if a; < 7, or if @; > 7 and the z-coordinate of qj-
lies in between the z-coordinates of v; and w;.) Then this processor writes
a one (resp. zero) in A[i/n + j] if ¢} belongs (resp. does not belong) to the
upper hull of S.

At this moment, we know the following: For any two indices ¢ and j, if
Ali/n + j] = 1, then ¢} is a point on the upper hull of S, and among all
points on this upper hull, it is the one having the (A[1]+ A[2]+- - -+ A[k])-th
smallest z-coordinate, where k = iy/n + j.

We obtain our final array by computing the values B[k] := S, A[l],
1 < k < n, and storing each point q;- for which Afiv/n + j] = 1, at the
position Bliy/n + j] of our final array.

Computing the values Blk|, 1 < k < n, is known as the prefizx sum
problem. This problem can be solved on a CREW PRAM in O(logn) time,
using O(n/ logn) processors.

This concludes the description of the algorithm. We analyze its complex-
ity. We mentioned already that the initial sorting step takes O(logn) time,
using O(n) processors.

Let t(n) denote the parallel time needed to compute the convex hull of n

12

points that are sorted by their z-coordinates. Then

t(n) = t(v/n) + O(logn).

It follows that t(n) = O(logn). (Prove this!) Also, it is not hard to see that
the entire algorithm uses O(n) processors. (Of course, in recursive steps,
processors are “re-used”.) This proves the following result.

Theorem 3 On a CREW PRAM, the convex hull of a set of n points in the
plane can be computed in O(logn) time, using O(n) processors.

Corollary 1 On a CREW PRAM, the diameter of a set of n points in the
plane can be computed in O(logn) time, using O(n) processors.

At the beginning of Section 4, we mentioned that the results of Theorem 3
and Corollary 1 are optimal. Why is this? We know that the convex hull
problem and the diameter problem both have an Q(nlogn) lower bound on
a sequential machine. Can we use this to prove the optimality of our PRAM
algorithms? The answer is “yes”:

Theorem 4 Assume there is a PRAM algorithm that solves a problem P
in time t(n), using s(n) processors. Then, problem P can be solved on a
sequential machine in O(t(n) - s(n)) time.

Proof. Simulate the parallel algorithm on a sequential machine. In each
parallel step, each of the s(n) processors performs one operation. Hence,
each parallel step can be simulated in O(s(n)) sequential steps. Since there
are t(n) parallel steps, the entire simulation takes O(t(n) - s(n)) time. (Of
course, during the simulation, we have to store intermediate results of the
different processors in an appropriate way.) |

Corollary 2 Let A be any parallel algorithm that solves the convex hull prob-
lem or the diameter problem. Let t(n) (resp. s(n)) be the parallel running
time of (resp. the number of processors used by) this algorithm. Then

t(n) - s(n) = Q(nlogn).

As a result, the algorithms of Theorem & and Corollary 1 are optimal.

13

5 Further reading

For a good introduction to PRAM algorithms, see the book

e T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, Mass., 1990.

The following book is one of the best sources for parallel algorithms.

e J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley,
Reading, Mass., 1992.

14

