
Point location in planar subdivisions

Michiel Smid∗

September 25, 2003

1 Introduction

In these notes, we consider one of the basic problems in computational ge-
ometry, the planar point location problem. Consider a plane embedding of a
connected planar graph G. For simplicity, we also denote this embedding by
G; it consists of vertices, edges, and faces. The edges are drawn as straight-
line segments and any two of them do not cross in their interiors. We denote
the number of vertices of G by n.

We want to store the embedding G in a data structure, such that for
any query point q ∈ R2, we can find the face that contains q. If q is on the
boundary of several faces, then it suffices to find one of them. Such queries
are called point location queries, see Figure 1.

In these notes, we will give two solutions for the point location problem.
The first solution is known as the slab method and is given in Section 2. Using
this method, we can solve queries optimally, i.e., in O(log n) time. The data
structure, however, uses Θ(n2) space in the worst case. The second solution,
the triangulation refinement method, is given in Section 3. It gives a data
structure using only O(n) space, that can be used to solve point location
queries in O(log n) time.

Recall the following result.

Theorem 1 Let G be a non-crossing embedding of a connected planar graph
with n ≥ 3 vertices. Then

∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

1

q

Figure 1: In a point location query, we want to find the face of the embedding
of the planar graph that contains the query point q.

1. G has at most 3n− 6 edges and

2. this embedding has at most 2n−4 faces (including the unbounded face).

2 The slab method

This method for solving the point location problem, due to Dobkin and
Lipton (1976), is very simple. We draw a vertical line through each vertex
of G. This divides the plane into at most n + 1 vertical slabs, which we sort
from left to right.

Consider any slab s. Observe that s does not contain any vertex of G in
its interior. Let Es be the set of all edges in the graph G that cross s. The
edge set Es partitions s into (possibly unbounded) trapezoids and triangles.
We sort the edges of Es from bottom to top. With each edge, we store the
names of the two faces of G that are immediately below and above it.

Consider any query point q ∈ R2. To find the face of G that contains q,
we first use binary search with the x-coordinate of q to find the vertical slab
s that contains q. Given s, we use binary search with the y-coordinate of q
to find the edges of Es between which q lies. This gives the name of the face
of G that contains q.

It is clear that in this way, we correctly solve the point location problem.
How much time do we need to locate a query point? Clearly, each slab is

2

crossed by at most 3n − 6 edges, because the entire graph has at most this
many edges. Hence, in a query, we make two binary searches, one in a set
of size less than or equal to n, the other in a set of size less than or equal to
3n− 6. As a result, it takes O(log n) time to locate a query point.

Since there are at most n + 1 slabs, each of which is crossed by at most
3n−6 edges, we need O(n2) space to store the entire data structure. Finally,
it is easy to see that the data structure can be built in O(n2 log n) time. We
have proved the following result.

Theorem 2 For the point location problem in a connected planar graph with
n vertices, the slab method gives a data structure having query time O(log n),
size O(n2), and that can be built in O(n2 log n) time.

Exercise 1 Give an example of a planar graph for which the above data
structure has size Ω(n2).

3 The triangulation refinement method

The second method, due to Kirkpatrick (1983), gives a data structure that
solves the point location problem optimally.

Let G be (an embedding of) a connected planar graph with n vertices,
whose edges are non-crossing straight-line segments. We assume that

1. each bounded face of G is a triangle and

2. the unbounded face of G is bounded by a triangle. We call this triangle
the outer triangle of G.

Hence, G is a triangulation and the boundary of its convex hull is a
triangle; see Figure 2. We will give an optimal data structure for solving the
point location problem for this graph. In Section 3.1, we will show how to
extend this to an optimal solution for any planar graph.

Exercise 2 Since G is a connected planar graph with n vertices, we know
from Theorem 1 that it has at most 3n − 6 edges and at most 2n − 4 faces
(including the unbounded face). Prove that G has exactly 3n− 6 edges and
2n − 4 faces. (Hint: Use the fact that the boundary of G’s convex hull
contains exactly three vertices.)

3

aaaaaaaaaaaaaaa

@
@

@
@

@
@

@
@@

T
T
T
T
T
T
T
T
T
T
T
T
T
TT

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AAL
L

L
L

L
L

L
L

L
L

L
L

L
LL

£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
££

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

¡
¡

¡
¡¡

»»»»»»»»»»»»

PPPPP
£
£
£
££

```````̀

©©©©©©

@
@

@
@

@
@

!!!!!!!!!!!!!!!¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶¶

Figure 2: An example of a triangulation.

First, we describe the basic idea of the triangulation refinement method.
We compute a sequence S1, S2, . . . , Sh of triangulations, such that

1. S1 = G,

2. Sh is the outer triangle of G,

3. h = O(log n),

4. there is a constant α with 0 < α < 1, such that for each i with 1 ≤
i < h, the number of vertices of Si+1 is at most α times the number of
vertices of Si, and

5. for each i with 1 ≤ i < h, and any query point q ∈ R2, if we have
located q in Si+1, then we can locate q in Si in O(1) time.

4



½
½

½
½

½½

L
L

L
L

L
L

LL

aaaaaaaa

©©©©©©

¥
¥
¥
¥
¥
¥
¥¥

aaaaaaaa

¡
¡

¡
¡¡

C
C
C
C
C
C

@
@

@
@@

©©©©©©©©©@
@

@

£
£

£
££

PPPPPPPPP

v
-

¡
¡

¡
¡¡

C
C
C
C
C
C

@
@

@
@@

©©©©©©©©©@
@

@

£
£

£
££

PPPPPPPPP

Figure 3: Removing a vertex from a triangulation.

Given this sequence, we can solve the point location problem for G as
follows. First, we test if q is inside or outside the triangle Sh. If it is outside,
then q is in the outer face of G, and we are done. Assume q is inside Sh.
Then, we locate q in the sequence Sh−1, Sh−2, . . . , S1 = G of triangulations
(in this order). Since h = O(log n), the fifth property implies that this gives
a query time of O(log n). By the fourth property, the total size of the entire
sequence of triangulations is bounded by a geometric series whose sum is
O(n).

How do we compute the sequence of triangulations? Consider S1 = G.
The triangulation S2 should be obtained by removing a constant fraction of
the vertices of G. Let v be a vertex of G that is not a vertex of the outer
triangle, and let it have degree d. Let us consider what happens if we remove
v, together with its d adjacent edges, from G. These edges determine d
triangles of G. Hence, if we remove v, these d triangles are replaced by a
simple polygon D having d vertices. We call D a d-gon. (Refer to Figure 3
for an example with d = 7. In this figure, only the part of G that is incident
to v is shown.)

Let q be any point in D. Then, by considering each of the d triangles of G
whose union forms D, we can find the triangle that contains q in O(d) time.
Hence, if we only remove vertices v of small degree, then we can guarantee
that the fifth property above holds. For the fourth property to hold, we must
remove many such vertices.

This leads to the question whether there always exist many vertices of

5



small degree. Moreover, if they exist, how do we find them? The answers
are given in the following two lemmas.

Lemma 1 Consider the triangulation G having n vertices. In G, there are
at least 2 + n/2 vertices of degree less than or equal to eight.

Proof. For any vertex v of G, let deg(v) denote its degree. Since G is a
triangulation, we have deg(v) ≥ 3 for each vertex v. Also,

∑
v deg(v) is equal

to twice the number of edges of G. Hence, by Exercise 2,

∑
v

deg(v) = 6n− 12. (1)

Let A be the subset of those vertices of G having degree less than or equal
to eight. Then

∑
v

deg(v) =
∑
v∈A

deg(v) +
∑

v 6∈A

deg(v) ≥ 3|A|+ 9(n− |A|) = 9n− 6|A|.

Combining this with (1), it follows that 9n− 6|A| ≤ 6n− 12, which implies
that |A| ≥ 2 + n/2.

A subset I of the vertices of G is called an independent set, if no two
vertices of I are connected by an edge of G.

Lemma 2 The graph G contains an independent set I of size at least d1
9
(n

2
−

1)e, such that each vertex of I (i) has degree at most eight and (ii) is not a
vertex of the outer triangle. Such a set I can be computed in O(n) time.

Proof. The following algorithm computes the set I.

mark the three vertices of the outer triangle;
I := ∅;
while there are unmarked vertices of degree at most 8
do let v be any vertex of degree at most 8 that is not marked;

I := I ∪ {v};
mark v and all its neighbors

endwhile

6



Observe that the degree of the vertices does not change because of the mark-
ing. It is not difficult to see that this algorithm can be implemented such
that it runs in O(n) time. Also, it is easy to see that the algorithm computes
an independent set (the set I) of vertices that are not vertices of the outer
triangle, each one having degree less than or equal to 8. Therefore, it remains
to show that the size of I is greater than or equal to d1

9
(n

2
− 1)e.

By Lemma 1, G contains at least 2 + n/2 vertices of degree at most 8.
The algorithm starts by marking the three vertices of the outer triangle. At
that moment, there are at least n/2− 1 unmarked vertices of degree at most
8. The algorithm takes one of these vertices and marks it, together with its
at most 8 neighbors. This is repeated as long as there are unmarked vertices
of degree at most 8. Since at most 9 vertices are marked during one iteration,
there must be at least d1

9
(n

2
−1)e iterations. During each of them, one vertex

is added to I.

We state one more property of the independent set I of Lemma 2. The
proof follows from the discussion above.

Lemma 3 Let I be the independent set that is constructed in the proof of
Lemma 2. Let G′ be the graph that is obtained from G by removing all vertices
of I, together with their incident edges. Then

1. each face of G′ is a simple polygon having at most 8 vertices,

2. each face of G′ intersects at most 8 triangles of G, and

3. the outer faces of G and G′ are the same.

Exercise 3 Why do we remove an independent set from the triangulation
G and not just an arbitrary set of vertices of degree at most 8? Why don’t
we remove any of the three vertices of the outer triangle of G?

Now we can give the algorithm for constructing the sequence S1, S2, . . . , Sh

of triangulations, and the corresponding data structure for solving point lo-
cation queries. The data structure will be a directed acyclic graph. The
nodes of this graph represent triangles of the triangulations S1, S2, . . . , Sh.
The node representing triangle t will be denoted by n(t). The number of
vertices of triangulation Si will be denoted by |Si|.

One remark about the terminology. Each triangulation in the sequence
S1, S2, . . . , Sh consists of vertices, edges, and faces (which are triangles). The

7



point location data structure is a directed acyclic graph consisting of nodes
and arcs.

The algorithm is given in Figure 4. The query algorithm follows easily.
The final triangulation Sh consists of one triangle. Its node in the data
structure has no incoming arcs, and this is the only node having in-degree
zero. We call it the root of the data structure. Let q ∈ R2 be any query point.
The algorithm that finds the face of G containing q is given in Figure 5.

Lemma 4 The query algorithm is correct.

Proof. The while-loop maintains the invariant that q is contained in the
triangle represented by node v. If v has no outgoing arcs, then this triangle
is a face of G.

Hence, our data structure correctly solves the point location problem. It
remains to analyze its complexity.

Lemma 5 Let h be the number of triangulations constructed by the algorithm
in Figure 4. For each i with 1 ≤ i ≤ h, let ni be the number of vertices of
the triangulation Si. Then

1. n1 = n and

2. for each i with 1 ≤ i < h, ni+1 ≤ 17
18

ni + 1
9
.

Proof. Lemma 2 implies that

ni+1 ≤ ni −
⌈

1

9

(ni

2
− 1

)⌉
≤ ni − 1

9

(ni

2
− 1

)
=

17

18
ni +

1

9
.

Lemma 6 The algorithm in Figure 4 computes a sequence of O(log n) tri-
angulations. The data structure constructed by this algorithm is a directed
acyclic graph and each path in this graph has length O(log n).

Proof. This follows from the algorithm and Lemma 5. Observe that n1 = n
and nh = 3.

Lemma 7 The data structure has size O(n) and can be built in O(n) time.

8



S1 := G;
for each triangle t of G
do create a node n(t) representing t
endfor;
i := 1;
while Si has more than three vertices
do compute an independent set I in Si containing at least

d1
9
( |Si|

2
− 1)e vertices that are not vertices of the outer triangle,

each one having degree at most 8;
remove the vertices of I from Si, together with their incident
edges;
triangulate the resulting graph and call the result Si+1;
(∗ we triangulate because then we can apply Lemma 2

during the next iteration ∗)
for each triangle t of Si+1 that is not a triangle of Si

(∗ hence, t is a new triangle ∗)
do create a node n(t) representing t;

for each node n(t′) such that triangle t′ belongs to Si and
intersects t

do add a directed arc from n(t) to n(t′)
endfor

endfor;
i := i + 1

endwhile

Figure 4: Constructing the sequence of triangulations and the corresponding
point location data structure.

9



if q is outside the triangle represented by the root
then output “q belongs to the unbounded face of G”
else v := root;

while v has outgoing arcs
do for each node u such that there is an arc from v to u

do if q is inside the triangle represented by u
then v := u
endif

endfor
endwhile;
output “q belongs to the face of G represented by v”

endif

Figure 5: Finding the face that contains the query point q.

Proof. By Exercise 2, triangulation Si has less than 2ni faces, 1 ≤ i ≤ h.
Therefore, the total number of nodes of the data structure is bounded from
above by

∑h
i=1 2ni. This summation is bounded from above by a geometric

series with sum O(n1) = O(n). Observe that we also have to count the
number of arcs of the data structure. Consider the independent set I in Si.
By Lemma 3, each face of Si \ I intersects at most 8 triangles of Si. Since
Si+1 is obtained by triangulating Si \ I, it is clear that each triangle of Si+1

intersects at most 8 triangles of Si. This proves that each node in the data
structure has at most 8 outgoing arcs. As a result, the total number of arcs
is O(n). Hence, the entire data structure has size O(n).

The bound on the building time follows in a similar way. We know al-
ready that the independent set I in Si can be computed in O(ni) time. To
triangulate Si \ I, we must triangulate O(ni) simple polygons, each one hav-
ing at most 8 vertices. One such polygon can be triangulated in constant
time. Hence, all polygons can be triangulated in O(ni) total time. This
proves that the total building time is O(

∑
i ni) = O(n).

Lemma 8 The query time of the data structure is O(log n).

Proof. The query algorithm follows a path from the root to a node without
outgoing arcs. By Lemma 6, this path has length O(log n). In each node
on this path, the algorithm checks all outgoing arcs and then takes the one

10



whose triangle contains the query point. Since each node has at most 8
outgoing arcs, and checking one arc is just checking if a point lies inside or
outside a triangle, we spend O(1) time in each node on the search path.

This completes the analysis of the data structure. We summarize our
result.

Theorem 3 Let G be a connected planar graph with n vertices such that
each bounded face of G is a triangle and the outer face of G is bounded by a
triangle. In O(n) time, we can store G in a data structure of size O(n) such
that point location queries can be answered in O(log n) time.

3.1 Extension to arbitrary graphs

Let G be an arbitrary connected planar graph with n vertices. Of course,
we reduce the point location problem for G to the same problem on a graph
that satisfies the conditions of Theorem 3. We do the following.

First, we find three points a, b, c ∈ R2, such that all vertices of G are
contained in the triangle T defined by these points. Let G′ be the union of
G and T . We triangulate G′; denote the triangulation by G′

t. Then we store
G′

t in the data structure of Theorem 3. With each face f of G′
t, we store the

name of the face in our original graph G that contains f .
Let q ∈ R2 be a query point. To find the face of G that contains q, we

do the following. First we test if q is inside or outside the triangle T . If q
is outside, then this point is contained in the unbounded face of G. Assume
that q is inside T . Then we find the face of G′

t that contains q. This also
gives us the face of G that contains q.

Theorem 4 For the point location problem in a connected planar graph with
n vertices, there exists a data structure having query time O(log n), size O(n),
and that can be built in O(n) time.

Proof. The bounds on the query time and the size follow from the above
discussion. Consider the algorithm for building the data structure. The three
new vertices a, b, and c can be found in O(n) time. Given these vertices,
we can create the union of G and triangle T . Each face of this union is a
simple polygon. Since a simple polygon with m vertices can be triangulated
in O(m) time, the entire graph G′ can be triangulated in O(n) time.

11



Remark 1 The linear-time algorithm for triangulating a simple polygon
with m vertices is very complicated. For practical applications, we can use
an O(m log m)-time plane sweep algorithm. This increases the building time
of the point location data structure to O(n log n).

12


