The closest pair problem: A plane sweep algorithm

Michiel Smid*

November 8, 2003

Let S be a set of n points in the plane. We want to compute a *closest* pair in S, i.e., two distinct points P and Q in S such that

$$d(P,Q) = \min\{d(p,q) : p, q \in S, p \neq q\}.$$

Here, d(p,q) denotes the Euclidean distance between the points p and q,

$$d(p,q) = ((p_x - q_x)^2 + (p_y - q_y)^2)^{1/2}.$$

We will solve this problem using the plane sweep paradigm. Hence, we move (sweep) a vertical line SL, the sweep line, from left to right over the points of S. During the sweep, we maintain the invariant that we have computed a closest pair among all points to the left of SL. Once the sweep line has visited the rightmost point, the invariant implies that we have found a closest pair in the entire set S.

During the algorithm, we maintain two data structures. The Y-structure contains information that is needed to update the closest pair each time SL hits at a point of S. Observe that if SL hits at a point of S, this Y-structure will change, i.e., it has to be updated. The positions at which the Y-structure changes are maintained in the X-structure.

The main problem is to find out how the X- and Y-structures look like. Here are the two main observations. Let p be a point of S, let S' be the set of all points of S that are to the left of p, and let δ be the minimum distance in the set S'. Assume the sweep line hits at point p. At this moment, we know

^{*}School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. E-mail: michiel@scs.carleton.ca.

the value of δ (because of the invariant). In order to maintain the invariant, we have to compute the minimum distance in the set $S' \cup \{p\}$. We can do this by assigning

$$\delta := \min(\delta, d(p, S')). \tag{1}$$

Observation 1 In order to execute (1), we do not have to consider points of S' whose x-coordinates are less than or equal to $p_x - \delta$.

Let S'' be the set of all points of S' whose x-coordinates are larger than $p_x - \delta$. (Of course, these x-coordinates are at most equal to p_x .) Then Observation 1 says that we only have to consider points of S''.

Observation 2 In order to execute (1), we only have to consider points of S'' whose y-coordinates are between $p_y - \delta$ and $p_y + \delta$. Moreover, there are at most six such points. (The last claim follows from the fact that all pairs of points of S' have distance at least δ .)

Now we can describe the X- and Y-structures. The X-structure is an ar- $ray\ A[1..n]$ containing the points of S sorted by their x-coordinates, whereas
the Y-structure is a balanced binary search tree containing the points of S''sorted by their y-coordinates.

More precisely, if the sweep line SL is the vertical line through point p of S, then we have (refer to Figure 1)

- 1. a variable r whose value is the position in the X-structure where point p is stored, i.e., A[r] = p,
- 2. a variable δ whose value is the minimum distance among all points to the left of SL, i.e., the minimum distance among the points in A[1..r-1],
- 3. a variable ℓ whose value is the index of the leftmost point in the X-structure whose x-coordinate is larger than $p_x \delta$, i.e.,

$$\ell = \min\{i : (A[i])_x > p_x - \delta\}$$

(hence,
$$S'' = A[\ell ... r - 1]$$
),

4. a Y-structure, implemented as a balanced binary search tree, storing the points of $A[\ell..r-1]$ sorted by their y-coordinates. (By Observation 1, only these points are of interest to us, whereas by Observation 2, we have to be able to search these points by y-coordinate.)

Figure 1: Illustrating the data structure.

The plane sweep algorithm for computing the closest pair in the set S is given in Figure 2. I hope it is clear that this algorithm correctly solves the closest pair problem for any point set S. There remains one problem to be solved: how do we implement line (*)? We have to search in the Y-structure for all points having a y-coordinate between $p_y - \delta$ and $p_y + \delta$. By Observation 2, there can be at most six such points. Therefore, we do the following: We search in Y for the six successors of $p_y - \delta$, i.e., the six points that are immediately above the point $(p_x, p_y - \delta)$. These six points surely include all points q in the Y-structure for which $p_y - \delta < q_y < p_y + \delta$. Observe that in a balanced binary search tree, one successor can be found in $O(\log n)$ time.

We now have completely specified the algorithm. Let us consider the running time. The initialization takes $O(n \log n)$ time: It takes $O(n \log n)$ time to sort the points; the rest takes O(1) time. (Observe that after the first while-loop, the value of ℓ is at most three.) Consider the main while-loop, in which r runs from 3 to n. In one iteration, we need $O(\log n)$ time to search for the six points q, update δ , and insert p into Y. The inner while-loop may take much time, because we may have to delete a large number of points

```
Algorithm fast\_closest\_pair(S)
(* S \text{ is a set of } n \text{ points in the plane } *)
sort the points from left to right, and store them in an array A[1..n];
\delta := d(A[1], A[2]); r := 3; p := A[r];
\ell := 1;
while (A[\ell])_x \leq p_x - \delta
do \ell := \ell + 1
endwhile;
initialize an empty balanced binary search tree Y;
for i := \ell to r-1
do insert A[i] into Y
endfor;
(* the initialization is now complete *)
while r \leq n
do for each point q in Y such that p_y - \delta < q_y < p_y + \delta (*)
    do \delta := \min(\delta, d(p, q))
    endfor;
    insert p into Y;
    if r < n
    then p := A[r+1];
          while (A[\ell])_x \leq p_x - \delta
          do delete A[\ell] from Y;
               \ell := \ell + 1
          endwhile
    endif:
    r := r + 1
endwhile;
return \delta
```

Figure 2: The plane sweep closest pair algorithm.

from Y. Observe, however, that each point can be deleted from Y only once. Moreover, one such deletion takes $O(\log n)$ time. Therefore, the entire main while-loop takes $O(n \log n)$ time. We have proved the following result.

Theorem 1 Algorithm fast_closest_pair(S) computes the closest pair in a set of n points in the plane in $O(n \log n)$ time.

Exercise 1 Try to generalize this algorithm to points in three dimensions. What are the difficulties that you encounter?

We now consider a very simple variant of algorithm $fast_closest_pair(S)$. Its running time is $\Theta(n^2)$ in the worst case, but for random inputs, it will be quite fast. Moreover, it is very easy to implement.

We only maintain the array A[1..n] and the variables δ , ℓ and r. (That is, there is no Y-structure!) During one iteration of the main while-loop, we compute the distance from p to all points in $A[\ell..r-1]$. This algorithm is still correct, because these points include those having a y-coordinate between $p_y - \delta$ and $p_y + \delta$. The pseudocode is given in Figure 3.

Exercise 2 Prove that the worst-case running time of the new algorithm $closest_pair(S)$ is $\Theta(n^2)$.

Exercise 3 Implement algorithm $closest_pair(S)$ in your favorite programming language. In order to save square root operations, compute δ^2 instead of δ . Test your implementation on random inputs for different values of n. Count how many times line (**) is executed, and try to express this number as a function of n. This number is quadratic in n in the worst case, but for random inputs, it should be much smaller. In algorithm $fast_closest_pair(S)$, the corresponding line is executed a linear number of times.

```
Algorithm closest\_pair(S)
(* S \text{ is a set of } n \text{ points in the plane } *)
sort the points from left to right, and store them in an array A[1..n];
\delta := d(A[1], A[2]); r := 3; p := A[r];
\ell := 1;
while (A[\ell])_x \leq p_x - \delta
\mathbf{do}\ \ell := \ell + 1
endwhile;
(* the initialization is now complete *)
while r \leq n
do for i := \ell to r-1
    \mathbf{do}\ \delta := \min(\delta, d(p, A[i])) \quad (**)
    endfor;
    \mathbf{if} \; r < n
    then p := A[r+1];
            while (A[\ell])_x \leq p_x - \delta
            do \ell := \ell + 1
            endwhile
    endif;
    r := r + 1
endwhile;
return \delta
```

Figure 3: A simple variant of the plane sweep closest pair algorithm. This one has a high worst-case running time, but will be fast on random inputs.