The closest pair problem:
A plane sweep algorithm

Michiel Smid*
November 8, 2003

Let S be a set of n points in the plane. We want to compute a closest
pair in S, i.e., two distinct points P and @) in S such that

d(P,Q) = min{d(p,q) : p,q € S,p # q}.

Here, d(p, q¢) denotes the Euclidean distance between the points p and ¢,

d(p,q) = ((pr — )* + (0y — 0,)%)"*.

We will solve this problem using the plane sweep paradigm. Hence, we
move (sweep) a vertical line SL, the sweep line, from left to right over the
points of S. During the sweep, we maintain the invariant that we have
computed a closest pair among all points to the left of SL. Once the sweep
line has visited the rightmost point, the invariant implies that we have found
a closest pair in the entire set S.

During the algorithm, we maintain two data structures. The Y'-structure
contains information that is needed to update the closest pair each time SL
hits at a point of S. Observe that if SL hits at a point of S, this Y-structure
will change, i.e., it has to be updated. The positions at which the Y-structure
changes are maintained in the X-structure.

The main problem is to find out how the X- and Y-structures look like.
Here are the two main observations. Let p be a point of S, let S’ be the set of
all points of S that are to the left of p, and let § be the minimum distance in
the set S’. Assume the sweep line hits at point p. At this moment, we know

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.



the value of § (because of the invariant). In order to maintain the invariant,
we have to compute the minimum distance in the set S’ U {p}. We can do
this by assigning

§ := min(4, d(p, 9")). (1)

Observation 1 In order to execute (1), we do not have to consider points
of 8" whose x-coordinates are less than or equal to p, — 9.

Let S” be the set of all points of S’ whose z-coordinates are larger than
pz — 0. (Of course, these z-coordinates are at most equal to p,.) Then
Observation 1 says that we only have to consider points of S”.

Observation 2 In order to execute (1), we only have to consider points of
S" whose y-coordinates are between p, — 6 and p, + 6. Moreover, there are
at most siz such points. (The last claim follows from the fact that all pairs
of points of S' have distance at least 0.)

Now we can describe the X- and Y-structures. The X-structure is an ar-
ray A[l..n| containing the points of S sorted by their z-coordinates, whereas
the Y-structure is a balanced binary search tree containing the points of S”
sorted by their y-coordinates.

More precisely, if the sweep line SL is the vertical line through point p of
S, then we have (refer to Figure 1)

1. a variable r whose value is the position in the X-structure where point
p is stored, i.e., A[r] = p,

2. a variable § whose value is the minimum distance among all points to
the left of SL, i.e., the minimum distance among the points in A[1..r—1],

3. a variable £ whose value is the index of the leftmost point in the X-
structure whose z-coordinate is larger than p, — ¢, i.e.,

¢=min{i: (A[i])z > ps — 0}
(hence, S" = A[t..r — 1]),

4. a Y-structure, implemented as a balanced binary search tree, storing
the points of A[f..r — 1] sorted by their y-coordinates. (By Observa-
tion 1, only these points are of interest to us, whereas by Observation 2,
we have to be able to search these points by y-coordinate.)

2



~‘/‘5'. * SL
A1\2HHH€HPH\HHn

Figure 1: Illustrating the data structure.

The plane sweep algorithm for computing the closest pair in the set S
is given in Figure 2. I hope it is clear that this algorithm correctly solves
the closest pair problem for any point set S. There remains one problem
to be solved: how do we implement line (x)? We have to search in the Y-
structure for all points having a y-coordinate between p, — ¢ and p, + 6. By
Observation 2, there can be at most six such points. Therefore, we do the
following: We search in Y for the six successors of p, — 9, i.e., the six points
that are immediately above the point (py,p, — ). These six points surely
include all points ¢ in the Y-structure for which p, -4 < ¢, < p,+9. Observe
that in a balanced binary search tree, one successor can be found in O(logn)
time.

We now have completely specified the algorithm. Let us consider the
running time. The initialization takes O(nlogn) time: It takes O(nlogn)
time to sort the points; the rest takes O(1) time. (Observe that after the first
while-loop, the value of £ is at most three.) Consider the main while-loop, in
which 7 runs from 3 to n. In one iteration, we need O(logn) time to search
for the six points ¢, update ¢, and insert p into Y. The inner while-loop may
take much time, because we may have to delete a large number of points



Algorithm fast_closest_pair(S)
(x S is a set of n points in the plane )
sort the points from left to right, and store them in an array A[l..n|;
0 :=d(A[1], A[2]); r :== 3; p:= A[r];
(:=1;
while (A[{]), < p,— 96
do?(:=/0¢+1
endwhile;
initialize an empty balanced binary search tree Y;
fori:=/tor—1
do insert A[i] into YV
endfor;
(* the initialization is now complete )
while » <n
do for each point ¢ in Y such that p, —0 < ¢, <p, +6 (%)

do ¢ := min(é, d(p, q))

endfor;

insert p into Y

ifr<n

then p := A[r + 1];

while ([f]), < p — 5
do delete A[/] from Y

0 =0+1
endwhile
endif;
ri=r+4+1
endwhile;
return J

Figure 2: The plane sweep closest pair algorithm.



from Y. Observe, however, that each point can be deleted from Y only once.
Moreover, one such deletion takes O(logn) time. Therefore, the entire main
while-loop takes O(nlogn) time. We have proved the following result.

Theorem 1 Algorithm fast_closest_pair(S) computes the closest pair in a
set of n points in the plane in O(nlogn) time.

Exercise 1 Try to generalize this algorithm to points in three dimensions.
What are the difficulties that you encounter?

We now consider a very simple variant of algorithm fast_closest_pair(S).
Its running time is ©(n?) in the worst case, but for random inputs, it will be
quite fast. Moreover, it is very easy to implement.

We only maintain the array A[l..n] and the variables 6, £ and r. (That
is, there is no Y-structure!) During one iteration of the main while-loop, we
compute the distance from p to all points in A[¢..r — 1]. This algorithm is
still correct, because these points include those having a y-coordinate between
py — 0 and p, + 6. The pseudocode is given in Figure 3.

Exercise 2 Prove that the worst-case running time of the new algorithm
closest_pair(S) is ©(n?).

Exercise 3 Implement algorithm closest_pair(S) in your favorite program-
ming language. In order to save square root operations, compute 62 instead
of 4. Test your implementation on random inputs for different values of n.
Count how many times line (xx) is executed, and try to express this number
as a function of n. This number is quadratic in n in the worst case, but for
random inputs, it should be much smaller. In algorithm fast_closest_pair(S),
the corresponding line is executed a linear number of times.



Algorithm closest_pair(S)
(* S is a set of n points in the plane *)
sort the points from left to right, and store them in an array A[l..n];
§:=d(A[1], A[2]); r := 3; p:= A[r];
(=1,
while (A[{]), < p,—9
do/(:=/0¢+1
endwhile;
(* the initialization is now complete )
while r <n
dofori:=/tor—1

do ¢ := min(6, d(p, A[1])) (*x)

endfor;

ifr<n

then p := A[r + 1];

while (A[f]), < p, 6

do/:=/+1
endwhile
endif;
r=r—+1
endwhile;
return ¢

Figure 3: A simple variant of the plane sweep closest pair algorithm. This
one has a high worst-case running time, but will be fast on random inputs.



