The closest pair problem: a randomized
incremental algorithm

Michiel Smid*
July 1, 2001

1 Introduction

Let S be a set of n points in the plane. We want an algorithm for computing
a closest pairin S, i.e., a pair P,) of points in S such that

d(P,Q) = min{d(p,q) : p,q € S,p # q},

where d(p, ¢) denotes the Euclidean distance between the points p and ¢g. Of
course, there may be more than one closest pair. It suffices, however, to find
one such pair.

A trivial algorithm works as follows. It considers each pair p,q € S, p # q,
computes its distance, and maintains the smallest distance seen so far. Since
there are (;‘) pairs of distinct points, and one distance can be computed in
O(1) time, this algorithm has a running time of O(n?).

In these notes, we will give a simple closest pair algorithm having an
expected running time of O(nlogn). This algorithm is a randomized incre-
mental algorithm, which in fact works for higher dimensions as well. It shows
the power of randomization, in the sense that we get an efficient algorithm
that can be understood and implemented very easily.

First some words about randomization. An algorithm is randomized if its
execution depends on random bits, or if you like, the outcomes of coin tosses.
The running time for one input is averaged over all possible executions of the
algorithm on this input. Hence, the running time is the expected value of a
random variable. Then, as usual, the running time is expressed as a function

*Fakultdt fur Informatik, Otto-von-Guericke-Universitdt Magdeburg. E-mail:
michiel@isg.cs.uni-magdeburg.de.

of n, the length of the input. It is defined as the maximal expected running
time on any input of length n.

Note that in this way, we get an expected running time that holds for any
input. There are also probabilistic algorithms that are basically determinis-
tic, but that assume that the input comes from some probability distribution.
There, the running time is averaged over all inputs. In our model, we average
over all possible executions on one single input.

These notes are organized as follows. First, we give a simple algorithm
with running time O(n?logn). Then we show that by changing one line in
this algorithm, we get an ezpected running time of O(nlogn).

2 A slow incremental algorithm

Let S = {p1,p2,...,pu} be a set of n points in the plane. Our algorithm
works incrementally, i.e., it successively computes a closest pair in the set
S; =A{p1,p2,...,pi} fori=23... n

number the points pi, pa, ..., Pu;
02 := d(p1, p2);
(P.Q) = (p1,p2);
fori=2ton—-1
do (* ¢; is the minimum distance in S; and
(P, Q) is a closest pair in S; *)
Oig1 := min(d;, d(pit1, S;)):
update (P, Q) in case 0;11 < J;
endfor;
output (P, Q) and 9,

How do we implement this algorithm? We can compute the value of 9,4
by first computing

d(pit1, Si) = min{d(pi41,q) : q € Si},

and then taking the minimum of this value and ¢,. Note, however, that if
d(piy1,5;) is greater than or equal to ¢;, we are not interested in d(p;41,5;)
at all, because ;11 = ¢; in that case. Hence, we do not always need the value
of d(pi—i—h Sz)

In order to be able to compute d;,; efficiently, we extend the algorithm
as follows. The set S; is stored in a d;-grid, which is a grid whose cells have
sides of length 0;. Each cell has the form

[ad;, (a+ 1)d;) x [bd;, (b+ 1)0;)

2

Pit1 T

Figure 1: The neighborhood of a grid cell B.

for some integers a and b. We call (a,b) the index of the cell.

Storing the set S; in a §;-grid means the following. For each point p =
(pzspy) of S, we compute the index (ay,,b,) of the grid cell containing this
point:

ap = |p2/0i], by = |py/di].
This gives a set of |.S;| indices, which we store in a balanced binary search
tree. The indices are stored in lexicographical order. With each index, we
store a list of all points in S; that are contained in the cell with this index.

Exercise 1 Convince yourself that given S; and 9;, we can compute this
data structure in O(]S;|log |S;|) time.

As we will show now, the d;-grid has a sparseness property, which will be
crucial for the running time of our algorithm.

Lemma 1 FEach cell of the 6;-grid contains at most four points of S;.

Proof. First recall that ¢; is the minimum distance in the set S;. Assume
there is a cell that contains at least five points of S;. Partition this cell
into four subcells, each having sides of length §;/2. Then by the pigeon hole
principle, there is a subcell containing at least two points of S;. Let and y
be two such points. Clearly, z and y have distance at most v/2 - 6;/2 < 4;.
This is a contradiction, because all pairs of distinct points in S; have distance
at least ;. [|

We need one more notion. The neighborhood of a grid cell B is defined as
the cell B itself plus the eight cells surrounding B, see Figure 1.

Now we can give the closest pair algorithm. The pseudo code is given in
Figure 2, see also Figure 3 for an example.

number the points pi, po, ..., pn;
Oy 1= d(p1, p2);
(P, Q) := (p1,p2);
store Sy in a d9-grid;
fori=2ton—1
do (* §; is the minimum distance in S;, (P, @) is a closest pair in S;,
and S; is stored in a d;-grid *)
h := min{d(p;+1, q) : q is in the neighborhood of p;;1’s cell};
diy1 := min(d;, h);
if 51'4.1 < (SZ
then ¢ := a point in S; such that d(pi+1,q) = h;
(P.Q) == (pit+1,9)
endif;
(0;11 is the minimum distance in S;;; and
(P, Q) is a closest pair in S;41 *)
if ;1 =0;
then add p;;; to the §;,1-grid
else discard the 0;-grid;
store S;;1 in a 0;41-grid
endif
endfor;
output (P, Q) and 9,

Figure 2: The incremental closest pair algorithm.

Exercise 2 Prove the correctness of the algorithm. In particular, prove
that in the line “0;1; := min(d;, h)”, the minimum distance of the set S; ;1 is
assigned to the variable ;.

What is the running time of the algorithm? The initialization takes O(n)
time, because we have to number the points.

Consider one iteration of the for-loop. To compute the value of h, we
compute the index (a,b) of the grid cell containing p;y1. Then we search
in the balanced binary search tree for the nine indices (a + a, b + 3), with
a, € {—1,0,+1}. For each index found, we compute the distances between
pi+1 and all points contained in the list stored with this index. By Lemma 1,
we compute at most 9 -4 = 36 distances.

Since each search in the tree takes O(log|S;|) = O(logi) time, it follows
that the value of h can be computed in O(logi) time. Clearly, the if-then-
endif part takes only O(1) time.

9o = d(p1, p2) 03 = d(p1, p2) 04 = d(ps, p1)

3 3 5 3
2 o4 2 A 2
1 ‘1 1
05 = d(ps, p1) 96 = d(p4, p1) 07 = d(ps, p1)
8
5 3 5 3 5 3
4 2 4 2 4 2
1 o1 1
6 6 7 6 7
0s = d(p4, p1) dg = d(py, pe) 010 = d(py, ps)
- 3
10 i
5 3 5 3 5 3
4 12 4 2 4 2
1 T4 T
7 i 7
Q 9 6° 9 6°] 9

Figure 3: The incremental algorithm running on a set of 10 points. In the
beginning, the grid cells have sides of length d(py, p2). Every new minimum
distance that is computed during the algorithm causes a refinement of the
grid. To avoid clutter, we use i as a shorthand for p; in the grids.

Consider the if-then-else-endif part. If 9;,1 = ¢;, then we search for the
index (a, b) of the cell containing p; 1. If this index is stored in the tree, then
we add p;;1 to the list stored with this index. Otherwise, we insert (a, b) into
the tree, and store with it a list containing p; ;. Hence, if §;,1 = §;, we spend
O(logi) time. The else-case is the expensive part. If §;11 < ¢;, then we store
Sit1 in a d;41-grid, which takes O(]S;y1|log|Siv1|) = O((z + 1)log(i + 1))
time.

We have shown that the i-th iteration of the for-loop takes

5

1. O(logi) time; this is the case if and only if 6;11 = 4,
2. or O((i+ 1) log(i + 1)) time; this is the case if and only if d;41 < ¢;.

Therefore, the total worst-case running time of the algorithm is

O (n + nz_:(z + 1) log(i + 1)) = O(n*logn).

=2

Exercise 3 Show that the upper bound of O(n?logn) is tight, i.e., give an
input sequence py, pa, . . ., p, on which the algorithm actually takes ©(n? logn)
time.

3 A fast randomized incremental algorithm

As promised, we now improve the running time. Look again at the algorithm.
We started with a set S of n points and numbered them pq, ps, p,. We did
not say anything, however, about how we number these points. If we number
them, e.g., from left to right, then the running time can still be ©(n?logn).
(Convince yourself that this is true!) Here, randomization comes into the
picture: In the algorithm in Figure 2, we replace the first line by

Let p1,pa, ..., p, be a random permutation of the points of S.

We will show that this new randomized algorithm takes O(nlogn) ex-
pected time, on any input sequence of n points.

Let T'(n) be the random variable whose value is equal to the running time
of our algorithm on a set S of size n. Then T'(n) is the sum of

(1) the total running time for all steps except for the else-case, and
(2) the total time for the else-case.

The value of (1) is

n—1
O (n + Zlogz’) = O(nlogn).
i=2

What can we say about the expected value of (2)? We know that an execution
of the else-case in iteration i takes O((i + 1)log(i + 1)) time. Therefore, in
order to get an overall O(nlogn) expected running time, this should not
happen too often. The following lemma states that this is indeed the case.

Lemma 2 The probability that the else-case is executed during iteration i is
at most 2/(i + 1).

Proof. The else-case is executed if and only if d;,; < 9;. To be more precise,
it is executed if and only if

(a) piy1 belongs to some closest pair in S;11, and
(b) i1 < 6;.

We compute the probability that (a) and (b) occur.

First assume that S;,; contains only one closest pair, i.e., there is only
one pair P, @ of points in 5,1 that attains the minimum distance. Then for
(a) and (b) to hold, p;;; must be either P or Q.

Otherwise, S;;; contains more than one closest pair. Assume that (a) and
(b) hold. Then p;;; must be part of each closest pair of S;;1. (Otherwise,
(b) does not hold.) Hence, there is only one possibility for p;;.

We have shown that there are at most two possibilities for p;,; that force
the else-case to be executed. But, p1,po, ..., p, is a random permutation of
the input sequence. This implies that p;;; is a random element of the set
Sit1. Therefore, the probability that the else-case is executed is at most
2/1Si41] =2/(i + 1). |

For each 7, 2 <17 < n —1, let X; be the random variable whose value is
one if the else-case is executed during the i-th iteration, and zero otherwise.
Then

n—1
T(n)=0 <nlogn + ZXZ' (i + 1) log(i + 1)) :
i=2
and .
E(T(n)) =0 <n logn+ Y E(X;) - (i+1)log(i + 1)) .

i=2
Note that E(X;) = Pr(X; = 1) and, by Lemma 2, Pr(X; = 1) < 2/(i + 1).
Therefore,

E(T(n)) = O <nlogn + Z Z—Fil (i +1)log(i + 1))

n—1
= 0 <nlogn + Zlog(i + 1))

i=2
= O(nlogn).

Theorem 1 The randomized incremental algorithm computes the closest pair
in a set of n points in the plane in O(nlogn) expected time.

Exercise 4 Extend the algorithm to an arbitrary dimension D > 2. Show
that the expected running time remains O(nlogn), provided D is a constant.
(The constant in the Big-Oh bound depends on D.)

The algorithm presented here is an example of a randomized incremental
construction. First the n input objects are put in a random order. Then the
problem is solved incrementally. There are many more examples of such algo-
rithms: Convex hulls, Voronoi diagrams, intersections of line segments, etc.
All these algorithms are relatively easy to analyze and implement, whereas
their deterministic counterparts are often much more complicated. Also, the
randomized algorithms are often faster in practice than the deterministic
ones.

