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Let S be a set of n points in the plane. We assume that S is in general
position, in the sense that no two points of S are on a vertical line and no
three points of S are collinear. Let S’ be a subset of S and let k£ be an integer
with 0 <k <n-—2.

1. We say that S’ is a k-set if | S’| = k and there are two distinct points ¢
and ¢’ in S such that SN B(q,q') = S’, where B(q,¢') is the set of all
points in R? that are strictly below the line through ¢ and ¢'.

2. We say that S’ is a (< k)-set if S’ is an ¢-set for some integer ¢ with
0<?¢<k.

One of the most tantalizing open problems in combinatorial geometry
is to determine the maximum number of k-sets that the set S can contain.
Dey [2] has shown that the number of k-sets in any set of n points in the plane
is O(nk'/3). This is the currently best known upper bound. Edelsbrunner [3]
gives an example of a set of n points in the plane containing Q(nlogk) k-
sets. Toth [4] presents a contruction of a set of n points in the plane with
n - 29WV10gk) [ _sets, for any n and k < n/2, which is the currently best known
lower bound.

A simpler problem is to determine the maximum number of (< k)-sets.

Exercise 1 Let S be a set of n points on the lower half of a circle and let
k be an integer with 1 < k < n — 2. Prove that S contains at least ckn
(< k)-sets, where c is a constant that does not depend on k£ and n.
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In the rest of this note, we will prove that the lower bound in Exercise 1
is tight. The proof is due to Clarkson and Shor [1].

Let S = {¢1,¢2,---,q.}. For 1 < i < j < n, let n(i,j) denote the
number of points of S that are strictly below the line through ¢; and ¢;. For
0<k<n-—2 let fp denote the number of k-sets, i.e.,

fo=1{(,5): 1 <i<j<nandn(,j) =k},
and let g denote the number of (< k)-sets, i.e.,

g =Jfo+ i+ ...+ fi

Hence, our goal is to prove an upper bound on gy.

We fix an integer £ with 2 < k < n — 2, and a real number p with
0 <p < 1. Let R be a random sample of S obtained by choosing each point
of S with probability p and independently of the other points. Let X be the
random variable whose value is equal to the number of edges on the lower
hull of R.

We will prove upper and lower bounds on the expected value F(X) of X.
By combining these bounds, we will get an upper bound on g.

The upper bound is easy: Since X < |R|, we have

E(X) < E(|R]) = pn.

So it remains to prove a lower bound on E(X). For 1 <i < j < n, let X;;
denote the random variable whose value is one if g;¢; is an edge of the lower
hull of R, and zero otherwise. Then X = Z” Xij. Also, X;; =1 if and only
if ¢; and ¢; are elements of R and none of the n(i,j) points of S that are
strictly below the line through ¢; and g¢; is contained in R. Therefore,

E(X;;) = Pr(X;; = 1) = p*(1 — p)"(,
Using the linearity of expectation, we obtain

E(X) = ) EXy)
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= gp’(1-p).

By combining the upper and lower bounds on E(X), we obtain

o < pn n
S = )
p(1-p) p(l-p)*
Observe that this upper bound holds for all p with 0 < p < 1. For p = 1/k,
we get

gr < kn(1—1/k)™" < ckn,

for some constant ¢ that does not depend on &k and n.

Theorem 1 Let S be a set of n points in the plane that is in general position
and let k be an integer with 1 < k < n — 2. The number of (< k)-sets in S
is at most ckn, for some constant c that does not depend on k and n.

Exercise 2 We have proved Theorem 1 for 2 < £ < n — 2. Show that the
theorem also holds for k£ = 1.
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