Range trees and the post-office problem

Michiel Smid*
May 20, 1999

This chapter discusses the following problem from computational geom-
etry.

Problem 1 Given a set S of n points in RP, preprocess them into a data
structure such that for any query point p € RP, we can efficiently find a point
p* € S that is nearest to p, i.e.,

d(p,p*) = min{d(p, q) : ¢ € S}.

Here, d(p, q) denotes the Euclidean distance between p and g¢:

D 1/2
d(p, q) = (Z(pi _Qi)2> :

=1

This problem is known as the nearest neighbor searching problem or post-
office problem: Think of S as a set of post-offices. Assume you are walking
around. Suddenly, you find a letter in your pocket which you want to send.
At that moment, you want to know the post-office that is closest to your
current position.

In the planar case, i.e., D = 2, the problem can be solved optimally,
i.e., with O(logn) search time and using O(n) space, using Voronoi diagrams
and point location. In higher dimensions, however, the problem gets difficult.
The best known results either use a large amount of space (roughly nP/2) or
have a very high search time (roughly n'~#(P)| where f(D) goes to zero for
increasing D).

In view of this negative result, it is natural to consider weaker versions of
the post-office problem. What happens to the complexity of the problem if

*Fakultdt fiir Informatik, Otto-von-Guericke-Universitit Magdeburg. E-mail:
michiel@latrappe.cs.uni-magdeburg.de.

we replace the Euclidean metric by a simpler metric? Define the L..-distance
between the points p and ¢ by

doo(p, q) := max{|p; — ¢i| : 1 <i < D}.

(The Euclidean distance is also called Lo-distance.) In the L.o-post-office
problem, we want to find a point p> € S that is closest to the query point p
w.r.t. the L,,-metric, i.e.,

doo (p, p™°) = min{dw(p, q) : ¢ € S}

We can also consider the following approzrimate Lo-post-office problem: Let
e > 0 be a fixed constant. Instead of searching for the exact Euclidean
neighbor p* of p, we are satisfied with a (1 + ¢)-approzimate neighbor of p,
i.e., a point g € S such that

da(p,q) < (1+¢€) - da(p,p¥).

In this chapter, we will see that both these problems can be solved efficiently,
i.e., with polylogarithmic search time, using O(n(logn)°®)) space.

The data structure used is the range tree, one of the oldest data structures
in computational geometry. Range trees were invented by Lueker (1978) and
Bentley (1979) for solving the so-called orthogonal range searching problem.
We show that they can also be used to solve the L. -post-office problem.

In the rest of this chapter, we restrict ourselves to the planar case. The
generalization to higher dimensions is straightforward.

1 From the exact L.-problem to the approx-
imate Lo-problem

Let S be a set of n points in the plane. In this section, we show that any
solution for the L..-post-office problem can be transformed into a solution
for the approximate Lo-post-office problem.

Let p € R? be a query point, and let p* and p* be the Euclidean neighbor
and L..-neighbor of p, respectively. Let us take p> as an approximate Ls-
neighbor of p. How large is the error? That is, what is the largest value the
quotient ds(p, p*°)/ds(p, p*) can have?

Exercise 1 Prove that in the L -metric, a circle centered at p and having
radius one is an axes-parallel square with sides of length two that is centered
at p.

Figure 1: p* lies on the boundary of the square centered at p having sides of
length 26, where § = du(p,p*). The circle is centered at p and has radius
da(p,p*). The Ly -neighbor p™ lies in the shaded region.

We can visualize the process of finding p* and p* as follows. To find p*,
we grow a circle centered at p until its boundary hits a point of S. This
point is the Euclidean neighbor p* of p. Similarly, to find p*°, we grow an
L-circle, which is an axes-parallel square, centered at p until its boundary
hits a point. This point is the L.-neighbor p*> of p.

This observation allows us to bound the quotient ds(p, p*°)/da(p, p*). Let
d := dwo(p, p*), and consider the axes-parallel square C' with sides of length
26 that is centered at p. See Figure 1. Note that p* lies on the boundary of
C. Since p*® is the L -neighbor of p, it must lie inside or on the boundary of
C. Hence, dy(p, p™) < v/2-6, and equality occurs if and only if p> coincides
with one of the corners of C. Similarly, do(p, p*) > ¢, and equality occurs if
and only if p* coincides with the midpoint of one of the four sides of C. It
follows that

da(p,p*™°) < V25 < V2 da(p,p").

Hence, p® is a v/2-approximate Ly-neighbor of p. The error is maximum
if and only if p* is the midpoint of a side and p™ is a corner of C.

Now consider the circle with center p and radius ds(p, p*). The point p™®
lies outside or on the boundary of this circle. Hence, p™ must lie in the
shaded region of Figure 1.

We see from Figure 1 that the upper bound on the error depends on
the angle between the line segment pp* and the X-axis: The error can be
maximum, i.e., /2, only if this angle is 0,7/2,7, or 37/2. On the other

3

hand, if the angle is close to 7/4,3nw /4,57 /4, or 7r /4, the shaded region in
Figure 1 is very small, and the quotient ds(p, p*)/ds(p, p*) is close to one.
In fact, if the angle is exactly 7/4,37/4,57/4, or Tr/4, then p* and p™ are
equal.

Exercise 2 Let o be the angle between the segment pp* and the positive
X-axis. Assume that 0 < o < /2. Prove that

o dy(p,p™) < V2 -dy(p,p*)cosa if @ < /4, and

o dy(p,p®) < V2 -dy(p,p*)sina if a > 7/4.

Here is the conclusion: The L ,-neighbor p* is a good approximation for
the Lo-neighbor p* if the angle between pp* and the positive X-axis is close
tom/4,3m /4,51 /4, or T /4. Of course, in general, this angle will not be close
to any of these four values. Nevertheless, we can use this approach to find a
(1 + ¢)-approximate Lo-neighbor of p. The idea is to maintain a number of
different coordinate systems such that there is always at least one system in
which the angle between pp* and its X-axis is close to 7/4.

The details are as follows. We assume that the (XY')-coordinate system
is given. Let 0 < ¢ < 7w/4. For each i, 0 < i < 27/e, let X; and Y; be
the directed lines that make angles of 7 - ¢ with the positive X- and Y-axis,
respectively. Consider the (X;Y;)-coordinate systems, 0 < i < 27/e.

Lemma 1 For each point q in the plane, there is an index i, such that the
angle between the line segment from the origin to q and the positive X;-axis
lies in between 7 /4 and w/4 + €.

Proof: Let ¢ be the line segment from the origin to ¢, and let v be the angle
between ¢ and the positive X-axis. First assume that 7/4 < v < 27. Let
i:=|(y—m/4)/e| and let 7; be the angle between ¢ and the positive X;-axis.
Then v, =y —i-cand 7/4 <y, <w/d+e.

If 0 < v < /4, then we take i := |[(7T7/4 + v)/e|. In this case, v; =
2r —i-e+yand again 7/4 < y; < 7w/4d +e. [|

For each i, 0 < i < 2m/e, let S; denote the set of points in S with
coordinates in the (X;Y;)-coordinate system. Let p be a query point and let
¢ be an Ly-neighbor of pin S;, 0 <4 < 27 /e. Let g be the L,-neighbor
having minimum Ls-distance to p.

Lemma 2 The point q is a (1 + €)-approzimate Ly-neighbor of p.

Proof: First note that the L. .-distance depends on the coordinate system.
Each (X;Y;)-system has its own L.-distance function. The Lo-distance, how-
ever, is the same in all these systems. Let p* be the exact Lo-neighbor of p.
We have to show that

da(p,q) < (1+¢) - da(p, p*)-

By Lemma 1, there is an index ¢ such that the angle 7; between the line
segment from the origin to the point p* — p and the positive X;-axis satisfies
w/4 <~ < w/4+4e < w/2. Note that 7; is also the angle between the line
segment from p to p* and the positive X;-axis. Exercise 2 implies that

ds(p, ¢7) V2 - dy(p,p*) sin;
V2 - dy(p, p) sin(m /4 + €)

(cose + sine)dy(p, p*),

<
<

where we used the formula sin(a +) = sinacos 8 + cos asin 5. Since 0 <
e <m/4, we have 0 < cose <1 and 0 < sine < €. Therefore,

Now consider the point ¢. This point has minimum Ls-distance to p among
all Ly,-neighbors ¢\, 0 < j < 27/e. In particular, dy(p, ¢) < da(p, ¢V). This
completes the proof. [|

Remark 1 We showed that do(p, q)/d2(p,p*) < 1+ e. By a more careful
analysis, it can be shown that in fact da(p, q)/da(p, p*) < V/2cos(m/4 —€/2).

We have proved that any solution for the exact L.,-post-office problem
can be used to solve the approximate Lo-post-office problem:

Theorem 1 Let € > 0 be a constant. The complexity of the planar (1 + ¢)-
approzimate Lo-post-office problem is at most O(1/¢) times the complexity of
the planar exact Lo,-post-office problem.

In Section 3, we will see how the L..-post-office problem can be solved
using range trees. This data structure is introduced in the next section.

2 Range trees

Range trees are based on balanced binary search trees. We use binary trees
as leaf search trees: Let V be a finite subset of RU{—o00, o0}, and let n be the

5

size of V. We assume that V' contains the elements —oo and co. A leaf search
tree for V' is a binary tree storing the elements of V' in its leaves, sorted from
left to right. Internal nodes contain information to guide searches. That is,
each internal node u stores the values

1. mazl(u), which is the maximum value stored in the left subtree of w,
and

2. minr(u), which is the minimum value stored in the right subtree of u.

Exercise 3 (1) Prove that any leaf search tree for V' consists of 2n—1 nodes.
(2) Let x € R. Give an algorithm that finds the smallest element of V' that
is greater than or equal to x. Similarly, show how to find the largest element
of V that is less than or equal to z.

Clearly, the best performance is obtained if the binary tree is perfectly
balanced, i.e., for each internal node u, the number of leaves in the left and

right subtrees of u differ by at most one. It is easy to see that such a tree
has height O(logn).

Exercise 4 Give two algorithms, one bottom-up and the other top-down,
to construct a perfectly balanced leaf search tree for V in O(nlogn) time. If
the elements of V' are sorted already, the running time should be O(n).

Exercise 5 Give an exact formula (a function of n) for the height of a per-
fectly balanced leaf search tree for V.

We are now ready to define the range tree. Let S be a set of n points in
the plane.

Assumption 1 All z-coordinates of the points of S are distinct, and the
same s true for the y-coordinates of the points of S.

Hence, no two points of S lie on a horizontal or vertical line. This assumption
is made to simplify the algorithm. Later, we will see how it can be removed.

Definition 1 A range tree for S consists of the following:

1. An z-tree (also called main tree), which is a perfectly balanced leaf
search tree for the z-coordinates of the points of S and the artificial
z-coordinates —oo and oo.

: QT
I

— S5 —

Figure 2: A range tree. The subtree of each node v stores the z-coordinates
of the points of S, in sorted order in its leaves. The y-tree of v stores the
y-coordinates of these points, and the values —oo and oo, in sorted order in
its leaves.

2. Each node v of this tree contains a pointer to a y-tree (also called
associated or secondary structure): Let S, be the set of points of S
whose z-coordinates are stored in the subtree of v. The y-tree of v is
a perfectly balanced leaf search tree for the y-coordinates of the points
of S, and the artificial y-coordinates —oo and oo.

See Figure 2 for a pictorial representation of a range tree. Note that 5,
is a subset of S. In particular, if v is the rightmost leaf of the z-tree, then
S, = 0, although v stores the artificial z-coordinate co.

Of course in an implementation, we store with each z- and y-coordinate
(a pointer to) the corresponding point of S. Consider a node v of the z-
tree. Then we can search in the set S, for an z-coordinate as well as for a
y-coordinate. This makes range trees useful for solving geometric problems.

Let p be a point in the plane. Often we want to search (e.g. with a y-
coordinate or a range of y-coordinates) in the set of all points of S that are
on or to the right of the vertical line through p. Using the z-tree, we can
decompose this set into O(logn) pairwise disjoint subsets, as follows. Search
in the z-tree for the smallest z-coordinate that is greater than or equal to
the z-coordinate of p. During this search, each time we move from a node
v to its left child, add the right child of v to an initially empty set M. The
leaf in which the search ends is also added to M. See Figures 3 and 4. In

Algorithm decompose(p)

(* p = (pg, py) is a point in the plane)
M = (;
v := root of the z-tree;

while v # leaf
do if mazl(v) < p,
then v := right child of v
else M := M U {right child of v};
v := left child of v
endif
endwhile;
M := MU {v}

Figure 3: Partitioning all points of S that are to the right of p into O(logn)
subsets.

Lemma 3 below, we will show that

ueM

Hence, we indeed decompose the set of all points of S that are to the right
of p into O(logn) subsets. If we want to search in this set (e.g. with a
y-coordinate), then we can search in each set S,, u € M, separately.

Lemma 3 Consider the set M of nodes of the x-tree that is computed by
algorithm decompose(p). We have

{qESZQzpr}: USua

ueEM

and the right-hand side is a union of pairwise disjoint sets. The set M
consists of O(logn) nodes.

Proof: Let v be the leaf in which algorithm decompose(p) ends, and let r
be the point whose z-coordinate is stored in v. (We assume that v is not the
rightmost leaf of the z-tree. In that case, the lemma is true.) Then r, > p,.
All leaves in the subtree of any node u € M\ {v} are to the right of v. Hence,
the x-coordinates stored in these leaves are greater than or equal to p,. This
proves that (J,cps Su € {¢ € S : ¢ > ps}.

To prove the converse, let ¢ be a point of S such that ¢, > p,. Let £ be
the leaf that contains ¢,. Then ¢ = v, or £ is to the right of v. If £ = v,

8

(1

U3

V2

(%1

Figure 4: The search for p, ends in the leaf v,. We have M = {vy, vg, v3,v4}.

then ¢ € |J,cps Su, because v € M. Assume £ # v. Let w be the lowest
common ancestor of v and £. Then v is in the left subtree of w, £ is in the
right subtree of w, w is on the search path to p,, and in w this path moves
to the left child of w. Therefore, the right child w’ of w is contained in M.
Since ¢, is stored in the subtree of w', we have ¢ € (J, ¢ Su-

Next we prove that the sets S,, u € M, are pairwise disjoint. Let v and v’
be two distinct nodes of M. First note that u is not contained in the subtree
of v/, and v’ is not contained in the subtree of u. Let w be the lowest common
ancestor of v and u'. Then, v and v’ are contained in different subtrees of w.
This proves that S, NS, = 0.

Since each node on the search path “delivers” at most one node to the
set M, it follows that this set has size O(logn). [

Let us analyze the size of a range tree for a set S of n points. Consider
a fixed level of the z-tree, and let uq, uo,...,u; be the nodes on this level.
For each 4, 1 < i < k, the y-tree of u; has size O(|S,,|). Note that the sets
Su;» 1 <@ < k, partition S. Therefore, Zle |Su;| = n. It follows that the
y-trees of the nodes uy, uo, . . ., u together have size O(n). This holds for any
level of the z-tree. Hence, all y-trees together have size O(nlogn). Since the
x-tree itself has size O(n), we have proved:

Lemma 4 A range tree for any set of n points in the plane has size O(nlogn).

To finish this section, we consider the problem of building a range tree.
It is clear that this takes Q(nlogn) time. (Why?) Here is an algorithm that
builds the data structure in O(nlogn) time.

Step 1: Build the z-tree.

Step 2: Do the following for each leaf u of the z-tree: Let p be the point
whose z-coordinate is stored in u. Give u a pointer to a y-tree storing the
set {—00, py, 00}. (The y-trees of the leftmost and rightmost leaves store the
sets {—o0, 00}.)

Step 3: Build the y-trees of the internal nodes of the z-tree in a bottom-up
fashion: If u is an internal node with children v and w, such that the y-trees
of v and w have been built already, then we copy and merge these y-trees.
(The values —oo and oo are stored only once in the resulting tree.) The tree
obtained in this way is the y-tree of u.

Exercise 6 Prove that this algorithm builds a range tree in O(nlogn) time.

We now explain how to remove Assumption 1. In the z-tree, we store
the points using the lexicographical ordering instead of the ordering by z-
coordinates. The search information stored in the internal nodes become
points instead of z-coordinates. Similarly, in a y-tree, we store points using
the “reversed” lexicographical ordering (a y-coordinate has higher priority
than an z-coordinate). The algorithms are only slightly changed. In algo-
rithm decompose(p), we search for the leftmost leaf that stores a point whose
z-coordinate is greater than or equal to p,.

3 Solving the L. -post-office problem

Recall the problem we want to solve: Preprocess a set S of n planar points
in a data structure, such that for any query point p € R2?, we can find its
L,-neighbor, i.e., a point p* € S such that

doo (p, p™°) = min{d(p, q) : ¢ € S}

We will show that this problem can be solved using range trees.

Consider a query point p. Let p' and p” be the L,-neighbors of p in the
sets {¢ € S :q, < p,} and {¢ € S : ¢, > p,}, respectively. We call these
points the left-Lo,-neighbor and right- L..-neighbor of p, respectively. Clearly,
one of them is the L-neighbor of p.

10

We will show how to find the right-L.-neighbor p” of p. (This point may
not be unique. Actually, we should talk about a right-L.,-neighbor.) The
algorithm consists of three stages. Here is a brief overview.

Stage 1: Run algorithm decompose(p), see Figure 3. This algorithm com-
putes a set M of nodes such that

{qES:szpz}: USu

ueM

Number these nodes vy, vo, . .., Uy, where m = | M|, and v; is closer to
the root than v;_1, 2 <14 < m. (See Figure 4.)

Stage 2: We know that the right-L.,-neighbor p” is contained in the union
Uwueasr Su- In the second stage, we want to search for a node v € M such
that S, contains p”. This turns out to be difficult. We can, however,
reach the following weaker goal: We compute a node v € M and a
“small” set C' C S such that C'U S, contains p”.

Stage 3: Given node v and set C' from stage 2, we walk down the subtree
of v. During this walk, we maintain the invariant that C'U S, contains
p". If v is a leaf, then the set C'U S, is small enough to look at all its
points and take the one having minimum L..-distance to p. This point
is the right- L,,-neighbor p" of p.

We now discuss Stages 2 and 3 in more detail.

3.1 Stage 2

We run the algorithm given in Figure 5. In words, this algorithm does the
following. It visits the nodes of M from left to right (or, equivalently, from
bottom to top). Consider one iteration. (See Figure 6.) The algorithm
searches with p, in the y-tree of v;. This gives two points a and b of S,
between which (w.r.t. the vertical direction) p lies. Let r be the point of S
whose z-coordinate is stored in the rightmost leaf of the subtree of v;. The
vertical lines through p and r define a slab whose width is denoted by .
Note that all points of S,, lie in or on the boundary of this slab. Consider
the rectangle R. If a and b are both outside R, then we add these two points
to C, and go to the next iteration. Otherwise, if @ or b is in R or on its
boundary, then the while-loop stops.

Remark 2 Since the z- and y-trees also store values —oo and oo, we have to
be careful. If the rightmost leaf in the subtree of v; stores the value oo, then

11

C :=0; 7 :=1; stop := false;
while 1 < m and stop = false
do search in the y-tree of v; for the largest and smallest
y-coordinates that are less than and greater than
or equal to p,, respectively;
let @ and b be the points of S that correspond to
these y-coordinates;
r := the point of S whose z-coordinate is stored in
the rightmost leaf of the subtree of v;;
0 =Ty — Pg;
R := the rectangle [p, : 5] X [py — 0 : py + 0];
if a and b are both outside R
then C := C U {a, b};
1:=1+1
else v := v;;
stop = true
endif
endwhile

Figure 5: Stage 2.

there is no point r corresponding to it. In this case, the value of §, which is
Ty — Pz = 00 — p, according to the algorithm, is set to co. As a result, the
rectangle R is the halfplane to the right of the vertical line through p.

Similarly, the y-coordinate b, may be oco. Then, there is no point b
corresponding to this value. In this case, we use an artificial point b which
is outside rectangle R if r, is finite, and inside R if r, = oco. A y-coordinate
a, = —oo is treated in a similar way.

We consider the variable stop at the end of the while-loop, and consider
the cases when this variable has value true or false separately.

Lemma 5 If the variable stop has value false after the while-loop has been
completed, then the set C' contains a right-L.,-neighbor of p.

Proof: First note that the while-loop makes m iterations. Let p” be a right-
L -neighbor of p, and let ¢ be the index such that p” € S,,. Consider the i-th
iteration of the while-loop. The points a and b selected during this iteration
are outside R.

Let ¢ be any point of S,,. Then p, < ¢, <7, and, hence, 0 < g, — p; <
7y — Pz = 0. On the other hand, since ¢ is outside R, we have |g, —p,| > J. It

12

o

Figure 6: Illustrating one iteration of Stage 2.

follows that de (p, ¢) = |gy—py|- That is, for all points of S,,, the L.-distance
to p is the same as the distance to p in the y-direction.
Assume w.l.o.g. that duoo(p, a) < deo(p,b). Then

doo(p) (I,) = |py - ay| S |py _p2| = doo(papr)

On the other hand, since p” is a right-Ls,-neighbor of p, we have d(p, p") <
doo(p, a). This proves that duoo(p, a) = deo(p,P")-

Hence, a is also a right-L..-neighbor of p. Since a is added to C' during
the ¢-th iteration, the proof is completed. |

If the variable stop has value false at the end of the while-loop, then
we can easily complete the algorithm: We consider all points of C' and take
the one having minimum L..-distance to p. By Lemma 5, this point is a
right- Lo.-neighbor of p.

Lemma 6 If the variable stop has value true after the while-loop has been
completed, then the set C' U S, contains a right-L,-neighbor of p.

Proof: Let p" be a right-L,,-neighbor of p, and let 7 be the index such that
p" € S,,. Let j be the integer such that during the j-th iteration of the
while-loop, the variable stop is set to the value true. Note that v = v;.

13

First assume that ¢ < j. During the i-th iteration, the points a and b
that are selected in the y-tree of v; are outside the rectangle R. In exactly
the same way as in the proof of Lemma 5, it follows that a or b is also a
right- L,,-neighbor of p. Since both points are added to C' during the i-th
iteration, the claim follows.

Next assume that ¢ = j. Then the set S,, hence also the set C' U S,
contains a right-L..-neighbor of p.

It remains to consider the case when ¢ > j. Consider what happens
during the j-th iteration. Let a and b be the points in the y-tree of v; that
are selected during this iteration. At least one of them is contained in the
rectangle R. Assume w.l.o.g. that a is in R. Then dy(p,a) < §, where ¢ is
the z-distance between p and the rightmost point r in the subtree of v;.

Since the z-coordinates of all points in S, are less than or equal to the
z-coordinates of the points in S,,, we have p} > r,. This implies that

doo(DsD") > Dy — Pg > T — Py = 0.

We have shown that dy(p,a) < deo(p,p”). On the other hand, since p" is
a right-Ly,-neighbor of p, we have dy(p,p") < dw(p,a). This proves that
doo(p,P") = deo(p,a) and, hence, a is also a right-L.,-neighbor of p. Since
a € Sy; = Sy, the proof of the lemma is completed. |

This concludes Stage 2. To summarize, if the variable stop has value false
after the while-loop has been completed, then we find a right-L,-neighbor
of p by considering all points of C. In this case, the algorithm terminates.
Otherwise, we know that the set C' U S, contains a right-L.,-neighbor of p.
In this case, we proceed to the next stage.

3.2 Stage 3

We run the algorithm given in Figure 7.

Lemma 7 During the while-loop, the set CUS, contains a right-L..-neighbor
of p.

Exercise 7 Prove Lemma 7.

We complete Stage 3 as follows. Note that at this moment, v is a leaf
of the z-tree. By considering all points of C' U S,, we take the one having
minimum L-distance to p. By Lemma 7, this point is a right-L-neighbor
of p.

14

while v is not a leaf
do w := left child of v;
search in the y-tree of w for the largest and smallest
y-coordinates that are less than and greater than
or equal to p,, respectively;
let @ and b be the points of S that correspond to
these y-coordinates;
r := the point of S whose z-coordinate is stored in
the rightmost leaf of the subtree of w;
0 =Ty — Pg;
R := the rectangle [p, : 5] X [py — 0 : py + 0];
if a and b outside R
then C := C U {a, b};
v := right child of v
else v :=w
endif
endwhile

Figure 7: Stage 3.

This concludes the algorithm for computing a right-L..-neighbor p" of
p. In a completely symmetric way, we compute a left- L -neighbor p' of p.
Then, if dy (p, p') < doo(p, P"), point p' is an L.,-neighbor of p. If do (p, p') >
doo(p, "), then point p" is an L.-neighbor of p.

We analyze the running time of the query algorithm. By Lemma 3,
Stage 1 takes O(logn) time. Consider the while-loop of Stage 2. Each itera-
tion takes O(logn) time. Since m = O(logn), there are O(logn) iterations.
Therefore, the entire while-loop takes O((logn)?) time. If the variable stop
has the value false after this loop, then we need O(|C|) time to find a right-
L.-neighbor of p. It is clear that |C| < 2|M|. Hence, |C| = O(logn). This
proves that Stage 2 takes O((logn)?) time.

In the while-loop of Stage 3, we walk down a path in the subtree of v.
In each node on this path, we spend O(logn) time. Since this path has
length O(logn), the entire loop takes O((logn)?) time. Afterwards, we need
O(|CUS,|) time to find a right- L.-neighbor. Since v is a leaf at this moment,
we have |S,| = 1. The size of C' is bounded by O(logn). Therefore, this final
step takes O(logn) time.

We have shown that the algorithm finds a right-L.-neighbor of p in
O((logn)?) time. In the same amount of time, a left-L,,-neighbor is found.

15

Given these two points, the L.,-neighbor of p is obtained in O(1) time.
We summarize our result.

Theorem 2 Let S be any set of n points in the plane. Using a range tree,
which has size O(nlogn), we can solve the Ly -post-office-problem with a
query time of O((logn)?).

Applying Theorem 1 gives:

Corollary 1 Let € > 0 be any constant, and let S be any set of n points
in the plane. The (1 + ¢)-approzimate Lo-post-office problem can be solved,
using O(nlogn) space, with a query time of O((logn)?).

4 Improving the query time: layering

We have seen that a range tree solves the two-dimensional L..-post-office
problem with a query time of O((logn)?). In this section, we reduce the
query time to O(logn).

Consider the query algorithm of the previous section. This algorithm
makes O(logn) binary searches in different y-trees, and it does some addi-
tional work. It is easily seen that the additional work takes only O(logn)
time. (Here, we assume that we store with each node of the z-tree a pointer
to the rightmost leaf in its subtree.) The O(logn) binary searches together
take O((logn)?) time. That is, the running time of the query algorithm is
dominated by the time of these binary searches.

How can we improve the running time? The key observation is that in
each y-tree, we search for the same element: we search for the y-coordinate
of the query point p.

Let v and v be nodes of the x-tree such that w is a child of v. Assume
we want to locate p, in the y-trees of u and v. Recall that S, and S, denote
the points of S that are stored in the subtrees of v and v, respectively.

Assume that the y-coordinate p, is less than all y-coordinates of the
points of S,. Then the search for the smallest element in the y-tree of v
that is greater than or equal to p, will end in the second leftmost leaf of
this y-tree. (The leftmost leaf stores the artificial y-coordinate —oo.) Where
does the search in the y-tree of u end? Since S, C S,, it is clear that p, is
smaller than all y-coordinates of the points of S,,. Therefore, the search for
the smallest element in the y-tree of u that is greater than or equal to p, also
ends in the second leftmost leaf of this y-tree.

In general, the search for p, in the y-tree of v gives information about
the result of a search for the same element in the y-tree of u. As we will see,

16

Figure 8: A layered range tree. The leaf storing q, contains a pointer to the
leaf storing q,. If g, = —oo, then g, = —oc. If g, = oo, the g, = cc. If g, is
finite, then g, = min{s, : s = (54, Sy) € Su, Sy > ¢y }-

we can use this information such that, given the position of p, in the y-tree
of v, only O(1) time is needed to locate p, in the y-tree of u. That is, we
avoid making a binary search in this y-tree. The idea is to link the y-trees
of u and v by pointers. This technique is called layering.

Hence, we change the range tree as follows:

1. As before, we have an z-tree which is a perfectly balanced leaf search
tree for the z-coordinates of the points of S and the artificial z-coordinates
—o00 and oo.

2. Each node v of the z-tree contains a pointer to a y-tree, which is a
perfectly balanced leaf search tree for the y-coordinates of the points
of S, and the artificial y-coordinates —oo and oo.

3. For all nodes v and v of the z-tree, such that u is a child of v, there
are pointers from the y-tree of v to the y-tree of u: Let £ be any leaf in
the y-tree of v, and let g, be the y-coordinate stored in £. Leaf ¢ stores
a pointer to the leftmost leaf in the y-tree of u whose y-coordinate is
greater than or equal to g,.

We call the resulting data structure a layered range tree. See Figure 8.
Note that if g, also occurs as a y-coordinate of a point in S,,, then the pointer
from ¢ points to the occurrence of g, in the y-tree of u.

Exercise 8 Prove that a layered range tree still has size O(nlogn) and that
it can be built in O(nlogn) time.

17

Let p be any point in the plane. Run algorithm decompose(p). (See
Figure 3.) This gives a set M of nodes of the z-tree such that {g € S : ¢, >
Pe} = Uyers Su- We show how to search for the smallest element that is
greater than or equal to p,, in the y-tree of each node u of M.

We again walk down the path in the z-tree to the leftmost leaf whose
point has an z-coordinate greater than or equal to p,. (Hence, we again
follow the path that has been computed by algorithm decompose(p).) This
path starts in the root v of the z-tree. We locate p, in the y-tree of v. Let
w be the right child of v. Then, by following the pointer from the leaf in v’s
y-tree that stores the position of p,, to the y-tree of w, we have located p, in
w’s y-tree. (See Lemma 8 below.) If w is on the path to p,, then we proceed
in the subtree of w. Otherwise, let u be the left child of v. Note that w € M.
We follow the pointer from the leaf in v’s y-tree that stores the position of
Py, to the y-tree of u. This gives the smallest y-coordinate in the y-tree of u
that is greater than or equal to p,. Now we proceed in the subtree of u. The
complete algorithm, which is denoted by searchM (p), is given in Figure 9.

Lemma 8 During the while-loop of algorithm searchM (p), the invariant,
which is mentioned in the pseudo code, is correctly maintained.

Proof: It is clear that the invariant holds after the initialization. Consider
one iteration. That is, let v be a node of the z-tree, let £ be a leaf in the
y-tree of v, let ¢ be the point of S whose y-coordinate is stored in ¢, and
assume that

¢y = min{s, : s, > p, and s, stored in the y-tree of v}. (1)

Let w be the right child of v, let ¢ be the leaf in the y-tree of w that is
reached by following the pointer stored with £, and let ¢’ be the point of S
whose y-coordinate is stored in /. We will show that

q; = min{s, : s, > p, and s, stored in the y-tree of w}.

From the definition of the pointers that link the y-tree of v with that of w,
we know that q; > @gy. Since g, > p,, we infer that

q; € {sy : s, > py and s, stored in the y-tree of w}.

It remains to show that q; is the minimum element of this set. Assume this
is not the case. Then there is a y-coordinate r, stored in the y-tree of w
such that p, < r, < q;. Note that S, C S,. Therefore, the y-coordinates
stored in the y-tree of w form a subset of those stored in the y-tree of v. In

18

particular, r, is stored in the y-tree of v. Since r, > p,, we infer from (1)
that 7, > g,

We have shown that ¢, < 1y, < q;, where 7, is stored in the y-tree of w.
But then, the pointer from £ in the y-tree of v cannot point to the leaf ¢
storing g,. This is a contradiction.

This shows the g; is the smallest value in the y-tree of w that is greater
than or equal to p,. If the search path proceeds to w, then the invariant still
holds after this iteration. Otherwise, if the search path proceeds to the left
child u of v, then it follows in the same way that g, (see Figure 9) is the
smallest element in the y-tree of u that is greater than or equal to p,. Hence,
also in this case, the invariant still holds after this iteration. This completes
the proof. [|

Lemma 9 FEach pointer that is reported by algorithm searchM (p) points to
the leftmost leaf in the y-tree of a node of M, whose y-coordinate is greater
than or equal to p,.

Proof: This follows immediately from the previous proof. |

We analyze the running time of algorithm searchM (p). The initialization
takes O(logn) time. It is easy to see, that each iteration of the while-loop
takes O(1) time. Since there are O(logn) iterations, the entire while-loop
takes O(logn) time. This proves that the entire algorithm runs in O(logn)
time. That is, by introducing the layered range tree, we reduced the time to
locate p, in the y-trees of all nodes of M, from O((logn)?) to O(logn).

Now we return to the algorithm of Section 3 for finding an L..-neighbor of
a query point. We replace Stage 1 by algorithm searchM (p). Then, Stage 2
can be performed in O(logn) time. In a similar way, the running time for
Stage 3 becomes O(logn). This proves:

Theorem 3 Let S be any set of n points in the plane. Using a layered range
tree, which has size O(nlogn), we can solve the Lu,-post-office problem with
a query time of O(logn).

Corollary 2 Let € > 0 be any constant and let S be any set of n points
in the plane. The (1 + ¢)-approzimate Lo-post-office problem can be solved,
using O(nlogn) space, with a query time of O(logn).

By generalizing range trees to D dimensions, where D > 2 is a constant,
the following results can be proved:

19

Theorem 4 Let S be any set of n points in RP, where D > 2 is a constant.
Using a layered range tree, which has size O(n(logn)P~1), we can solve the
Loo-post-office problem with a query time of O((logn)®™).

Corollary 3 Let € > 0 be any constant and let S be any set of n points in
RP, where D > 2 is a constant. The (1 + &)-approzimate Lo-post-office
problem can be solved, using O(n(logn)P~') space, with a query time of
O((logn)P~1).

20

Algorithm searchM (p)
(* p = (pg, py) is a point in the plane)
M = 0;
v := root of the z-tree;
search in the y-tree of v for the smallest y-coordinate that is
greater than or equal to py;
£ := leaf where this search ends;
q := point of S whose y-coordinate is stored in /¢;
while v # leaf
do (* invariant: ¢ is a leaf in the y-tree of v, ¢ stores g,
¢y = min{s, : s, > p, and s, stored in the y-tree of v} *)
w := right child of v;
follow the pointer from £ to the leaf ¢ in the y-tree of w;
¢' := point of S whose y-coordinate is stored in #';
if mazl(v) < p,
thenv:=w; {:=/0;q:=¢
else M := M U{w};
output a pointer to #';
u := left child of v;
follow the pointer from £ to the leaf £” in the y-tree of u;
¢" := point of S whose y-coordinate is stored in £”;
vi=uy b:=10" q:=4q"
endif
endwhile;
M = M U{v}
output a pointer to £

Figure 9: Constructing the set M, and locating p, in the y-trees of all nodes
of M.

21

