Implementing dictionaries using hashing

Michiel Smid*

June 8, 2004

1 Introduction

These notes are based on Mehlhorn [5].

Many algorithms manipulate sets. For example, a compiler uses a symbol
table to keep track of the identifiers that are used in a program. Identifiers
are strings of letters and digits. With each identifier, associated information
such as type, scope, and address, is stored. As another example, the cata-
logue of a library maintains, among other things, names of authors. With
each author, associated information such as title and ISBN number is stored.
Typical operations that have to be supported in such applications are:

access(x,S): ifx € S, then return the information associated with x. Oth-
erwise, report that x is not an element of S.

insert(x,S): insert element x into S, i.e., set S :=S U {x}.

delete(x,S): delete element x from S, i.e., set S:= S\ {x}.

A data structure that supports these three operations is called a dic-
ttonary. In this chapter, we do not consider the associated information of
keys. That is, we identify each element of the set with its key. There are
basically two ways of implementing dictionaries.

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: michiel@scs.carleton.ca.

Hashing. This gives a very fast implementation. It works, however, only
for sets that come from a finite universe, say K=1[0...N —1].

Search trees. These are slower, but work for arbitrary universes, and are
more flexible. For example, if element x is not contained in S, then the
operation access(x,s) returns the smallest element y € S such that y > x,
or the largest element z € S such that z < x. Using hashing, we only get
the message that x is not an element of S. In many applications, it is useful
to find the successor or predecessor of x, in case x & S.

2 Ingredients of hashing

Let N be a positive integer. We want to maintain a subset S of the universe
K =[0...N — 1] under the operations access, insert, and delete.

Here is a trivial implementation. We use an array A[0...N — 1], where
Alil =1ifi € S, and A[i] =0ifi ¢ S. Clearly, all three operations take O(1)
time. The amount of space used, however, is @(N). That is, the amount
of space used is independent of the size of S. We want an implementation
that uses O(|S|) space, because in many applications, the size of S is much
smaller than the size of the universe. (This is certainly true for the examples
given in Section 1.)

In this chapter, we show how to achieve O(|S|) space using hashing. For
hashing, we need

1. a hash table, which is an array T[0...m — 1], and
2. a hash function, which is a function h: K — [0...m —1].

Given the hash table and hash function, we store a subset S of K by storing
element x € S in T[h(x)].

Example 1 Let N = 100, K = [0...99], m = 7, h(x) = x mod 7, and
S ={3,19,22}. Then the hash table looks as follows.

22

19

oo W NDFO
w

The operation access(x, S) is easy: Given x, compute h(x), and look in T
at position h(x), i.e., look up T[h(x)]. Then, x € S if and only if T[h(x)] = x.

How do we insert an element? Consider our example, and assume that
we want to insert element 17. We see that h(17) = 3, and that position 3 of
T is occupied already, by element 3. Hence, there is a problem if there are
elements x,y € S, x #Zy, such that h(x) = h(y). Such an event is called a
collzsion. There are three methods to deal with collisions.

Open addressing. Here, we use two hash functions hy and h,. If we
want to insert element x, then we try the table positions

hy(x), (hi(x) + ha(x)) mod m, (hq(x) + 2hy(x)) mod m, ...,

until we find a position that is not occupied. (Of course, we may not find
such a free position.) For details of this technique, see [1, 5].

Chaining. This technique will be described in Section 3.

Perfect hashing. This technique will be presented in Section 4.

3 Hashing with chaining

Let the universe be K=1[0...N—1],andlet h: K — [0...m — 1] be a hash
function. In hashing with chaining, the hash table T[0...m — 1] is an array
of linear lists. That is, T[i] is a (pointer to a) list that contains all elements
x of S for which h(x) =1.

Example 2 Let N = 100, K = [0...99], m = 7, h(x) = x mod 7, and
S ={3,19,22,24,40}. Then the hash table looks as follows.

———[22]
-5 [24]
(0] —[19]

OO |W(N |~ O

The operation access(x,S) is processed as follows:
1. Compute h(x).
2. Search for x in the list T[h(x)].

The operations insert(x,S) and delete(x,S) are implemented in a similar
way. In case of an insertion, we first check if x occurs already in S, by
calling access(x,S). If x ¢ S, then we add x at the end of the list T[h(x)].
To delete element x, we find x in T[h(x)], and then delete it from this list.

The time for one operation is equal to the time to compute h(x) plus
the time to search the list T[h(x)]. Clearly, the size of T[h(x)] can be pro-
portional to the size of S. Hence, the worst-case time for an operation is
linear in the size of S. The average case behavior, however, is much better.

Assumption 1 We analyze the complezrity of a sequence of n inser-
tions, starting with an empty table, under the following assumptions.

1. For each x € K, h(x) can be computed in O(1) tzme.

2. The hash function h distributes the universe K uniformly over the
hash table, i.e.,

h1{1) = [K|/m for alli, 0 <i<m.

3. The elements are drawn uniformly and independently from K.
That 1s, each element of K has a probability of 1/N for being
chosen as the next element to be inserted.

We will discuss these assumptions at the end of Section 3.3.
For elements x and y of K, we define

1 if x #y and h(x) = h(y),
0 otherwise.

n(x,y) = {

Moreover, we define
Sn(x,S) =Y Bnlx,u).
yes
Hence, if the hash table T stores the set S, and x ¢ S, then &,(x,S) is
the length of T[h(x)]. Therefore, the insertion of a new element x takes
O(1 + dn(x,S)) time.

What is the expected time for n insertions? To answer this question,
we choose elements x1,x2,...,X, uniformly and independently from K, and
compute the expected value of the random variable &y, (xi+1,{x1,...,%i}), for
eachi, 0 <i<n

For each T < j < n, let p; := h(x;). The following observation follows
from the second and third items in Assumption 1.

Observation 1 For each j, 1 <j < n, the random variable p; 15 uni-
formly distributed in [0...m —1], t.e., it takes any value n [0...m —1]
with probability 1/m.

3.1 Analyzing the expected insertion time

Recall that

o
E(Sn(xisn, (1,0 xi))) = Y L Pr(Sn(xisn, {x1,.. i) =).

1=0
Let 0 < p < m. What is the probability that among p1,p2,...,pi, there
are exactly | elements that are equal to p? Note that there are ({) ways of
choosing 1 elements from p1,p2,...,p;. Assume we have chosen 1 elements.
Then for each of them, say p;, the probability that p; = p is equal to 1/m.
For each of the remaining i — 1 elements py, the probability that py # p is
equal to 1 —1/m.

Therefore, the probability that among p1,p2,...,pi, exactly | elements

are equal to p is

({) (1/m)H(1 = 1/m)
From this, we obtain the expected value of &y (xi1,{x1,...,xi}):
E(éh(xi+1) {X]) v)Xi})]

= Z L-Pr(dn(xiy1,{x1,...,x}) =1)
=0

o0
= Z L - Pr(after i insertions, T[h(xi11)l| =1)
1=0

= Z 1. Pr(among p1,...,pi, exactly 1 elements are equal to pi;1)

1=0
= Zl () 1/m)t(1 = 1/m)*
=0
= —Z g (/= 1w
1 1— - i-1—(1—
= a;<l_1>(”m)”““/m) B
= i/m, (1)

because for i > 1,

It follows that the expected time for the (i + 1)-st insertion is bounded by
O (14 E(dn(xi+1,{x1,...,x}))) = O(1 +i/m).

This is also true for the first insertion, i.e., if i = 0. Hence, the total expected
time for n insertions is bounded by

n—1 n—1
0 (Z (1 —I—i/m)) =0 <n+ (1/m)Zi> =0 (n+n?/m) = O(n+pn),

i=0 i=1
where 3 := n/m is the load factor of the hash table. Note that p is the
expected length of any list in this table.
The expected time for one insertion, say the (i + 1)-st one, is bounded
by
O1+i/m)=0(1+@{/n)-B)=0(1+B).

!Here we use Lemma 1.

3.2 A simpler analysis of the expected insertion time

We now give an alternative and simpler proof of (1). For 0 < p < m, let
L, (i) be the length of the p-th list after i insertions. Then L, (i) is a random
variable, and we showed above that

Pr(L,(i)=1) = <{) (1/m)t1 —1/m)t

From this, we computed the expected value of

E(Lp (1)) = E(On(xit1,{x1,. .., x1})).

The following computation is much simpler. First observe that, by symme-
try,
E(Ly(i)) =E(Lg(i)) forall 0<p<g<m-—1.

Since Lo(i) + L1(1) + L2(i) + -+ - + Lin—1 (i) =1, it follows that

i = E@{)
= E(Lo()+LiD) 4+ +Lna(i)
= E(Lo(})) + E(L1 (1) + -+ + E(Lm—1 (1))

Since all terms in the latter summation are equal, we get E(L,(i)) = i/m,
which is exactly what we got in (1).
In this derivation, we used the so-called linearity of expectation:

Lemma 1 Let X and Y be random variables, both having a finite ex-
pected value. Then
E(X+Y)=E(X)+E(Y).

Proof. We will give the proof for the case when X and Y both take non-
negative integer values. Recall that E(X) =) °,i-Pr(X =1i), and E(Y) =
201 - Pr(Y =3j). Moreover

E(X+Y):ik-Pr(X+Y:k).
k=0

Since

k
Pr(X+Y=k)=) Pr(X=1iand Y=k—1),
i=0

we get

oo k
E(X+Y) = > > (i+k—1)-Pr(X=iand Y =k —1)

+ii(k_i)-Pr(XziandY:k—i).

In the first summation, we introduce a new variable j = k —1i. Then this
summation becomes

o0 o0 o0
> i) Pr(X=iandY=j)=) i-Pr(X=1)=E(X).
i=0 j=0 i=0

In the second summation, we do the same, which gives

iii-PI(X:iandY:j) = ijiPr(X:iandY:j)

i=0 j=0 j=0 i=0
o0
= > j-Pr(Y =j)
j=0
= E(Y).
This shows that E(X + Y) = E(X) + E(Y). |

We summarize our results. If Assumption 1 holds, then the expected
time for one insertion is O(1 +), where = n/m is the load factor of
the hash table, and n is the size of the set S. The same time bound can
be proved for access and delete operations, under the assumption that we
search or delete a random element. Hence, if 3 is bounded by a constant,
say f < 1, then the expected time for one operation is O(1).

What can we say about the space complexity? We assume that the hash
function h takes O(1) space to store. (For hashing with chaining, this is a
reasonable assumption.) The hash table T, together with the linear lists,
has size O(n + m). Hence the entire data structure has size

O1+n+m)=0(n+n/B).

If B is not too small, say 3 > 1/4, then the space bound is linear in the size
of S, i.e.,, O(n). This leads to the following problem.

Problem 1 Can we guarantee that 1/4 <p <17

3.3 The halving-doubling method

If we insert or delete an element, then the value of n and, hence, that of
changes. What do we do if 3 becomes too small or too large? The solution
is simple: We just build a new hash table, with a new value of m. Hence,
we also choose a new hash function h. This technique is known as the
halving-doubling method, and it can be applied in many other situations.
The details are as follows.

For each i > 1,let h; : K = [0...2'—1] be a hash function. Let n be the
current size of S, and let i be an integer such that 22 < n < 2t. Then we
store the set S in a hash table T;[0...2'—1] using the hash function h;. Note
that the load factor indeed satisfies 1/4 < f < 1: We have f =n/2' < 1,
and)

pons 2]
2t — 21 4’
If the value of n becomes 2!, then we double the size of the hash table.
That is, we build a new table Ti41[0...2"" — 1] using the hash function
hit1. (Such a rebuilding is called a rehash operation.) Note that then
21 < n < 211, Hence, if we increase i by one, then the new hash table
satisfies our constraint.

Now suppose that the value of n becomes 2=2. Then we rehash the
elements into a new table T;_¢[0...2" 1 — 1] using the hash function h; 1.
That is, we halve the size of the hash table. Again, it is clear that now
213 < n < 21, Hence, we can decrease i by one.

It is clear that a rehash operation can be performed in O(n) time. Hence,
we have achieved the following.

1. If we do not rehash, then one operation takes O(1) expected time.
2. A rehash operation takes O(n) time.
3. The data structure uses O(n) space.

During an access operation, we never rehash. Therefore, the expected time
for each access operation is bounded by O(1).

Let us analyze the ezpected amortized time for an insertion or deletion.
Consider a rehash operation, and let T; be the rebuilt hash table. At this

moment, n = 21" 1. If we rehash again, n must have been decreased to 2V 2,
or increased to 2. Let k be the number of updates that have taken place
between these two rehash operations. Then

k > min (2H 22t 2“) —2v2 > /4,

Hence the total expected time for the first rehash operation and the sequence
of k updates until the next rehash operation is bounded by O(n+k) = O(k).
Hence, if we amortize over the length k of the sequence, then we see that the
expected amortized time for an insertion or deletion is bounded by O(1).

Exercise 1 Prove the bound on the expected amortized update time using
a potential function.

We have proved the following result.

Theorem 1 If Assumption 1 holds, then hashing with chaining achieves
1. O(1) ezxpected time for an access operation, and
2. O(1) expected amortized time for an insertion or deletion,
3. using O(n) space.

Is Assumption 1 reasonable? Suppose that m divides N. Then the hash
function h(x) = x mod m satisfies the first and second item. If m does not
divide N, but N is much larger than m, then the second item is “almost”
satisfied for h(x) = x mod m. The third item is more critical, because it
postulates a certain behavior of the user of the hash table. In general,
the exact behavior is not known at the moment when the hash table is
constructed. Therefore, one has to be very careful when applying hashing
with chaining.

3.4 The expected length of a longest list

We have seen that the expected length of an arbitrary list in the hash table
T[0...m— 1], when storing n elements, is equal to n/m = 3. What can we
say about the expected length of a longest list? This length is a measure
for the expected worst-case time for an operation. As before, our analysis
uses Assumption 1.

10

Let S C K be a random subset of size n. Assume that § = n/m < 1.
For 0 <p <m—1, let L, be the number of elements of S that are stored
in the p-th list of the hash table T. Then we are interested in the expected

value
E(max Lp)
0<p<m—1

of the random variable maxo<p<m—1Lp.
The following lemma turns out to be useful.

Lemma 2 Let X be a random variable that takes non-negative integer
values. Then

E(X) = i Pr(X > k).
k=1

Proof. Since
Pr(X=k)=Pr(X>k)—Pr(X>k+1),

we have

E(X) = ik- Pr(X = k)

k=0
[

=) k- (Pr(X>k)—Pr(X > k+1))

k=1
[’}

= Y kePrX2k)- Y (1) PrX)

k=1 j=2

= i Pr(X > k).
k=1

Let k > 1 be an integer. Then

Pr(L, > k) < (L‘) (1/m).

Combining this with

m—1

P L, > < Pr(L, >

r(oﬁ%ﬁ] P _k> - Zo Hbp 2 k),
p:

11

we get

Pr(max Lpzk) < m(n)ﬂ/m)k

0<p<m—1 k
nn—1Nmn-2)---(n—k+1)
kimk-1

nk

k!mk-1
(n/m)<1

R

< n/k!,

IA

where the last inequality follows from the fact that 3 < 1. Using Lemma 2,
we get

M

Pr(max Lp2k>

E max L, =
0<p<m—1 0<p<m—1

x
)

M

min(1,n/k!). (2)

~
Il

1

Theorem 2 If Assumption 1 holds, and if 3 < 1, then the ezpected
length of a longest list in the hash table is bounded by O(logn/loglogn).

Proof. We have to show an upper bound of O(logn/loglogn) on the
summation (2). Let i be the largest positive integer such that n/il > 1.

Since .
i 1
> (- 3
> (3), Q
it follows that n > (i/e). Hence,
1= 0O(logn/loglogn). (4)

We conclude that

) min(1,n/k!)

k=1

o0
= i+) /Kl

k=i+1

12

i+ i i+ 1/k!

k=i+1

IA

1 1 1
TR N R CRNR) N G| GRS [R
< AHT1H1/241/22 41728 4.
= i+) (1/2)"

k=0

= i+2
= Of(logn/loglogn).

= i+1+

Exercise 2 Prove (3) and (4). Hint: To prove (3), take logarithms, and es-
timate the sum by an integral. To prove (4), assume that i > clogn/loglogn
for an appropriate constant c. Then show that ilog(i/e) > logn, which is
a contradiction.

Remark 1 We have proved an upper bound on the expected length of a
longest list in the hash table. Gonnet [4] has shown that, if 1/4 < g <1,
this expected length is in fact ©(logn/loglogn).

We can interpret this result as follows. Assume we have n balls and n
buckets. We throw these balls, randomly and independently, in the buckets.
Then any fixed bucket contains, expected, exactly one ball. On the other
hand, the bucket with the largest number of balls contains, again expected,
O(logn/loglogn) balls.

4 Perfect hashing

In the previous sections, we have seen a hashing scheme, which is efficient
provided Assumption 1 holds. In this section, we will design a hashing
scheme that is efficient for any set S.

Recall the ingredients of hashing. We have a universe K =[0... N — 1]
and a hash function h: K — [0...m — 1]. A subset S of K, having size n, is
stored in a hash table T[0...m — 1] by storing element x of S in T[h(x)]. In
order to guarantee a data structure of size O(n), the load factor § = n/m
must be bounded from below by a constant. A problem arises, if there are

13

two distinct elements x and y in S such that h(x) = h(y). Can we avoid
such collisions?

Assume that n < m. Then, if the hash function h is injective on S,
there are no collisions. Clearly, such an injective function exists. However,

1. how much space do we need to specify such a function?
2. how much time do we need to find such a function?
3. given an element x, how much time do we need to compute h(x)?

In this section, we will show that an injective function h can be computed in
O(n) expected time (or O(nN) deterministic time), that needs O(n) space
to be stored, and that can be evaluated in O(1) time.

We start with the static case, i.e., there are only access operations. The
construction is due to Fredman, Komlés and Szemerédi [3].

4.1 The main lemma and its consequences

Let N be a prime number, and S a subset of the universe K=[0...N —1],
having size n. For each k, 1 <k < N — 1, we define

hi(x) := ((kx) mod N) mod m.
Furthermore, for each k, 1 <k <N —1,and i, 0 <i<m—1, we define
bri={xeS:h(x) =1).

The final injective hash function will be based on the functions hy. Note
that blf is equal to the number of elements of S that are mapped, by hy, to
i. We want a value of k, such that b]f is “small” foralli, 0 <i<m-—1.
The following lemma is the basis for the fact that such a k exists and can
be found efficiently.

Lemma 3 We have

Ni]mﬁ]bkbk <2t =1 Ny
DD bEbE-1) <2 (N-1).

k=1 i=0

14

Before we prove this lemma, let us see what it says. First note that
ZI“O] bk =n. Imagine the b¥ as arbitrary numbers such that Z{lgl bk =
n. The sum) [, bk(bk 1) is minimal if all bl are equal, i.e., equal to
n/m. In this case, the double sum in the lemma is equal to

_n

]:;111_ %(_—]> (N—])m%(%—])~%z(]\]_]).

Hence, the lemma says that the double sum is (approximately) at most twice
its minimal possible value.
Proof. Since

bE(Y — 1) = {(x,y) 1 %,y € S,x # y, hi(x) = h(y) = i},

we have

= h(y) =1}

Il
=
=
<
x
(=t
m

wm

x
S
(et
g

= {(x,y) : x,y € S,x #y, i (x) = hy(y)}

= Z fk:1 <k <N—=1h(x) =h(y)}l.
(x,y)€SXS,x#y

Let x,y € S, x # vy, be fixed. How many k, 1 < k < N — 1, are there
such that hy(x) = hy(y)? Note that

hi(x) = hy(y) if and only if ((kx) mod N — (ky) mod N) mod m = 0.
Define g(k) := (kx) mod N — (ky) mod N. Then
g(k) mod m =0 if and only if g(k) = jm for some integer j.
Since 0 < kxmod N < N—1and 0 < kymod N <N — 1, we have
-N+1<g(k) <N-1.

Moreover, g(k) # 0. (For, if g(k) = 0, then k(x —y) mod N = 0. Hence,
since N is a prime, we have kmod N = 0 or (x —y) mod N = 0. But,

15

1T<k<N-17,0<x<N-=-1,0<y <N-1, and x # y. Hence,
k mod N # 0 and (x —y) mod N # 0. This is a contradiction.)

It follows that g(k) mod m = 0 if and only if g(k) = jm for some integer
j # 0 that satisfies (—N+1)/m <j < (N —1)/m. We claim that for each j,
there is at most one k € [1...N — 1] such that g(k) =jm.

To prove this, let ki and k, be elements from [1...N — 1] such that
g(k1) = g(k2). Then

(k1x) mod N — (kqy) mod N = (kox) mod N — (kyy) mod N,
which can be rewritten as
(k] — kz)(X —y) mod N = 0.

Since N is a prime, (k1 — ko) mod N =0 or (x —y) mod N = 0. We saw
already that (x—y) mod N # 0. Therefore, we must have (k;—k;) mod N =
0. Since 1 <k; <N—-Tand 1 <k; <N —1, it follows that k; = k,. This
proves the claim.

We conclude that the number of k, 1 < k < N — 1, such that hy(x) =
hy(y) is at most equal to the number of integers j # O such that (—N +
1)/m <j < (N —1)/m. Therefore,

N—1m—1
>) bEbE-1) = > k1<K <SN—Th(x) = hy(w)}
k=1 1=0 (%,y)ESXS,x#y
N -1
< R
< > 2
(x,y)€SXS,x#y
-2 M(N —1).
m
This completes the proof. |

For T<k<N-1,let

m—1
Bi:=) bi(b¥—1).
i=0

Then, Lemma 3 says that

! nn-—1)
D Bk SZT(N —1).
k=1

16

Corollary 1 1. There exists a k, 1 < k < N — 1, such that By <
2n(n—1)/m.

2. There are at least (N —1)/2 values of k, 1 <k < N —1, such that
By <4dn(n—1)/m.

Proof. The first claim is equivalent to the fact that there is at least one By
which is at most equal to the average value of all By's.

To prove the second claim, first note that By > O for all k. The second
claim is equivalent to saying that at least 50% of the By’s are at most twice
the average value of all By’s. We prove the latter statement. Let

A={k:1<k<N-1Bx <4dn(n-—1)/m}
Then

—1
ZBkz ZBkz (N—1—|A])4n(n —1)/m.

N
k=1 kgA

On the other hand, Lemma 3 says that

i nn-—1)
k=1

Combining these inequalities gives

(n—1)

(N—]—\A|)4n nn-—1)
m

m

<2

(N_]))

which can be rewritten as |A| > (N — 1)/2. This is exactly what we wanted
to show.]

We now show that a value of k as in Corollary 1 can be computed
efficiently.

Corollary 2 1. In O(m+nN) deterministic time, we can compute a
k, 1 <k <N-—1, such that B, <2n(n—1)/m.

2. In O(m +n) ezpected time, we can compute a k, 1 <k < N -1,
such that By <4n(n—1)/m.

Proof. By Corollary 1, there exists a value of k such that By < 2n(n—1)/m.
The following exhaustive search algorithm finds such a k:

17

Algorithm findk:

(* this algorithm finds a value of k such that By < 2n(n —1)/m %)
for i:=0to m— 1 do T[i] := 0 endfor;

for k:=1to N —1 do test(k,2n(n —1)/m) endfor

The procedure test(k, upper) is defined below. If this procedure is called,
then there is a table T[0...m—1] such that T[i] = O for all i. The procedure
tests if By < upper. If so, it returns k. Otherwise, it resets all T[i] to zero.

Algorithm test(k, upper):
B:=0;
for all x € S
do i:= hy(x);
TAl:=TH + 1,
B:=B+TH]-(TH]—-1)—(THA]—1) - (TH]—2)
endfor;
if B < upper
then return k
else for all x € S do T[hy(x)] := 0 endfor
endif

The procedure test has a running time of O(n). The initialization of
algorithm findk, i.e., the first for-loop, takes O(m) time. Since there are at
most N —1 calls to test, the total running time is bounded by O(m +nN).
This proves the first claim.

We know from Corollary 1, that there are at least (N — 1)/2 values of
k such that By < 4n(n — 1)/m. The following randomized algorithm finds
such a k:

Algorithm randomfindk:

(* this randomized algorithm finds a value of k such that
B <4dn(n—1)/m %)

for i:=0to m— 1 do T[i] := 0 endfor;

while true

do choose a random kin [1...N —1];
test(k,4n(n —1)/m)

endwhile

18

In one iteration of the while-loop, the probability that the algorithm
chooses a “good” value of k is at least 1/2. Therefore, the expected number
of iterations is at most 2. Hence, the expected running time of the algorithm
is bounded by O(m + n). [|

Remark 2 The running time of algorithm randomfindk depends on coin
flips made by the algorithm. It does not, however, depend on the set S. That
is, no distribution for S is assumed. For any set S, the expected running
time is O(m +n).

Until now, we did not specify the value of m. In the next two corollaries,
we consider two cases, m ~n? and m = n.

Corollary 3 1. Let m=n(n—1)+ 1. In O(n? +nN) deterministic
time, we can compute a k, 1 <k < N —1, such that the function
hi(x) = ((kx) mod N) mod m s njective on S.

2. Let m=2n(n—1)+1. For at least (N —1)/2 values of k, 1 <k <
N —1, the function hy is injective on S. One such k can be found
in O(n?) ezpected time.

Proof. According to Corollary 2, we can find in O(m+nN) = O(n? +nN)
time, a value of k such that
(n—1) nn-—1)

n
By <2 =2 2.
k= m n(n—1)—l—1<

Note that By = Y 1™, b¥(bX — 1), where the b¥ are non-negative integers.
We claim that bX € {0,1} forall 0 <i<m—1.
To prove this claim assume there is an index j such that b}‘ > 2. Then

m—1
B =) bi(bE—1)>blbl—1)>2,
i=0
which is a contradiction.
The fact that b{‘ €{0,1} for all 0 <1< m—1, means that the function
hy is injective on S. This proves the first claim. The second claim can be
proved in a similar way. |

We were looking for a hash function that is injective on S. Corollary 3
gives us such a function. This function, however, leads to a load factor

19

f = n/m which is proportional to 1/n. This is not what we want, because
by using this hash function, the hash table will have size O(n+m) = O(n?).

Corollary 4 Let m =n.

1. In O(nN) deterministic time, we can compute a k, 1 <k <N -1,
such that By < 2(n—1).

2. In O(n) expected time, we can compute a k, 1 <k <N —1, such
that By < 4(11—])

Proof. Apply Corollary 2 with m =n. |

4.2 A two-level injective hash function

We are now ready to give the injective hash function we were looking for.
Corollaries 3 and 4 suggest the following two-level scheme. (We only give
the randomized version.)

Level 1: Compute a hash function hyi(x) = ((kx) mod N) mod n such
that By < 4(n —1). (By Corollary 4, such a hash function exists, and can
be computed efficiently.)

Level 2: Foreachi, 0 <i<n-—1,let W;:={x € S:hg(x) =1}, by := Wiy,
and m; := 2b;(b; — 1) 4 1. Note that 31" b;(b; — 1) = By..
For each 1, 0 <i <mn —1, compute a hash function

x — ((kix) mod N) mod m;

that is injective on W;. (By Corollary 3, such a hash function exists, and
can be computed efficiently.)

The hash table: Let m := Z{‘;o] m; and s; := Z —omy, for 0 <i<n.
The hash table T[0...m — 1] stores the elements x of S as follows. (See
Figure 1.)

1. compute i:= ((kx) mod N) mod n.

2. compute j := ((kix) mod N) mod m;.

20

50:20

((kox) mod N) mod my

S1 =My

((k1x) mod N) mod m;

((kx) mod N) mod n |
2 =mp + My

Sn—1

b Wa ((kn—1x) mod N) mod m,_q

Figure 1: A perfect hash table.

21

3. store x in T[s; +jl.

Exercise 3 Convince yourself of the fact that the complete hash function
is indeed injective on S.

How much space do we need to store the hash function and the hash
table? First note that

n—1 n—1
m=) mi=) (2bi(bi—1)+1)=2Bx+n,
i=0 i=0

which implies that
m<2-4n—1)+n=Mm-38.

Since m > n, the load factor lies in between 1/9 and 1.
The entire data structure is specified by the following:

1. N, n, and k.

2. Three arrays storing the sequences ko, k1,...,kn_1, Mg, my,...,my 1,
and sg,S7,...,Sn-

3. The table T[0...m — 1] containing the elements of S.

Hence, the total amount of space used is
3+2n+(n+1)4+m=4+3n+m<4+3n+9n—-8=12n—4=0(n).
Remark 3 Since m; = si1—sj, we do not have to store the m;’s explicitly.

The search time is easy to analyze: In order to search for an element
x, we make two multiplications, four integer divisions, and one addition.
Hence the time for an access operation is O(1).

Finally, we bound the expected time to construct the data structure.
By Corollary 4, it takes O(n) expected time to find an integer k for which
By < 4(n—1). Given this k, the sets W;, the values b; and m;, 0 <i<n-1,
and the values s;, 0 < 1 < n, can be determined in O(n) time. Then, by
Corollary 3, for each 1, the integer k; can be found in O(biz) expected time.
Finally, the table T can be filled with the elements of S in O(n) time. This

22

proves that the expected time to build the entire data structure is bounded

by
n—1
@) (n + Z bf) .
i=0

Note that z2 < 2z(z — 1) + 1 for all real numbers z. Therefore,

—_

b? bi(by—1)+1) =2Bx +n.
i=0 i
It follows that the expected building time is bounded by O(n+By) = O(n).

We summarize our result. (We have only analyzed the randomized con-
struction. The proof for the deterministic construction is similar.)

3

n—

H
I
o

Theorem 3 Let N be a prime number, and S a subset of [0...N—1] of
s1ze n. A perfect hash table for S can be built in O(nN) determzmstzc
time (resp. O(n) expected ttme). The data structure has size O(n) and
each access operation can be processed in O(1) worst-case time.

4.3 Dynamic perfect hashing

We have proved Theorem 3 for the case when the set S is fixed. In this
section, we consider the case when also insertions and deletions have to be
supported. The results of this section are due to Dietzfelbinger et al.[2].

We first consider a somewhat simpler problem. Let S = {x1,x2,...,%Xn}
be a subset of the universe K. We want to build a perfect hash table on-line.
That is, we start with an empty hash table, and insert x,xy,..., %, in this
order. When we insert element x;, we only know the elements x1,...,x;_1.
The value of n is known at the start of the algorithm.

The basic approach is similar to the halving-doubling method of Sec-
tion 3.3. If Bx > 4(n — 1), or if our hash function is not injective on the
current set {x;,...,%}, then we rebuild the complete, or a part of the cur-
rent hash table. We take care that such rebuildings do not occur too often.
In this way, the amortized insertion time will be low. The algorithm is given
in Figure 2.

Remark 4 If the function ((kix) mod N) mod m; is not injective on Wj,
then we have to find a new hash function for W;. We choose a random k;
and check if it is a good choice. Of course, we want the probability of a

23

Algorithm BuildTable:

choose a random kin [1...N —1];

fori:=0ton—1

do W;:=0; b;:=0; m; :=1; s; :=1;
choose a random k; in [1...N —1]

endfor;

m:=n; B:=0;

(+ B=Y by(b;—1) %)

for 1:=1 to n do nsert(x;) endfor

Figure 2: Building a hash table on-line. The procedure insert is given in
Figure 3.

random k; being “good” to be sufficiently large, say at least 1/2. Note that
with each insertion into Wi, the value of b; increases. Therefore, in order
to apply Corollary 3, we also increase m; from time to time. It turns out
that doubling m; guarantees a linear space bound.

We analyze the complexity of the insertion algorithm. Consider the
fragment starting at TryAgain. There, we choose a random k; and test
if it is a good choice. One such test takes O(b;) time. (Note that either
Tlsi...s; + my — 1] is empty already, or we can make it empty in O(b;)
time.) Corollary 3 implies that a random k; induces an injective function
on W; with probability at least 1/2. It follows that, on the average, at most
two tries are needed to find a good k;. That is, during an insertion into W;,
we spend O(b;) expected time for finding a new hash function for W;.

Let b{ be the final value of by, i.e., the value of b; after all n elements
have been inserted. Then b; runs from zero to b{. The total expected time
for finding new hash functions for Wj, during all insertions, is bounded by

0]bg:] =0 ((b{)z) .

The complete hash table is rebuilt if B > 4(n — 1). By Corollary 4, a
random choice for k gives

n—1
B :=) bi(b{-1)<4mn—1)
i=0

24

Algorithm insert(x;):
i:= ((kx;) mod N) mod n;
j := ((kix1) mod N) mod my;

Wii=WiU{x};
B:=B+ Zbi;
by :=b;+1;

(* B=2_bi(bi—1) %)
if B>4(n—1)
then (x try another k x)
BuildTable
endif;
if T[s; +j] is free
then store x; in T[s; + j]
else (* the function ((kix) mod N) mod m; is not injective
on W;. See Remark 4. x)
if my < 2bi(by—1)+1
then (* we have to increase m; x)
my :=4bi(b; — 1)+ 1;
sii=m;
m:=m-+my
(x we reserve T[s;...m — 1] for the new table for W; x)
endif;
TryAgain: choose a random ki in [1...N —1];
make T[s;...s; + my — 1] empty;
for all x € W;
do j := ((kix) mod N) mod m;
if T[s; +j] is free
then store x in T[s; + j]
else goto TryAgain
endif
endfor
endif

Figure 3: Inserting element x; into a perfect hash table.

25

with probability at least 1/2. Since B < Bf during the algorithm, we have
B < 4(n — 1) with probability at least 1/2. Hence, we try, on average, at
most two values for k before we find a good one. (This means that the
complete hash table is rebuilt, on average, at most once.)

It follows that the total expected time for n insertions is bounded by

n—1
0 <n+ > (b{)z) =0(n+B¢) =0(n).

i=0

Equivalently, the amortized expected insertion time is bounded by O(1).
How large is the hash table? Let m;i,m;>,..., be the different values
of m; during the n insertions, and let m{ be the final value.

Claim 1 my,41 > 2-my,.

Proof. There is an integer b such that m; 1 =4b(b—1) +1. We set m;
to this value as soon as the current value of m; is less than 2b(b — 1) + 1.
Hence, mi, < 2b(b—1). |

For one set W;, we need space
Zmi,p < ZZ_PL =2-mj.
P p=0

Note that mf{ < 4bf(bf — 1) + 1. Hence for the complete set S, we need a
table of size

n—1 n—1

2-m{ <3 (8bl(b]—1)+2) <8-4(n—1)+2n < 34n.

We have proved the following result.

Theorem 4 Let N be a prime number, and S a subset of [0...N —1] of
size n. We can build a perfect hash table for S on-line 1n O(n) ezpected
time, i.e., in O(1) amortized expected time per insertion. The hash
table has size O(n) and each access operation can be processed in O(1)
worst-case time.

Remark 5 In the on-line algorithm, we assumed that the value of n is
known at the start of the construction. If this is not the case, then we

26

can apply the halving-doubling method of Section 3.3. Hence, the result of
Theorem 4 remains valid.

We only showed how to insert elements. The algorithm can be extended
to support deletions as well: To delete an element x, we first search it, and
then mark it as being deleted. If we rebuild the hash table, then we delete
all marked elements. In order to guarantee that the number of marked
elements does not become too large, we again apply the halving-doubling
method. This gives a fully dynamic perfect hash table with O(1) amortized
expected insertion and deletion time, and O(1) worst-case access time, that
uses O(n) space.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, 1990.

[2] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H.
Rohnert and R.E. Tarjan. Dynamzic perfect hashing: upper and lower
bounds. SIAM Journal on Computing 23 (1994), pp. 738-761.

[3] M.L. Fredman, J. Komlés, E. Szemerédi. Storing a sparse table with
O(1) worst case access time. Journal of the ACM 31 (1984), pp. 538-
544,

[4] G.H. Gonnet. Ezpected length of the longest probe sequence in hash
code searching. Journal of the ACM 28 (1981), pp. 289-304.

[5] K. Mehlhorn. Data Structures and Algorithms, Volume 1: Sorting
and Searching. Springer-Verlag, Berlin, 1984.

27

