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1 Introduction

In these notes, we consider one of the most important data structures in com-
putational geometry, the Vorono: diagram. These diagrams arise naturally
in geometric proximity (or closest point) problems.

Throughout these notes, we will denote the Euclidean distance between

two points p = (p1,p2) and ¢ = (¢1,¢2) by d(p, q), i-e.,

d(p,q) = V(o1 — @)? + (p2 — @)*

In order to show how Voronoi diagrams arise, we consider the following prob-
lem.

The post-office problem: Let S be a set of n points in the plane. We
want to store these points in a data structure such that for any given query
point ¢, we can efficiently compute a nearest neighbor of ¢ in S, i.e., a point
p € S that is closest to g,

d(p,q) = min{d(r,q) : r € S}.

This problem was introduced to the algorithms community in 1973 by
Knuth. He imagines each point of S a post-office. Then a query specifies a
point in the plane and we want to find a post-office that is closest to this
point.

The complexity of any data structure solving this problem will be ex-
pressed by the following three measures, which are functions of n, the size of
the set S.

e Preprocessing time: the time needed to build the data structure.
e Size: the amount of space needed to store the data structure.

e Query time: the time needed to answer a query, i.e., to find a nearest
neighbor of the query point.

We assume that the set S is fixed and that there are a large number of queries,
so that it is worth to spend time for building a data structure. (If there is
only one query, then the best approach is to find a nearest neighbor using
linear search. In this case, it is a waste of time to build a data structure.)

We can solve the post-office problem using the so-called locus approach.
The basic idea of this approach is as follows.



1. We partition the plane into regions and associate with each region
R a point pr of S such that the following holds. If a query point
q is contained in the region R, then pg is a nearest neighbor of ¢,
independent of the exact location of ¢ in R.

2. Given this partition and given any query point ¢, we compute the region
R that contains ¢ and report the point pgr as its nearest neighbor.

As we will see, there is a natural partition of the plane into regions that sat-
isfies condition 1. above. This partition is the Voronoi diagram, named after
the Russian mathematician who used them in 1908 in a paper on quadratic
forms. These diagrams appear outside mathematics and computer science
under different names. For example, in geography they are called Thiessen
polygons, in pattern recognition the name Blum transform is used, whereas
metallurgists call them Wigner-Seitz zones.

In these notes, we will define Voronoi diagrams, prove some of their basic
properties, and show how to construct them using the plane sweep technique,
in O(nlogn) time.

The problem of computing the region R containing any given query point
q is called the point location problem. We have seen already how this problem
can be solved.

2 Definition of the Voronoi diagram

Consider again the finite set S of points in the plane. The Voronoi diagram
of S is a partition of the plane into Voronoi regions, one region VR(p) for
each point p of S. Such a region VR(p) is defined as the set of all points
g € R? that have p as a nearest neighbor. That is, for each point p of S, its
Voronoi region VR(p) is defined as

VR(p) := {q € R* : d(p, q) < d(r,q) for all r € S}.

To get some insight into this notion, assume that the set S contains only
two points, a and b. How does the Voronoi region of a look like? Let £
be the bisector of a and b, which is the line orthogonal to the line segment
with endpoints a and b, and that cuts this segment into two segments having
the same length. This bisector divides the plane into two halfplanes. Let
H(a,b) be the halfplane containing a. Then any point ¢ in H(a,b) has a



Figure 2: The Voronoi regions for the sets S = {a,b} and S = {a,b,c}.
These regions are bounded by the solid lines.

as its nearest neighbor, and we have VR(a) = H(a,b). Similarly, the other
halfplane H (b, a), the one containing b, is the Voronoi region of b. Observe
that the bisector ¢ belongs to both Voronoi regions, because each point ¢ on
¢ has both a and b as a nearest neighbor. See Figure 2, in which also an
example for a set of three points a, b, and c is given.

In general, let S be any finite set of points in the plane. For any two
distinct points p and 7 of S, we define H(p,r) to be the halfplane defined by
the bisector of p and r that contains p. Observe that

H(p,r) ={q € R : d(p,q) < d(r,q)}-

Lemma 1 For each point p € S, we have

VR(p)= () H(pr).
res\{p}

Exercise 1 Prove Lemma 1.

Lemma 2 For each point p € S, its Voronoi region VR(p) is a (possibly
unbounded) non-empty convex polygon.

Proof: Since the Voronoi region of p contains the point p, it is non-empty.
By Lemma 1, VR(p) is the intersection of halfplanes, which shows that it
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is a (possibly unbounded) polygon. Since each halfplane is convex, it also
follows that VR(p) is convex. [

Definition 1 Let S be a finite set of points in the plane.

1. The Voronoi diagram VD(S) of S is defined as the partition of the
plane induced by all Voronoi regions VR(p) with p € S.

2. If two Voronoi regions have an intersection of positive length, then we
call this intersection a Voronoi edge.

3. If two Voronoi edges intersect in a single point, then we call this point
a Voronoi vertex.

In Figure 3, an example is given. Observe that Voronoi edges can be
unbounded; see also Exercise 2.

Exercise 2 Let S consist of the four corners of a square. Determine the
Voronoi diagram of S. How many Voronoi vertices and edges does the dia-
gram have? Answer the same questions for (i) a set of n points that are all
on a circle, and (ii) a set of n points that are all on a straight line.

The main problem that we will consider in these notes is to design an effi-
cient algorithm that, when given any set S of n points in the plane, constructs
its Voronoi diagram. Here, constructing a Voronoi diagram means computing
its Voronoi vertices and edges, together with the incidence relations among
them.

We can use the characterization of Lemma 1 to construct the Voronoi
diagram as follows. For each point p of S, we compute the intersection of the
halfplanes H(p,r), r € S\ {p}. We have seen in the notes on convex hulls
that this can be done in O(nlogn) time for each point p. This gives us all
Voronoi regions. Then, the Voronoi diagram is obtained by putting all these
regions together. Overall, we get a running time of O(n?logn).

Later in these notes, we will give an algorithm that constructs the Voronoi
diagram much faster, in O(nlogn) time. This algorithm uses the plane sweep
technique in a non-trivial way. Before we go to the algorithmic aspects of
Voronoi diagrams, however, we prove some of its basic properties.



Figure 3: An example of a Voronoi diagram.

3 Some properties of Voronoi diagrams

Observation 1 Fach Voronoi edge is contained in the bisector of two points
of S and is incident to exactly two Voronoi regions.

Lemma 3 The degree of each Voronoi vertex is greater than or equal to
three.

Proof: Let v be an arbitrary Voronoi vertex. It follows from Definition 1
that the degree of v is at least equal to two. Assume that this degree is equal
to two. We will derive a contradiction.

Let e and € be the two Voronoi edges that have v as endpoint. We
distinguish two cases.

First assume that e and €’ are not collinear; see the left part of Figure 4.
By Observation 1, e is incident to exactly two Voronoi regions, and the same
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Figure 4: Illustrating the proof of Lemma 3.

is true for €’. Since v has degree two, e and €’ are incident to the same
Voronoi regions. But then the fact that e and €' are not collinear implies
that one of these regions must be non-convex. This is a contradiction.

The second case is when e and e’ are collinear; see the right part of
Figure 4. Let p and ¢ be the points of S such that e and e’ are both incident
to the Voronoi regions VR(p) and VR(q). Then e and e’ are both contained
in the bisector of p and ¢g. But then e and e’ together form one Voronoi
edge and, therefore, the Voronoi vertex v does not exist. This is again a
contradiction. [ ]

Let v be any Voronoi vertex and let pq,po,...,p,n be the points of S
such that the Voronoi regions VR(p;), 1 < i < m, have v as their common
intersection. Then, m is the degree of v in VD(S), which, by Lemma 3, is
greater than or equal to three. The definition of Voronoi region implies that
all distances d(p;,v), 1 < i < m, are equal. Let C(v) denote the circle with
center v and radius d(py, v).

Lemma 4 The circle C(v) does not contain any point of S in its interior.

Proof: Assume C(v) contains a point = of S in its interior. Then d(z,v) <
d(p;,v) for all 4 with 1 <4 < m, which implies that v is not contained in any
of the Voronoi regions VR(p;). This is a contradiction. [

As we have seen already, some Voronoi edges are bounded, whereas some
are unbounded. The following lemma explains the difference.



Figure 5: Illustrating the proof of Lemma 5. We assume that VR(p) is
unbounded and that p is in the interior of the convex hull.

Lemma 5 Let S be a finite set of points in the plane and let p € S. The
Voronoi region of p is unbounded if and only if p is on the boundary of the
convex hull of S.

Proof: First assume that VR(p) is unbounded. We will show that p is on
the boundary of the convex hull of §. Assume p is not on this boundary.
Since VR(p) is unbounded and convex, there is a ray R starting in p that is
completely contained in VR(p). Also, since the convex hull of S is bounded,
this ray intersects its boundary in, say, the hull edge with endpoints ¢ and r.
Observe that both ¢ and r belong to S. Assume without loss of generality
that this hull edge is vertical and that ¢ is above r. Also, assume without loss
of generality that the angle o between R and the horizontal is non-negative.
Observe that o < 7/2; see Figure 5. We claim that there is a point z on R
that is closer to ¢ than to p. This will be a contradiction, because R and,
hence, also z, is contained in VR(p).

So it remains to find the point x. The bisector ¢ of p and ¢ makes an
angle # with the horizontal which satisfies 7/2 < 8 < . Therefore, R and ¢
intersect in, say, point a. Any point z on R that is to the right of a belongs
to the halfplane H(q,p), i.e., it is closer to ¢ than to p. This proves one
direction of the claim.
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Figure 6: Illustrating the proof of Lemma 5. We assume that p is on the
boundary of the convex hull.

To prove the converse, assume that p is on the boundary of the convex
hull of S. If p is a vertex of the convex hull, then let R and R’ be the rays
starting in p that are orthogonal to the hull edges incident to p and that are
in the exterior of the convex hull; see Figure 6. Otherwise, p is in the interior
of a convex hull edge, and we let both R and R’ be equal to the ray starting
in p that is orthogonal to this hull edge and that is in the exterior of the
convex hull.

We claim that each point z on or between R and R’ is closer to p than
to any other point of S. That is, each such point z is contained in VR(p),
which will prove that VR(p) is unbounded. This claim follows from the fact
that for each point ¢ in S\ {p}, point = belongs to the halfplane H(p, q), i.e.,
x is closer to p than to gq. |

It is a priori not clear how large a Voronoi diagram can be. That is, given
a set of n points, how many Voronoi vertices and edges does its Voronoi
diagram have? The tool to answer this question is Euler’s formula for planar
graphs.

Theorem 1 (Euler) Consider any embedding of a connected planar graph
G without edge crossings. Let V, E, and F' be the number of vertices, edges,
and faces (including the single unbounded face) of this embedding, respec-
tively. Then

V-E+F=2.

This theorem has the following important corollary.
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Corollary 1 Let G be a planar graph with V vertices and assume that' V- > 3.
Then

1. G has at most 3V — 6 edges, and

2. any embedding of G has at most 2V —4 faces (including the unbounded
face).

How can we use these results on planar graphs to give an upper bound
on the size of a Voronoi diagram? Observe that in an embedding of a planar
graph, each edge is bounded or, equivalently, has two vertices as endpoints.
Euler’s formula and its corollary only apply to such embeddings. But, as we
have seen already, some of the edges of a Voronoi diagram are unbounded.
Also, Corollary 1 bounds the number of edges and faces in terms of the
number of vertices. For a Voronoi diagram, we only know at this moment
that it has exactly n faces; we want to determine the number of its vertices
and edges. Therefore, we proceed as follows.

Let S be a set of n points in the plane and consider its Voronoi diagram
VD(S). We define the dual graph G of VD(S) as follows. This graph G has
the points of S as its vertices. Any two such vertices p and ¢, with p # ¢,
are connected by an edge in G if and only if the Voronoi regions VR(p) and
VR(q) share a Voronoi edge. In Figure 7, an example is given.

By Lemma 2, the number of Voronoi regions is equal to n. Moreover, G
has exactly n vertices. We show how to use this to bound the number of
edges of the Voronoi diagram.

Exercise 3 Prove that G is a planar connected graph.

Let E be the number of edges of the graph GG. Then, by Corollary 1, we
have E < 3n—6. Since Voronoi regions are convex, any two distinct Voronoi
regions can have at most one Voronoi edge in common. Hence, there is a
one-to-one correspondence between the edges of G and the Voronoi edges.
It follows that the Voronoi diagram of S has E Voronoi edges, which is less
than or equal to 3n — 6.

It remains to bound the number of Voronoi vertices. For any Voronoi
vertex v, let deg(v) denote its degree, i.e., the number of Voronoi edges
incident to v. If we take the sum of the degrees of all Voronoi vertices, then
we count each bounded Voronoi edge twice and each unbounded Voronoi
edge once. This implies that ), deg(v) < 2E. Let V denote the number
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Figure 7: The dashed lines represent the Voronoi edges, whereas the solid
lines represent the edges of the dual graph G.

of Voronoi vertices. We know from Lemma 3 that deg(v) > 3 for each
Voronoi vertex. Therefore, the summation ), deg(v) is at least equal to 3V,
which implies that 3V < 2FE. We saw already that F < 3n — 6. Therefore,
V <2F/3 < 2n — 4. We have proved the following result.

Theorem 2 The Voronoi diagram of a set S of n points in the plane consists

of
1. ezxactly n Voronoi regions,
2. at most 2n — 4 Voronoi vertices, and

3. at most 3n — 6 Voronoi edges.
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The Voronoi diagram contains much information about the distance dis-
tribution of the point set S. By this theorem, the entire diagram can be
stored in only O(n) space.

We conclude this section with some remarks about the graph G. In
the example in Figure 7, each bounded face of G is a triangle. This is
true for any point set S having the property that (i) no four (or more)
points are cocircular, and (ii) no three (or more) points are collinear. In this
case, G is a triangulation of S; it is a partition of the convex hull of S into
pairwise disjoint triangles. A set of points can have many triangulations. The
triangulation G, however, has many interesting properties, and it is called
the Delaunay triangulation, named after another Russian mathematician,
who introduced it in 1934.

Exercise 4 Determine the graph G for each of the three point sets of Exer-
cise 2.

Exercise 5 Let S be a finite set of points in the plane, such that no four (or
more) points are cocircular, and no three (or more) points are collinear. Let
G be the graph having S as its vertex set, and in which any three distinct
vertices p, ¢, and r form a triangle in G if and only if the circle through
p, q, and r does not contain any point of S in its interior. Prove that G
is the Delaunay triangulation of S. (This is the way Delaunay defined his
triangulation.)

Remark 1 In order to get a better understanding of Voronoi diagrams and
Delaunay triangulations, you should surf to the following web page:

http://wwwpi6.fernuni-hagen.de/java/anja/

This page presents VoroGlide, an interactive program developed by the group
of Rolf Klein at the FernUniversitdt Hagen in Germany. You can insert,
delete, and move points, and watch how the Voronoi diagram and Delaunay
triangulation change.

Exercise 6 Let S be a finite set of points in the plane, let p € S, and let ¢
be a nearest neighbor of p in S\ {p}. Prove that the Voronoi regions VR(p)
and VR(q) share an edge.
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Exercise 7 Let S be a set of n points in the plane and assume we have
constructed the Voronoi diagram of S already. Prove that we can, in O(n)
time, solve the all-nearest-neighbors problem, in which we have to compute
for each point p of S, a nearest neighbor of p in S\ {p}.

Exercise 8 Let S be a finite set of points in the plane. Prove that the
Delaunay triangulation of S contains a minimum spanning tree of S.

4 Fortune’s plane sweep algorithm for con-
structing Voronoi diagrams

In this section, we will give an algorithm that constructs the Voronoi diagram
VD(S) of a given set S of n points in the plane. The algorithm is due to
Fortune (1987) and uses plane sweep in a non-trivial way. The main purpose
of this section is to explain how the plane sweep technique can be adapted
so that the Voronoi diagram can be constructed efficiently. It turns out that
for “degenerate” point sets, some “technical” problems, that have nothing to
do with the plane sweep method itself, have to be solved. Therefore, we will
assume that the set S is in “general” position:

Assumption 1 Throughout this section, S denotes a set of n points in the
plane. This set has the property that (i) no three (or more) points lie on a
straight line, and (ii) no four (or more) points lie on a circle.

Exercise 9 Prove that Assumption 1 implies that the degree of every Voronoi
vertex of VD(S) is equal to three.

This exercise shows that each Voronoi vertex v is defined by exactly three
points of S. The circle through these three points does not contain any point
of S in its interior and has v as its center; see also Lemma 4.

Our goal is to design a plane sweep algorithm that constructs the Voronoi
diagram VD(S). Let us recall what this means. We move a vertical sweep
line SL from left to right over the set S. During the sweep, we would like to
maintain the invariant that the part of VD(S) that is to the left of SL has
been constructed already. Also, we would like to maintain this invariant by
only using information obtained from points that are to the left of SL; we do
not want to use any information that is implied by the points to the right

13



of SL. Unfortunately, there is a problem here: The Voronoi region VR(p) of
any point p of S starts to the left of p. Hence, the sweep line reaches the left
boundary of VR(p) before it reaches p. That is, some points that are to the
right of the sweep line contribute to the part of the Voronoi diagram that is
to the left of this line.

This shows that we cannot apply the plane sweep technique in the stan-
dard way. Instead, let us try to maintain a weaker invariant. Let VDgyp
denote the part of the Voronoi diagram that is to the left of the sweep line
SL.

Question 1 Is there a part VD', of VDgy that is uniquely determined by
those points of S that are to the left of SL?

If this question has a positive answer, then we could try to maintain
the invariant that at any moment during the sweep, the part VDY, has
been constructed already. The following lemma states that there is indeed
a positive answer. Before we state this lemma, we introduce the following
notation.

If p is a point in the plane, then d(p, SL) denotes the shortest distance
from p to any point on the sweep line SL. This is of course the horizontal
distance between p and SL. The set of all points of S that are to the left of
SL will be denoted by Sgi.

Lemma 6 Let
L:={z € R*3q € Ss; : d(x,q) < d(z, SL)}.

The set L is completely to the left of SL. The part of the Voronoi diagram
of S that is in the region L does not depend on any point of S\ Ssi. In
other words, this part of the Voronoi diagram is completely determined by
the points of Ss.

Proof: It is clear that L lies completely to the left of SL. To prove the other
claim, let z € L and let p be a point of S such that x € VR(p). We have to
show that p € Sgr. If we have shown this, then it follows that VD(S)N L is
completely determined by the points of Sg,.

Assume that p € S\ Ss;. By the definition of L, there is a point g € Sy,
such that d(z,q) < d(x,SL). Since x € VR(p), we have d(z,p) < d(z,q).
Also, since x is to the left of SL and p is on or to the right of SL, we have
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Figure 8: The set of all points x such that d(x,q) = d(z, SL) is a parabola.

d(x,SL) < d(x,p). Combining these inequalities shows that d(z,q) < d(z, q),
which is a contradiction. Therefore, p € Sg;. [ |

Let us find out how the set L looks like. Assume that the set Sg; contains
only one point, say g. Then

L={z e R%|d(x,q) < d(z,SL)}.

The boundary of L consists of all points = such that d(zx,q) = d(x, SL). We
claim that this boundary is a parabola. To prove this, assume that the sweep
line has equation z; = s and let g be given by ¢ = (a, b). Observe that a < s.
Then d(z,q) = ((z1 — a)? + (v2 — b)?)*/? and d(x, SL) = |s — 1|. Hence, a
point z is on the boundary of L if and only if (1 —a)?+ (72 —b)? = (s —x1)?,
which can be rewritten as 2(s — a)z; = —23 + 2bzy — a® — b*> + s®. The
latter equation is clearly that of a parabola in the x;xo-plane. Its axis is the
horizontal line through ¢ and its extremum is on this axis, in the middle of
the horizontal segment connecting ¢ with SL; see Figure 8. The set L itself
is to the left of this parabola, i.e.,

L ={z € R?|2(s — a)z; < —x3 + 2bxy — a® — b* + 5°}.

We call this set the interior of the parabola.

In general, if the set Sg; is non-empty, the region L is the union of the
interiors of |Sgr| such parabolas, one parabola for each ¢ € Sg;. The bound-
ary of L, which we call beach line (aka wave front), consists of a sequence of
parabola segments; see Figure 9.
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SL

beach line

Figure 9: The boundary of the region L is called beach line.

Exercise 10 Prove that the beach line is connected.

Our algorithm will maintain this beach line of parabola segments in the
Y -structure, which stores the segments sorted from bottom to top. Of course,
these segments are not stored explicitly, because they change as soon as the
sweep line moves. Instead, we store them implicitly; the details will be given
later. During the sweep, we maintain the following invariant.

Invariant: For any position of the sweep line SL, the part of the Voronoi
diagram VD(S) that belongs to the region L has been constructed already.
More precisely, we have computed all Voronoi vertices of this part of VD(S),
and for each such vertex, we have computed its three defining points of S.
(See Exercise 9 and the paragraph following it.)

When the sweep line SL moves from left to right, it “pulls” the beach
line with it. If SL is at position x; = oo, the invariant implies that we have
computed all Voronoi vertices, together with their defining points. Using this
information, the complete Voronoi diagram can easily be constructed.
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be P be

SL SL

Figure 10: If the sweep line reaches point p, then a new parabola segment
appears on the beach line.

4.1 The transition points of the sweep

At this moment, we know that the Y-structure (implicitly) stores the parabola
segments of the beach line. Recall that the transition points of the sweep
are those positions of the sweep line at which the combinatorial structure of
the beach line changes. This happens if a new parabola segment becomes
part of it or if a parabola segment disappears. We maintain (a subset of) the
transition points in the X-structure. It turns out that there are two types of
transition points. We consider each type separately.

Type 1: The points of S are transition points. We call these site events,
because the points of S are often called sites.

Let p be a point of S. Consider what happens when the sweep line SL
reaches p. Refer to Figure 10. Assume that the horizontal line through p
intersects b’s parabola segment in its interior.

If the sweep line is at point p, then p’s complete parabola is the set
{z|z; < p; and d(z,p) = d(x, SL)}, which is that part of the horizontal line
through p that is to the left of p. If SL moves to the right, this degenerate
parabola opens itself, becomes wider and wider, and its extremum moves to
the right. We see that a new parabola segment, determined by p, appears on
the beach line. Also, the “middle” part of the parabola segment determined
by point b disappears from the beach line.
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SL SL

Figure 11: The parabola segment P, disappears from the beach line if the
sweep line reaches the rightmost point of the circle through a, b, and c.

Type 2: The positions where a parabola segment disappears from the beach
line are transition points. We call these circle events.

To illustrate this, refer to Figure 11. Consider three consecutive parabola
segments P,, P,, and P,, as indicated in the left figure. Here, a, b, and c are
three points of S. If the sweep line moves to the right, the three parabola
segments open themselves and their extrema move to the right. The segment
P, disappears from the beach line at the moment when P,, P,, and P, have
one point in common. Let us see when this happens. For any point v on the
beach line, and any z € {a,b, ¢}, we have

v is on P, if and only if d(v, 2) = d(v, SL). (1)

Therefore, P,, P,, and P, have a common intersection in, say v, if and only
if

d(v,a) = d(v,b) = d(v,c) = d(v, SL). (2)
Let C(a, b, c) be the circle through a, b, and ¢. Then (2) holds if the sweep
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line SL contains the rightmost point of this circle. Hence, if SL is at this
position, the parabola segment P, disappears from the beach line. It follows
from the proof of Lemma 8 below that C(a, b, ¢) does not contain any point
of S in its interior. Therefore, at this position of SL, we have found a new
Voronoi vertex: the center v of C(a,b,c).

It follows that circle events are characterized as follows. They are the
(z-coordinates of the) rightmost points of circles C'(a, b, ¢), for any triple P,,
Py, and P, of parabola segments that are consecutive on the beach line.

The basic structure of the sweep algorithm should be clear. The sweep
line moves from one transition point to the next one. At each such point,
the beach line and the set of transition points are updated. Before we give
more details, let us prove two lemmas that show that the algorithm indeed
constructs the Voronoi diagram. These lemmas have the following interpre-
tation. Assume we sweep SL from left to right and during the sweep, draw
the trajectories of the common endpoints of all pairs of parabola segments
that are neighbors on the beach line. Lemma 7 states that in this way, we
draw the complete Voronoi diagram of the points of S, whereas Lemma 8
states that we only draw this diagram.

Lemma 7 Let e be an edge of the Voronoi diagram VD(S) and let u be
an arbitrary point on e. (u may be an endpoint of e, in which case it is
a Voronoi vertex.) There is a position of the sweep line such that u is the
common endpoint of two parabola segments that are neighbors on the beach
line.

Proof: Let p and ¢ be the points of S such that the Voronoi regions VR(p)
and VR(q) share the edge e. Then, by the definition of Voronoi region, we
have d(u,p) = d(u,q). Consider the circle C centered at u that contains p
and ¢. Since u belongs to both VR(p) and VR(q), this circle does not contain
any points of S in its interior; see Figure 12.

Let s be the z-coordinate of the rightmost point of C'. We claim that s is
the position of the sweep line we are looking for. To prove this, consider the
moment when the sweep line is at position s. Then d(u,p) = d(u, SL) and
d(u,q) = d(u, SL). Hence, point u either belongs to our set L or is on the
boundary of L.

We first prove by contradiction that u is on L’s boundary, i.e., it is on the
beach line. So, assume u is not on the beach line. Then v € L and, by the
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Figure 12: Illustrating the proof of Lemma 7. When the sweep line is at
position s, u is the common endpoint of the parabola segments of p and q.

definition of L, there is a point r in Sgz such that d(u,r) < d(u,SL). But
then, r is in the interior of the circle C', which is a contradiction.

Hence, we know that u is on the beach line. Since d(u,p) = d(u,q) =
d(u, SL), it follows from (1) that u is on the parabola segments of both p
and q. These two segments must be neighbors on the beach line. |

Lemma 8 Consider any position of the sweep line. The common endpoint
of any two parabola segments that are neighbors on the beach line lies on
some Voronoi edge.

Proof: Let z be the common endpoint of two neighboring parabola segments,
corresponding to, say points p and ¢, as in the left part of Figure 13. Then
d(z,p) = d(z,q) = d(x,SL). Let C be the circle with center z and going
through p and ¢. We claim that z belongs to the intersection VR(p) N VR(q),
which implies that z lies on a Voronoi edge. (z may be an endpoint of a
Voronoi edge, in which case it is a Voronoi vertex.) To prove this claim, it
suffices to show that C' does not contain any point of S in its interior. This
is easily proved by contradiction. Assume point 7 of S is in the interior of
C. Then d(z,r) < d(z,p) = d(x,SL) and r is to the left of the sweep line.

20



SL

SL ¢

r1 =S

Figure 13: Illustrating the proof of Lemma 8 (left figure), and how to compute
the parabola segment P(a,b,c) (right figure).

Therefore, by the definition of L, we have x € L. This is a contradiction,
because z is on the boundary of L, which does not belong to L itself. |

4.2 Some implementation details

We have mentioned already that the Y-structure will contain an implicit
representation of the beach line. How does this representation look like?

A parabola segment of the beach line is defined by three points, say a,
b, and ¢, of S, and the position of the sweep line. Let s be the z-coordinate
of this position. Assume that a’s parabola segment is below b’s segment and
b’s segment, is below c¢’s segment. Observe that the points a, b, and ¢ can
have a different ordering in the y-direction. In fact, a can be equal to c¢. The
complete parabola of b has equation 2(s — by)x1 = —3 + 2boxo — b? — b3 + 5%;
the parabolas for a and ¢ have similar equations.
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The parabola segment of b can be computed from a, b, ¢, and s, as follows.
(Refer to Figure 13.)

1. Write down the equations for the parabolas of a, b, and c.
2. Compute the appropriate intersection a of the parabolas of a and b.
3. Compute the appropriate intersection 3 of the parabolas of b and c.

4. The parabola segment of b is the part of b’s parabola that is between
« and f.

We denote the resulting parabola segment of b by P(a,b,c).

The Y-structure is a balanced binary search tree which stores, for any
position of the sweep line, the parabola segments of the beach line, sorted
from bottom to top. To store a parabola segment P(a, b, c) at a node of this
tree, we store the triple of points (a, b, c). We just saw that this information
suffices to compute P(a,b,c), for any given position of the sweep line, in
constant time.

The X-structure is also a balanced binary search tree and it stores the
following information. First, it stores (the z-coordinates of) all points of S
that are to the right of the sweep line. Second, for each parabola segment
P(a,b,c) that is on the beach line and for which a # ¢, we store its circle
event in the X-structure, provided this event is to the right of the sweep line.
Recall that this circle event is the (z-coordinate of the) rightmost point of
the circle through a, b, and c. Of course, the elements of the X-structure are
stored in sorted order from left to right.

Now we can describe in more detail what happens if the sweep line moves
from one transition point to the next one.

Case 1: The next transition point is a site event, i.e., the sweep line encoun-
ters a point, say p, of S.

We do the following; refer to Figure 10. First, we search in the Y-structure
for the parabola segment P(a, b, ¢) that is intersected by the horizontal line ¢
through p. This search starts in the root of the Y-structure and follows a path
down the tree. At each node on this path, we compute its parabola segment
P. Given P, we decide if (i) £ intersects P, (ii) £ is below P, or (iii) £ is above
P. If (i) holds, then P = P(a,b,c), and the search terminates. If (ii) holds,
then the search proceeds to the left child of the current node. Otherwise,
if (iii) holds, the search proceeds to the right child. (Here, we assume for
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simplicity that the line ¢ intersects the parabola segment P(a,b,c) in its
interior; see Exercise 11 below.)

Having found P(a,b,c), we delete it from the Y-structure, and, if a # ¢,
delete its circle event from the X-structure. Then we insert the new parabola
segments P(a,b,p), P(b,p,b), and P(p,b, ¢) into the Y-structure. Finally, we
compute the circle events of P(a,b,p) and P(p,b,c), and insert those that
are to the right of the sweep line into the X-structure.

The circle event of, say P(a,b,p), is computed as follows. Compute the
circle C' through a, b, and p. Let m = (mj, ms) and § be the center and
radius of C, respectively. Then the circle event of P(a, b, p) has z-coordinate
my + (5

Case 2: The next transition point is a circle event, i.e., the sweep line
encounters the rightmost point of the circle through three points, say a, b,
and c. In this case, the parabola segment P(a, b, ¢) disappears from the beach
line.

We do the following; refer to Figure 14. First, we output the center
v of the circle through a, b, and ¢ as a Voronoi vertex. With v, we also
output the points a, b, and ¢, because they define the three Voronoi edges
that are incident to v. Then we search in the Y-structure for the successor
parabola segment P(b, ¢, d) of P(a,b, c). Similarly, we search for the predeces-
sor P(e,a,b) of P(a,b,c). We assume for simplicity that both the successor
and the predecessor exist.

We delete P(a,b,c) from the Y-structure and, if b # d resp. e # b, delete
the circle events of P(b,c,d) and P(e,a,b) from the X-structure. The node
of the Y-structure representing P(b, ¢, d) stores the triple (b, ¢, d). We replace
this triple by (a,c,d), because P(a,c,d) is a new parabola segment on the
beach line. Similarly, in the node representing P (e, a, b), we replace the triple
(e,a,b) by (e,a,c).

Finally, if @ # d, we compute the circle event of P(a,c,d). If it is to the
right of the sweep line, then we insert this event into the X-structure. If
e # ¢, then we do the same for P(e, a, c).

Exercise 11 Work out the details for Case 1 if the line ¢ intersects P(a, b, c)
in one of its endpoints. (Hint: In this case, we have found a new Voronoi
vertex.)

The complete algorithm for computing the Voronoi vertices has a form
that is similar to the Bentley-Ottmann algorithm for computing intersections
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SL

Figure 14: How to handle a circle event.

of line segments.

To initialize the algorithm, we store all points of S in the X-structure,
sorted from left to right. At this moment, the Y-structure is empty, and
the X-structure does not contain any circle event. After the initialization,
there is a while-loop. In each iteration, we take the leftmost element in the
X-structure, delete it, and process it as described above.

We analyze the complexity of the algorithm. The initialization takes
O(nlogn) time. The number of iterations is O(n), because of the following
reason. Clearly, there are n site events. For each circle event for which the
sweep line halts, we find a new Voronoi vertex. Then Theorem 2 implies that
the number of these circle events is at most 2n — 4.
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During one iteration, we insert at most a constant number of elements
into the X- and Y-structures. Hence, at any moment, these structures store
O(n) elements and, therefore, we can search and update them in O(logn)
time per operation. During one iteration, we perform at most a constant
number of operations in the X- and Y-structures. Therefore, the complete
while-loop takes O(nlogn) time. This shows that the entire algorithm has
running time O(nlogn).

At this point, we still do not have the complete Voronoi diagram. Our
algorithm only computes the Voronoi vertices and for each such vertex, the
three points of S that define it. (Observe that this implies that we have
basically constructed the Delaunay triangulation of S.) It is, however, not
difficult to compute the Voronoi edges from this information.

Theorem 3 The Voronot diagram of any set of n points in the plane can be
constructed in O(nlogn) time using O(n) space.

4.3 Some final remarks about the algorithm

The analysis of our sweep algorithm is not complete. We used the fact that
a new parabola segment can only appear on the beach line if the sweep line
encounters a new point of S. Although intuitively this should be true, it
has to be proved. To be more precise, we have to show that a new parabola
segment cannot enter the beach line through the “back door”. By considering
the derivatives of the parabola equations (which depend on the distances to
the sweep line), it can be shown that this indeed cannot happen.

We also used the fact that a parabola segment P only disappears from
the beach line if the two adjacent segments have a point of P in common.
To prove this fact, we must show that a parabola segment cannot disappear
because of a parabola that comes through the back door. Again, this can be
proved by considering the derivatives of the parabola equations.

We have described the algorithm for constructing the Voronoi diagram for
point sets that satisfy Assumption 1. This was crucial for two reasons. First,
if no three points of S are collinear, then the circle events are always well-
defined. Second, if no four points are cocircular, then all Voronoi vertices have
degree three. The algorithm can be adapted so that it computes the Voronoi
diagram of any point set. Then, however, more cases must be considered and
the analysis becomes more complicated. The treatment of special cases is a
general problem that has to be dealt with when implementing almost any
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geometric algorithm. Another problem that arises is that of finite precision
arithmetic. We assumed that all computations are done exactly, which is of
course not realistic.
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