Lower envelopes and Davenport-Schinzel
sequences

Michiel Smid*
October 30, 2003

1 Introduction

Suppose we are given a set S = {p1,p2,...,p,} of n points in the plane.
Each of these points moves at a constant speed along a straight line. Hence,
for each 7 with 1 < ¢ < n, we can write the position of point p; at time ¢ as

Pi (t) = (CLZ' + ’Uz't, bz + w,t)

We want to design a data structure such that we can answer the following
type of query: Given any time ¢, find a point of S that, at time ¢, is closest
to the origin. That is, we want to find an index j such that

|p; ()] = min{|p;(£)[: 1 <i <n}. (1)

Here, |z| denotes the length of the vector Z or, equivalently, the Euclidean
distance between z and the origin.
Here is a solution to this problem. First observe that

pi(t)] = V/(ai + vit)? + (b; + wit)2.

It is clear that instead of finding an index j for which (1) holds, we can as
well find a j such that

[p;()|* = min{|p;(t)|* : 1 < i < n}.

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

For each 7 with 1 <1 < n, we define
fi@®) = |ps(t) > = (aF +b2) + 2(a;v; + byw;) t + (v +w) t2.
Then, in a query we have to find an index j for which
fi(#) = min{fi(t) : 1 < i <).

The function f;(t) is a parabola in t. Draw the graphs of all these n functions.
Given any time ¢, how do we find the point p; that, at time ¢, is closest to
the origin? Here is the answer: Starting at the point (¢,0) on the z-axis,
walk vertically upwards, until we encounter the first parabola. The index of
this parabola gives the answer to the query.

This leads to the following data structure for solving our problem. For
each t € R, let

F(t) :=min{f;(t) : 1 <i<n},

i.e., F'is the pointwise minimum of the functions fi, f, ..., fn- The graph of
F' is called the lower envelope of the f;’s. It consists of parabola segments,
each of which is bounded by two vertices. The leftmost (resp. rightmost)
segment is bounded by a vertex with z-coordinate —oco (resp. +00).

Our data structure is just the sequence of all these vertices, except the
one with z-coordinate +oo, sorted from left to right. For each such vertex v,
let s(v) be the parabola segment of F' that has v as its left endpoint. Then
we store with vertex v the index of the parabola that contains the segment
s(v).

Given this data structure, a query is answered by performing a binary
search with ¢t among the z-coordinates of the vertices. If v is the vertex that
is immediately to the left of ¢, then the index stored with v is exactly the
index of the point that, at time ¢, is closest to the origin.

To analyze the complexity of this data structure, we have to answer the
following questions:

1. How many parabola segments does the lower envelope F' have?

2. How do we compute the vertices and parabola segments of the lower
envelope F'?

Observe that the query time is logarithmic in the number of segments of F.
Consider the first question. Each finite vertex of F' is an intersection of
two parabolas. Since we have n parabolas, and each two of them intersect at

most twice, the number of vertices of F' having a finite z-coordinate is less
than or equal to 2(3) = n? — n. Hence, F consists of at most n? —n + 1
parabola segments. Can there be this many segments? The answer is “no”:
We will prove in Section 2 that F' consists of at most 2n—1 parabola segments.

Exercise 1 Construct a set of n parabolas whose lower envelope has exactly
2n — 1 parabola segments.

Exercise 2 Consider the lower envelope of n non-vertical lines. Prove that
it has at most n edges.

2 Davenport-Schinzel sequences

Definition 1 Let n > 1, s > 1 and m > 1 be integers. A sequence U =
(U1, U, - - -, Um) s called an (n, s)-Davenport-Schinzel sequence, or DS(n, s)-
sequence for short, if

1. u; € {1,2,...,n} for all i with 1 <i<m,
2. u; # Uiy for all t with 1 <1 < m,

3. there do not exist s + 2 indices 1 < i1 <19 < ... < 1igpo < m such that
Usy = Ujg = Uiy = .- -,
Uiy = Uiy = Ujg = ..., and
Uiy F Uy

For example, U is a DS(n, 1)-sequence, if (i) all symbols of U are integers
between 1 and n, (ii) adjacent symbols of U are distinct, and (iii) for all
a#b,1<a<mn,1<b<n,the sequence U does not contain a subsequence
of the form a...b...a.

Davenport-Schinzel sequences were introduced in 1965 in connection with
differential equations. They were re-invented in 1985 by Atallah in a paper
on computational geometry for moving objects. (Our example in Section 1
is from Atallah’s paper.) These sequences have been used to analyze many
problems in discrete and computational geometry.

Exercise 3 Prove that

1. the lower envelope of a set of n non-vertical lines gives rise to a DS(n, 1)-
sequence, and

2. the lower envelope F' introduced in Section 1 corresponds to a DS(n, 2)-
sequence.

We already defined the lower envelope of parabolas. We now extend this
notion in the obvious way.

Definition 2 Let fi, fo, ..., fn be a collection of functions. Assume that for
each 1 with 1 < i < n, the function f; is defined on the interval [l;, r;], where
—00 < l; < r; < o0. The lower envelope of fi, fa,..., fn ts the graph of the
function

F(t) == min{f;(¢t) : 1 <i < n and f;(t) is defined}.

The lower envelope consists of vertices and segments of the f;’s. We refer
to these segments as edges. If we walk along the lower envelope from left to
right, and write down the indices of the f;’s we visit, then we get a sequence
whose symbols are integers between 1 and n. Clearly, adjacent symbols in
this sequence are distinct.

Theorem 1 Let fi, fo,..., fn be any collection of continuous functions, each
of which is defined on R. Assume that any two of these functions intersect at
most s times. Then the lower envelope of the f;’s forms a DS(n, s)-sequence.

Conversely, let U be any DS(n,s)-sequence. There exist n continuous
functions, all defined on R, any two of which intersect at most s times, and
whose lower envelope is equal to U.

Proof. The first claim follows from the fact that each pair of functions

intersect at most s times. The proof of the second claim is not given here.
[|

Example 1 If fi, f5, ..., f, is a collection of polynomials, each of degree less
than or equal to s, then their lower envelope forms a DS(n, s)-sequence. In
particular, the lower envelope F' introduced in Section 1 forms a DS (n, 2)-
sequence.

In the following two exercises, we generalize Theorem 1 to functions that
are defined only on a subinterval of the real numbers.

Exercise 4 Consider a set of n non-vertical line segments. Prove that their
lower envelope forms a DS(n, 3)-sequence.

Exercise 5 Let fi, fo,..., f, be a collection of continuous functions. As-
sume that for each 7 with 1 <7 < n, the function f; is defined on the interval
[l;,7;], where —oo < I; < 1; < 0o. Also, assume that any two of these func-
tions intersect at most s times. Prove that the lower envelope of the f;’s
forms a DS(n, s+ 2)-sequence. (The converse of this claim, as in the second
claim of Theorem 1, also holds.)

Recall that we wanted to bound the number of edges on the lower envelope
F in our problem on moving points. By Theorem 1, it suffices to give an
upper bound on the length of any DS(n,2)-sequence. In general, the number
of edges on the lower envelope of a collection of n polynomials, each of degree
less than or equal to s, is bounded from above by the maximum length of
any DS (n, s)-sequence.

Definition 3 Let n > 1 and s > 1 be integers. We denote by \s;(n) the
mazimum length of any DS(n, s)-sequence.

How can we estimate A;(n)? The second claim in Theorem 1 implies that

Ao(n) < s<g> +1=sn(n—1)/2+1.

Hence, if s is a constant, then A\;(n) = O(n?). This upper bound is much
too crude. (We announced this already for s = 2.) The claim is that As(n)
is linear in n for s = 1 and s = 2, and almost linear in n for any constant
s> 3.

Theorem 2 We have
1. M\ (n) =n, and
2. Xa(n) =2n—1.

Proof. Let U = (uy, us, - - -, un) be any DS(n, 1)-sequence. Then, by defini-
tion, U does not contain a subsequence of the form a...b...a, where a # b.
We claim that all symbols of U are pairwise distinct. Assume to the
contrary that there are indices ¢ and j such that 1 <7 < j <m and u; = u;.
Let a := u; and b := u;1. Since u; # u;11 by the definition of Davenport-
Schinzel sequence, we have 1 + 1 < j. Hence, the sequence U contains a
subsequence of the form ab...a, where a # b. This is a contradiction.

5

Hence, all symbols of U are pairwise distinct. Since each symbol is an
integer between 1 and n, it follows that the length of U is less than or equal
to n. This proves that A;(n) < n. It is clear that (1,2,3,...,n)is a DS(n, 1)-
sequence. Therefore, \;(n) > n.

To prove the second claim, we first observe that

(n,n—1,n—2,...,3,2,1,23,....,n—2,n—1,n)

is a DS (n,2)-sequence. Hence, \y(n) > 2n — 1.

It remains to prove that A\y(n) < 2n — 1. The proof of this claim is by
induction on n. Since A\p(1) = 1, the claim holds for n = 1. Now let n > 1,
and assume that A\y(i) < 2¢ — 1 for all ¢ with 1 <4 < n.

Let U = (u1,us, - .., un) be any DS(n,2)-sequence. If we can show that
m < 2n — 1, then it follows that As(n) < 2n — 1.

Consider the first symbol a := u; of U. Let U’ be the sequence obtained
from U by deleting the first symbol. Hence, we have U = aU’. We distinguish
two cases.

Case 1: a does not occur in U’.

Then U’ contains at most n — 1 different symbols. Hence, U’ is a DS(n —
1,2)-sequence and, by the induction hypothesis, its length is less than or
equal to Ao(n —1) < 2(n—1) — 1 = 2n — 3. But then, the length of U itself
is less than or equal to 1 + (2n —3) =2n—2 < 2np — 1.

Case 2: a occurs in U’.

We write U’ as UyaU,, where a does not occur in U;. Hence, we have
U = aU,aU,. Observe that U; is not empty. Let ¢ be the number of dis-
tinct symbols that occur in U;. Then U; is a DS(4,2)-sequence and, by the
induction hypothesis, its length is less than or equal to 27 — 1.

We claim that no symbol occurs both in U; and U,. To prove this, assume
there is a symbol b that occurs both in U; and Us. We know already that
a does not occur in U;. Hence, a # b. But then, the sequence U contains a
subsequence of the form a...b...a...b. This is a contradiction.

It follows that the sequence al; contains at most n — ¢ distinct symbols.
Hence, it is a DS(n — 4, 2)-sequence. Since i > 0, the induction hypothesis
implies that the length of alU, is less than or equal to 2(n — i) — 1. This
implies the following bound on the length of the entire sequence U:

Ul=1+ U1+ |aUs] <1+ (20— 1)+ (2(n—14) — 1) =2n — 1.

This completes the proof. |

Exercise 6 The sequence U, defined in the proof of Theorem 2 may be
empty. Convince yourself that the proof is nevertheless correct.

Corollary 1 Let S be a set of n points in the plane, each of which is moving
at a constant speed along a straight line. There is a data structure of size
O(n) such that for any query value t, we can in O(logn) time find a point of
S that—at time t—is closest to the origin. This data structure can be built
in time O(nlogn).

Proof. The data structure was described in Section 1. Its size is bounded
by A2(n) and its query time is logarithmic in the size. The bound on the
building time is left as Exercise 7. |

For any constant s > 3, the value A\s(n) depends on the inverse a(n) of
the Ackermann function. This function will be defined in Section 5. We
remark here that a(n) is increasing, but extremely slowly: Although «a(n)
goes to infinity as n does, we have a(n) < 4 for all

2048
2

n< 22
N——
2048 2’'s

Hence, a(n) is almost bounded by a constant.
Theorem 3 We have
1. Xy(n) = O(n- a(n),
2. M\y(n) = O(n - 20M),
3. for all constants s, Ags(n) = n - 2001
4. for all constants s, Aasi1(n) = n - a(n)O@@* ™)
5. for all constants s, Agy(n) = n - 22U

We will not prove this theorem. (I guess that you, dear student, do not
mind!) In short, for any constant s > 3, the function As(n) is almost linear
in n, or, put differently, A;(n) is only slightly superlinear.

Exercise 7 Let fi, fo,..., fn be polynomials of degree less than or equal to
s, where s is a constant. Give an algorithm that computes the lower envelope
of these functions in O(As(n)logn) time. (Hint: Think of merge-sort.)

3 An example: the lower envelope of line seg-
ments

Let S be a set of n non-vertical line segments in the plane. We are interested
in the size of the lower envelope of these segments. Here, size refers to the
number of (finite) vertices. (Clearly, the number of edges is proportional to
the size.)

By Exercise 4, the size of the lower envelope of S is bounded from above
by the maximum length of any DS (n, 3)-sequence, which is O(n-«(n)). More-
over, it can be shown that there exists a set of n line segments whose lower
envelope has size Q(n - «(n)). The proofs of both the upper and lower bound
are beyond the scope of this course. Instead, we will prove the following
weaker result.

Theorem 4 Let S be any set of n non-vertical line segments in the plane.
The lower envelope of S has size O(nlogn).

We assume that the segments of S are in general position. This means
that

1. all 2n segment endpoints and all intersections between pairs of segments
have different z-coordinates,

2. no two segments overlap, i.e., have more than one point in common,
and

3. no three segments have a common intersection.

The following beautiful proof is due to Boaz Tagansky. It appeared in
the Proceedings of the 11-th Annual ACM Symposium on Computational
Geometry, in June 1995.

First some definitions. The lower envelope of S has two types of vertices.
First, there are vertices that are defined by endpoints of segments. These
will be called level-0 outer vertices of S. Second, there are vertices that are
defined by intersections of segments. These are called level-0 inner vertices of
S. Finally, we define another type of vertex, which is in fact not a vertex of
the lower envelope: An intersection p of two segments of S is called a level-1
inner vertexr of S, if there is exactly one segment in S that is strictly below
p. (See Figure 1.)

Figure 1: p is a level-1 inner vertex, q is a level-0 inner vertex, and r is a
level-0 outer vertex.

It is clear that the lower envelope of S has at most 2n level-0 outer
vertices. Hence, in order to prove Theorem 4, we have to show that there
are O(nlogn) level-0 inner vertices.

For i € {0,1}, let C;(S) be the number of level-i inner vertices of S, and
let C;(n) be the maximum value of C;(S) over all sets S of n non-vertical
line segments that are in general position.

Hence, our goal is to prove that Cy(n) = O(nlogn). The proof consists
of three steps.

Step 1: We give an upper bound for Cy(S) in terms of C1(S) and an addi-
tional factor that can easily be estimated.

Let p be any level-0 inner vertex of S. Consider the vertical line through
p- We move this line to the right, and stop as soon as it

1. encounters a segment endpoint, or
2. encounters a level-1 inner vertex of S.

Refer to Figure 2. The main observation is that the line does not en-
counter any other level-0 inner vertex of S before any of the cases 1. or 2.
occurs. Hence, each segment endpoint and each level-1 inner vertex of S is
“reached”, if at all, from a unique level-0 inner vertex.

q s

N

Figure 2: p is a level-0 inner vertex. If we move the vertical line through p
to the right, then in the left figure, it first hits at segment endpoint q. In the
right figure, the line first hits at level-1 inner vertex v.

There are 2n segment endpoints, and C;(S) level-1 inner vertices. There-

fore,
Co(S) < 2n+ Cy(9). (2)

Step 2: We apply a random sampling analysis.

Take a random segment in S, and remove it. Let R be the resulting set
of n — 1 segments. Observe that Cy(R)—the number of level-0 inner vertices
of R—is a random variable. We are interested in the expected value of this
variable. Observe that a level-0 inner vertex of R is

1. either a level-0 inner vertex of S,

2. or a level-1 inner vertex of S.

Let A denote the random variable whose value is equal to the number of
level-0 inner vertices of R that are also level-0 inner vertex of S. Let B
denote the random variable whose value is equal to the number of level-0
inner vertices of R that are level-1 inner vertex of S. Then

Co(R) = A+ B.

What is the expected value of A? Let p be any level-0 inner vertex of S, and
let s; and s, be the two segments of S that intersect in p. Then, p is a level-0

10

inner vertex of R if and only if s; and s, are both contained in R. Hence, the
probability that p is a level-0 inner vertex of R is equal to (n — 2)/n. This

implies that

E(A) = ”;2 . Co(S).

In a similar way, we get

(Convince yourself that this is true!) Then, by the linearity of expectation,
we get

n—2

E(Cy(R))=FE(A+B)=E(A)+E(B) =

Step 3: We combine (2) and (3):

L GfS) = 2GS+ GolS)

9 1
= 240 - Co(S) + — - Cu(S)

— 24 E(Cy(R)).

Since R contains n — 1 segments, it is clear that F(Cy(R)) < Cy(n — 1).

Therefore,
n

Co(5) £ ——= 2+ Co(n —1)).

This inequality holds for any set S of n non-vertical line segments that are
in general position. Hence,

2n+n
n—1 n-—-1

C() (n) <

- Co(n —1). (4)

Observe that Cy(2) = 1. We solve the recurrence relation (4) by unfolding it
until we “see the solution”:

2n n

Goln) < Tt e Cyln— 1)
2n n 2(n—1) n-1
< . —
- n—1+n—1(n—2 +n—2 Coln 2)>

11

n n n
= 2(+)+n_2-C'0(n—2)

n n n 2n—-2) n-—2
< . . —
- 2(n—1+n—2)+n—2 <n—3 +n—3 Coln 3)>
n n n n
= 2 'C _3
(n—1+n—2+n—3)+n—3 o(n=3)
<
= n n
< 2 —-Cp(2
< izzln_l.-i-Q 0(2)
n—ln n
=92y 242
2.5%3
j=2
= O(nlogn)

This proves Theorem 4 (well, at least for segments that are in general posi-
tion).

Exercise 8 Prove that 1 +1/2+1/3+1/4+---4+1/n = O(logn). (Hint:
Estimate the summation by the integral [1/z -dz.) Remark: You may
remember from calculus, that > 1/i —Inn — v if n — oo, where v =
0.5772157 ... is Euler’s constant.

4 An application of lower envelopes

In this section, we show how lower envelopes can be used to analyze the
complexity of an algorithm for solving a simplified version of a problem that
comes from the field of neurosurgery: A surgeon wants to remove tissue
samples from the brain of a patient for diagnosis purposes. This is done by
inserting a probe through a small hole in the skullcap of the patient. In order
to minimize the exposure to danger, the point of entry has to be chosen in
such a way that the trajectory of the probe stays away from certain brain
areas. If we model this trajectory as a ray, and the brain areas we want to
avoid by points in three-dimensional space, then we want to find a ray R
emanating from the position at which we want to remove the tissue sample
such that the minimum distance from the points to R is maximum.

12

Figure 3: A silo with axis R and radius 9.

We denote the Euclidean distance between a point p and the origin by |p|.
Moreover, the Euclidean distance between two points p and ¢ is denoted by
d(p,q). If p is a point in R?, and R is a closed subset of R¢, then the distance
between p and R is defined as d(p, R) := min{d(p,q) : ¢ € R}. Finally, we
define an anchored ray as a ray that emanates from the origin.

The above mentioned optimization problem is the three-dimensional ver-
sion of the following problem.

Problem 1 Given a set S of n points in RY, compute an anchored ray R for
which minyegs d(p, R) is mazimum.

This problem appeared in the Master’s Thesis of Frank Follert at the
University of the Saarland in Saarbriicken (Germany).

Let us first give an equivalent formulation of Problem 1: Let R be any
ray, and let § > 0. The set of all points in R? that are at distance less than
or equal to ¢ from R is called a silo with azis R and radius §. (See Figure 3.)

Observation 1 Problem 1 is equivalent to the following one: Given a set S
of n points in R?, find a silo

13

1. whose axis starts in the origin,
2. that does not contain any points of S, and

3. whose radius is maximum.

We will show that the planar version of Problem 1 can be solved in
O(nlogn) time.

Let S be a set of n points in the plane. We want to compute an anchored
ray R such that min,cg d(p, R) is maximum. Define

0% = max{miél d(p, R) : R is an anchored ray}.
pE

Let &} (resp. d}) denote the analogous quantity, where we only consider an-
chored rays that lie on or to the left (resp. right) of the y-axis. It is clear
that 0* = max(d;,0;). We show how to compute 6F. The value ¢; can be
computed in a symmetric way.

Let O := min{|p| : p € S}. For each 6 > 0 and each point p of S, let
Dg denote the disk with center p and radius §. For each 6, 0 < § < d,u4n,
and each p € S, let Cg denote the cone consisting of all anchored rays that
intersect or touch the disk Dg. (Since § < Opmin, Dz does not contain the
origin. Therefore, Cz‘f really is a cone.) Observe that C’g has the origin as its
apex. (See Figure 4.)

Observation 2 Let R be an anchored ray, let 6 > 0, let s be the silo with
axis R and radius 0, and let p be a point in the plane. Then p is contained
in s if and only if R intersects the disk Dg.

This immediately leads to:
Observation 3 We have
1. 0 < 6 < i

2. 0F is the mazimum value of 6, 0 < & < Opin, Such that there is an
anchored ray in the halfplane x > 0 that does not intersect the interior
of any disk Dg, peES.

3. 0 is the minimum of pmin and the minimum value of 6, 0 < 6 < dpin,
such that the cones Cg, p €S, cover the halfplane x > 0.

14

Figure 4: Dg is the disk with center p and radius 6. The cone Cg is bounded
by the two rays emanating from the origin.

It turns out that the third property is easiest to work with.

Let ¢ be such that 0 < § < dpin, and let p € S. Consider the intersection
of the cone C with the halfplane z > 0. Let I,(5) be the interval of slopes
spanned by all anchored rays that lie in this intersection. We represent
each slope by the angle between the ray and the positive z-axis. Hence,
1,(0) C [-7/2,7/2].

It is clear that the cones Cg , p € S, cover the halfplane x > 0, if and only
if the intervals I,(d), p € S, cover [—m/2,7/2]. Hence:

Observation 4 §; is the minimum of
1. Opmin, and

2. the minimum value of 6, 0 < 6 < Omin, Such that the intervals I,(0),
p €S, cover [—m/2,7/2].

Let us look at the intervals I,(d) more closely. We can easily write down
such an interval explicitly:

15

[

=

Pp

Figure 5: Illustration of the angles ¢, and ozf,.

Let p have coordinates (p1,p2), and let ¢,, —7 < ¢, < 7, be the angle
between the vector p’ and the positive z-axis. Then, sin g, = ps/|p|. Also,
for each 0, 0 < § < 0,1, let ozg be the angle between p’and an anchored ray
that is tangent to the disk Di. (There are two such tangents, but both define
the same angle.) Then, 0 < o) < 7/2 and sina) = §/|p|. (See Figure 5.)

If p1 > 0, then

[‘pp_agagop_i—ag] 1f0§5S5mm andégpla
Ip(é) = [(Pp - 042: 7-‘-/2] if b S d S 5mm and P2 Z 0:
[=7/2,¢p + 5] if p1 <& < Gin and pz < 0.

0 if 0 < 6 < Opin and 6 < —py,
Ip(é) = [(pp - a’gaﬂ-/Q] if —p1 < 0 < 5mm and D2 2 Oa
[—7/2,¢p + @S] if —=p1 < 6 < Spmin and pa < 0.

Using the intervals I,,(§) has the disadvantage that we need non-algebraic
functions. In order to stay within the algebraic computation tree model—
whose operations are much easier to implement—our algorithm works with

16

the intervals
Jp(0) :=sin ([,()) = {siny : v € L,(d)}.
Observe that I,(6) C [—n/2,7/2] and that the function sin(-) is increasing
on [—m/2,7/2]. Therefore, if I,(§) = [¢, 7], then J,(6) = [sin ¥, sinr].
Using the relations sing, = py/|p|, cos@, = pi/[p|, sined = §/|p|,
cosay = +/p}+pj—62/Ip|, and sin(z + y) = sinzcosy + coszsiny, we
get the following expressions for .J,(d). If p; > 0, then

(5T 7 53 3352
+p2—-62—p16 +p5—062+p1d .
P ‘2‘22 p1 ,p2 py |1;|22 P1 :| if 0 S) S (5min and ¢ S P1,
2 2_8§2_
30 = (AR et i 1 <6 < b and o > 0,
2 2_ 52
1, PQ\/@—FPM} if p1 <0 < pin and py < 0.
\ L
If P1 S 0, then
0 if 0 <6 < 0pin and 0 < —py,
2 2_82_
L= [P “‘5,1] if —p1 < 6 < ban and pp > 0,
L(0) =
2102 524p.5 | .
—1,’72\/% - } if —p1 <0 < dpin and py < 0.

The value of 6; is equal to the minimum of d,,, and the minimum value of
9, 0 < 6 < Opmin, such that the intervals J,(J), p € S, cover [—1, 1].
Forp e S, let

R, :={(2,9) : 0 <6 < pmin,x € Jp(0)}.
The region R, is contained in the rectangle [—1, 1] X [0, dpmin]-
Observation 5 ¢} is the minimum of
1. Opmin, and

2. the minimum value of §, 0 < § < dynin, sSuch that the horizontal segment
with endpoints (—1,0) and (1,0) is completely contained in |J,cs Bp-

Let [, be the lower envelope of R,. Then, [, is the graph of a continuous
function on a subinterval of [—1,1]. Finally, let L be the lower envelope of
the graphs [,, p € S, and the line segment with endpoints (—1,) and

17

Observation 6 J; is the y-coordinate of a highest vertex of L.

Observation 6 leads to the following simple algorithm for computing 4;
and a corresponding ray.

Step 1: Compute the functions /,, p € S.

Step 2: Compute the lower envelope L of the functions [,, p € S, and the
horizontal segment with endpoints (—1, §,in) and (1, Opmin)-

Step 3: Walk along L and find a highest vertex on it. Let this vertex have
coordinates (a,).

Step 4: Output ¢ and the anchored ray R := {(z,az/v1 —a?) : £ > 0}.

To prove the correctness of this algorithm, consider the vertex (a,d) that
is found in Step 3. Observation 6 implies that 6 = ;. Let ¢ be the angle
such that —7/2 < ¢ < 7/2 and sinp = a. Let R* be the anchored ray that
makes an angle of ¢ with the positive z-axis. Then ¢ = min,esd(p, R*). It
is easy to see that R = R*.

It is clear that the running time of our algorithm depends on the com-
plexity of the lower envelope L.

Lemma 1 The names of the points that correspond to the edges of L, when
we traverse L from left to right, form a DS(n+1,2)-sequence. Hence, L has
size O(n).

Suppose we have proved this lemma. Then we can easily prove the main
result of this section:

Theorem 5 Let S be a set of n points in the plane. In O(nlogn) time, we
can compute an anchored ray R* for which min,es d(p, R*) is mazimum.

Proof. Consider the algorithm given above. Step 1 takes O(n) time. By
Lemma 1 and Exercise 7, Step 2 takes O(nlogn) time. Step 3 takes O(n)
time and, finally, Step 4 takes O(1) time. Hence, it takes O(nlogn) time to
compute d7. In the same amount of time, we can compute §;. [|

Remark 1 The result of Theorem 5 is optimal in the algebraic computation
tree model. (Observe that our algorithm works into this model.)

18

It remains to prove Lemma 1. The proof follows from a careful analysis
of the lower envelope L.

Let B;, B., B; and B, be the left, right, top and bottom sides of the
rectangle [—1, 1] X [0, §in], respectively.

Let p = (p1,p2) be a point of S, and consider the graph [,. If p; >
0, then [, consists of a decreasing part [that has (p2/[p|,0) as its lowest
and rightmost endpoint, and an increasing part [that has (py/|p|,0) as its
lowest and leftmost endpoint. Moreover, [(resp. ") has its leftmost (resp.
rightmost) endpoint on B, or By (resp. B, or B;). If p; < 0 and p, > 0, then
lp is decreasing from some point on B; to some point on B,. Finally, if p; <0
and p, < 0, then [, is increasing from some point on B; to some point on B;.

Let p = (p1,p2) and ¢ = (q1,¢2) be two distinct points of S. We claim
that the graphs [, and [, intersect at most twice. First, we give a geometric
explanation for this claim. Then, in Lemma 2 below, we give a rigorous
proof.

For the intuitive explanation, assume that p; and g; are both positive
and that ¢, > ¢,. For each 0, 0 < 0 < dyin, let U,(0) (resp. L,(d)) be the
anchored ray that is upper (resp. lower) tangent to the disk D?. Define U, (9)
and L,(d) analogously.

Intersections of [, and [, are in one-to-one correspondence with values of
d such that {U,(0), L,(8)} N {U,(9), Ly(6)} # 0.

Consider what happens when we grow § from 0 to d,,;,,- More precisely,
assume we let) grow at a constant “speed” of, say, one meter per second.
Initially, U,(0) = L,(d) and U,(6) = L,(6). If § grows, then the tangents
U,() and L,(0) move in opposite directions. Similarly, the tangents U,(9)
and L,(6) move in opposite directions. (See Figure 6.) Clearly, there is
exactly one 0y such that L,(dy) = U,(dp). This corresponds to an intersection
between [, and l; . Also, for 6 < 4y, there are no intersections between [,
and l,. Now we grow ¢ further, from Jy to the next “time” ¢; at which
{Up(61), Lp(61)} N {U,4(01), Ly(01)} # 0. (If there is no such “time”, then the
graphs [, and [, intersect exactly once, and we are done.) At “time” d;, we
have U,(01) = Uy(01) or L,(01) = Ly(61). Assume w.l.o.g. that Uy(d1) =
Uq(61). This corresponds to the second intersection between [, and l,; more
precisely, an intersection between [and /. Observe that then U,(J) must
move faster than U,(6). Hence, for § > §;, these two tangents never coincide
any more. That is, /7 and [intersect only once. Now look at L,(d) and
L,(5): Since L,(6) and Uy(6) (resp. Ly(6) and U,(4)) move at the same, but
opposite speeds, Ly(d) will never overtake L,(d). That is, [, and [, do not

19

Figure 6: Growing ¢ from 0 to 0,,,-

intersect.
This concludes the intuition why the graphs [/, and [, intersect at most
twice. We now prove this rigorously.

Lemma 2 Let p and q be two distinct points of S. Then, the graphs l, and
lq intersect at most twice.

Proof. Assume first that ¢, = ¢,. Then, |p| # |¢|. This implies that for all
0, 0 <6 < dymin, the cone C’g is completely contained inside Cg , OT Vice versa.
As aresult, [, and [, have only one intersection point, with y-coordinate zero.

Assume from now on that ¢, # ¢,. Furthermore, assume w.l.o.g. that
g > ¢p. Let I be the interval of all values ¢ such that J,(6) and J,(d) are
both non-empty. Consider the function

f(6) 1=<Pq—90p—042—042,

for § € I. Then f(0) = 0 if and only if the increasing part of /, and the

decreasing part of [, have an intersection point with y-coordinate 6. Observe
that

f(0) = ¢q = pp — arcsin(d/|g|) — arcsin(6/[p]).

20

The derivative of f is equal to
-1 n -1
V=5 /b=

Hence, f' is strictly negative, which implies that f has at most one root.
Next let

f'6) =

b s
9(0) := g — pp + ay — ap,
for 6 € I. The roots of g are in one-to-one correspondence with the intersec-
tions between the increasing parts of /, and [,. We have

g'(6) = . - .

VidE =6 /o> =%

If |p| = |q|, then ¢(é) = ¢, — ¢p, which is never zero. If |p| # |q|, then ¢ is
either strictly positive or strictly negative for all § € I. Hence, the function
g has at most one root.

In a completely symmetric way, it follows that the function

h(8) = pq — p — @b + af,

for 6 € I, has at most one root. That is, the decreasing parts of I, and I,
intersect at most once.

Now we can prove the lemma. First assume that p; < 0. Then [, consists
only of a decreasing part, or only of an increasing part. If ¢; < 0, then [,
consists of one monotone part. The above analysis shows that in this case,
l, and [, intersect at most once. If ¢; > 0, then [, consists of two monotone
parts, each of which intersects [, at most once. Hence, in this case, [, and [,
intersect at most twice.

If p > 0 and ¢; < 0, then a symmetric argument shows that /, and [,
intersect at most twice.

It remains to consider the case when p; > 0 and ¢; > 0. We proved above
that the increasing part [} of [, and the decreasing part I of [, intersect at
most once.

Assume that l; and l(‘; intersect. Then the analysis above shows that they
intersect exactly once. Since the function g is monotone, g(0) = ¢, —¢, > 0,
and g has a root, this function is decreasing. But this implies that h is
increasing. Since h(0) > 0, the function h does not have any root, which
proves that [, and [, do not intersect.

21

If [, and [, intersect, then it follows in a completely symmetric way that
I} and [do not intersect.
This proves that [, and [, intersect at most twice. |

Proof of Lemma 1: First observe that the lower envelope L is defined by
the n graphs [,, p € S, and the horizontal line segment h with endpoints
(—1,8min) and (1,0.msy). Therefore, the sequence U corresponding to L is
over an alphabet of size n + 1. We have to show that U does not contain a
subsequence of the form p...q...p...q. Clearly, the segment h does not lead
to such a subsequence. Also, for any two points p,q € S, p # ¢, the graphs
l, and [, do not give such a subsequence: this follows from the fact that /,
and [, intersect at most twice, and from the restrictions on the endpoints of
these graphs. |

5 The Ackermann function and its inverse

In this section, we define the extremely slowly growing inverse of the Acker-
mann function. First, we define the Ackermann function itself.

We will use the following notation. If f is a function and 7 is a non-
negative integer, then f® denotes the i-th iterate of f. That is, f(© is the
identity function and for i > 0, f0+Y is defined by f0+V(z) := f(f®(x)) for
all .

For any k£ > 0, we define the function A, : N — N recursively, as follows:

1. Forall z € N, Ay(z) =z + 1.
2. Fork>0and z € N, Agyq(z) := A,(f)(a:).

To get an idea of the behavior of these functions, we consider a few of them.
For x = 0, we have Ay(0) = 1 and Ax41(0) = Afco)(O) =0 for all £ > 0.
For z =1, we have Ay(1) = 2 and

A1) = AV Q) = 4,(1) = ... = A,(1) =2

for all £k > 0.
Let © > 2. Then Ag(z) =z + 1 and

Ai(z) = AP (2) = A(AY V(2) = AT V(z) +1
= AA" @) +1= A2 (z) + 2.

22

Continuing in this way, we get
Az) = AP (@) +2-1=Ay(z) +2 -1 =2z
For k = 2, we get

Ay(2) = AP(@) = (A7 V(@) =2- A7V ()
= 2-A4A (Agw72) (z)) = 92, Agmf2) (z)
= ...=2 'A?)(f) =271 Ay () =2 - 2%

In particular, we have

Next we consider As:

which implies

T 2's

The function A, grows so fast that we only consider A4(2):
A4(2) = AP(2) = A5(45(2)).

Since

A3(2) = AP (2) = A5(A45(2)) = A(8) = 2048,

we get
22048

Ay(2) = A3(2048) > 2%
2048 2's

Now we can define our extremely rapidly growing function A : N — N:
A(k) :== Ag(2) for k > 0.
This function is called the Ackermann function. Observe that

A(0) =3, A(1) = 4, A(2) = 8, A(3) = 2048,

23

whereas
22048

A4)> 2%
——
2048 2's

The function we are actually interested in, is its inverse o : N — N,
defined by
a(n) :=min{k > 0: A(k) > n}.

We claim that for all practical purposes, a(n) is at most 4. We have

a(0) = a(l) = a(2) = a(3) =0,

a(4) =1,
a(5) = a(6) = a(7) = a(8) = 2,
a(9) = a(10) = ... «(2048) = 3,
@(2049) = 4.

Let n be such that a(n) > 5. Then A(k) < nfor 0 < k < 4. In particular, n >
A(4). We have seen, however, that A(4) is a number beyond comprehension.

Exercise 9 Prove that « is well-defined. That is, prove that for each n > 0,
there is a £ > 0 such that A(k) > n. Also, prove that a(n) — oo for n — co.

Remark 2 Ackermann defined “his” function in 1928. You may remember
it from the course Theoretical Computer Science, as a function that is re-
cursive (i.e., computable by a Turing machine), but not primitive recursive.
The results of the preceding sections show that this function, which looks
completely artificial, in fact occurs in nature (well, in Euclidean nature). In
the literature, different definitions of the Ackermann function appear. All
these functions grow at roughly the same rate.

6 Remarks

The book

Davenport-Schinzel sequences and their geometric applications,
by Micha Sharir and Pankaj Agarwal, Cambridge University Press,
1995

24

is entirely devoted to lower envelopes and Davenport-Schinzel sequences.
The three-dimensional version of Problem 1 in Section 4 can be solved
using the parametric search technique, in O(nlog*n) time. See

Follert et al., Computing a largest empty anchored cylinder, and
related problems, International Journal of Computational Geom-
etry & Applications 7 (1997), pp. 563-580.

25

