Linear Programming: The Ellipsoid Algorithm

Michiel Smid*
November 29, 1999

1 Introduction
This chapter is based on the books [1, 2, 4].

Definition 1 (LP) Linear Programming is the following problem: Given
an m x n matrix A = (a;;), an m-vector b = (b, ...,b,)", and an n-vector
c=(c1,...,¢,)7, compute an n-vector x = (1,...,,)" for which

1. Az < b (component-wise), and

2. that maximizes ¢! z.

Equivalently, given A, b, and ¢, compute max{c’z : Ar < b}.

There are two special cases. The first case is when there is no = such that
Az <b. Then
max{c’z : Az < b} = max () = —oo.

The second case is when there is no upper bound on ¢’z for z satisfying
Az < b. Then, we have

max{c’z : Az < b} = oo.

The simplez algorithm, due to Dantzig (1949), is the best known algo-
rithm for solving LP’s. Its performance is very good in practice. In 1972,
however, Klee and Minty constructed an input on which the algorithm takes
exponential time. More precisely, the number of iterations on this input is
exponential in n + m. For almost all variants of the simplex algorithm, ex-
amples are known that take exponential time. It should be noted that these

*Fakultdt fiir Informatik, Otto-von-Guericke-Universitit Magdeburg. E-mail:
michiel@latrappe.cs.uni-magdeburg.de.

“expensive” inputs are artificial. On random inputs, the simplex algorithm
has (expected) polynomial running time. It is an open problem if there exists
a variant of the simplex algorithm that has polynomial running time for all
inputs.

After Klee and Minty had shown that the simplex algorithm is not efficient
in a theoretical sense, mathematicians and computer scientists started to
search for other algorithms solving LP’s. For a long time, it was an open
problem if a polynomial time algorithm exists. The problem was solved in
1979 by Khachiyan, who designed the ellipsoid algorithm. This result was a
major breakthrough in mathematical programming, although it is mainly of
theoretical interest. The running time of the ellipsoid algorithm, although
polynomial, is very high in practice. In fact, for practical instances, it cannot
compete with the simplex algorithm.

Khachiyan’s algorithm caused great excitement, not only in the world of
mathematicians and computer scientists. Newspapers and magazines such as
The Guardian, Der Spiegel, and the Nieuwe Rotterdamsche Courant wrote
about it. On November 7, 1979, the New York Times had on its front page:
A Soviet Discovery Rocks the World of Mathematics. For an account of this
excitement, see [3].

In 1984, Karmarkar designed a new polynomial time algorithm for linear
programming. This algorithm is much faster than the ellipsoid algorithm,
and it seems that in practice, it can even compete with the simplex algorithm.

In this chapter, we will consider the ellipsoid algorithm. As mentioned
already, its running time is polynomial. What do we mean by this? Consider
an LP-instance consisting of an m X n matrix A, an m-vector b and an n-
vector c. The length of this input, counted in bits, is proportional to

L :=mn+ Z [log a;;] + Z [log b;] + Z [log c;]-
ij i j

The ellipsoid algorithm has a running time that is polynomial in L.
Since we take the length of the input into account, we may assume w.l.o.g.
that:

Assumption 1 A, b, and ¢ have integral entries.

Moreover, we assume that:
Assumption 2 Fzact arithmetic is available.

This assumption can be removed, but then the details become much more
complicated. Moreover, these details do not give more insight into the nature
of the ellipsoid algorithm. Finally, we assume that:

Assumption 3 FEach arithmetic operation takes one time unit.

The running time of the ellipsoid algorithm depends on the size of the
input elements. It is not known if there exists an algorithm for LP that
makes a number of arithmetic operations that is polynomial in mn.

2 Ellipsoids

In this section, we recall some results from matrix theory, and introduce the
notion of an ellipsoid.
A real symmetric n x n matrix B is called positive definite, if

t'Bx >0 forallz € R, z # 0.

Lemma 1 Let B be a real symmetric n X n matriz. The following are equiv-
alent.

1. B 1s positive definite.
2. All eigenvalues of B are positive real numbers.

3. There is a non-singular real n x n matriz Q such that B = QQT.

A function T : R® — R” is called an affine transformation, if there is a
vector t € R, and a non-singular n X n matrix () such that

T(z) =t+ Qz, for all z € R".

The length ||z|| of a vector z € R is defined as

n 1/2
|z|| :== (fo) =VaTz.
i=1

If v € R* and r is a positive real number, then S(v,r) denotes the ball
centered at v with radius r, i.e.,

S(v,r) ={z eR": ||z —v|| < r}.

Definition 2 An ellipsoid is the image of the unit-ball S(0, 1) under an affine
transformation. That is, if T'(z) =t + Qz is an affine transformation, then

T(S(0,1)={t+Qr:2 € R" and 272 < 1}

is an ellipsoid. The vector ¢ is called the center of the ellipsoid.

3

We derive an equivalent characterization. Let y = ¢t + Qz. Then z =
Q'(y —t), and the ellipsoid can be rewritten as

yeR: (Q'w-1) (Q'w-1) <1}
{yeR": (y—t)T () Yy —t) <1}
= {yeR : (y—t)" B (y—t) <1},
where B := QQT. Since () is non-singular, B is positive definite.

The converse is also true: If B is positive definite, then there is a non-
singular real matrix @ such that B = QQ*. This proves the following lemma.

Lemma 2 For anyt € R", and any positive definite n X n matrixz B, the set
{zeR": (x —t)'B ' (z—t) <1}
15 an ellipsoid. Moreover, every ellipsoid can be written in this way.

Let us look at an example. Let n = 2 and B = (; 52;

2/9 —1/18
—1/18 5/36
ellipsoid centered at the origin is the set

). Then B

is positive definite, and B! = () The corresponding

E = {zeR:2"B 2 <1}
2 1 5
= {z¢€ R? : 5@"% — §$1x2 + %xg <1}.

The definition of ellipsoid shows us more clearly how this set looks like.
For that, we have to find the matrix @ for which B = QQ*. Since B is
positive definite, we can write B = U 'AU, where A is a diagonal matrix
containing the (positive!) eigenvalues of B, and U is an orthogonal matrix
(i.e., UUT = I) containing the normalized eigenvectors. In our case,

o (0) (8 (8 50

(s) (53) (0 3) (% %)

= Q"
o= (205 s) (05

4

where

(~4/5, 2>5>/ (3/V/5,6/V/5)
Q\//é/fv _2/\/5)

(=3/v/5,~6/V/5)

Figure 1: Applying an affine transformation to the unit-ball gives an ellipsoid.

Hence, we can write £ = {Qz : z7x < 1}. This ellipsoid is obtained from
the unit-ball S(0,1) in R?, as follows. (See Figure 1.) For each z € S(0,1),
double the first coordinate, and triple the second coordinate. Then rotate
the resulting figure using the matrix

(205 s)

The ellipsoid E' = {x € R? : (zx —)T B~!(z — t) < 1} is obtained from E by
a translation over ¢.

We need one more result, whose proof can be found in [5].
Lemma 3 The volume of the ellipsoid
{zeR": (z—t)'B Yz —t) <1}
18 equal to

det(B) - V,,

5

where Vi, is the volume of the n-dimensional unit-ball S(0,1).

It is known that

V- /2 1 [2em\™?
" F(g-l—l) von \ n ’

where -,
[(z) := / e~tt*tdt,
0

for z > 0, is Euler’s gamma function. Note that V,, — 0 if n — oc.

3 The ellipsoid algorithm

The ellipsoid algorithm solves the following problem, called the linear-strict-
inequalities problem.

Definition 3 (LSI) Given an m X n matrix A, and an m-vector b, both
having integer entries, decide if the set {x € R" : Az < b} is empty or not.
Moreover, if this set is non-empty, find any vector x such that Ax < b.

This problem looks much easier than the LP problem. However, in Sec-
tion 4, we will see that the polynomial solvability of LSI implies that the
general LP problem can also be solved in polynomial time. In this section,
we show how the LSI problem can be solved in polynomial time.

3.1 The idea

Let F:= {x € R" : Az < b}. Assume for the moment that F' is bounded
or empty. The ellipsoid algorithm starts by computing a ball-—which is an
ellipsoid—that is centered at the origin and that contains F'. Given this ball,
a sequence of ellipsoids is constructed, each containing F', and whose volumes
decrease.

Consider one iteration of the construction of this sequence, and let £ =
{z : (x —t)TB Y(xz —t) < 1} be the ellipsoid at the start of this iteration.
Note that E contains F'.

First, we check if the center ¢ of F is contained in F'. That is, we check
if At < b. If so, we output ¢, and the algorithm terminates. Assume that
t ¢ F. (See Figure 2.) Then we have found an 4, 1 < i < m, such that
A’t > b;, where A’ denotes the i-th row of A. Consider the hyperplane

h:={xeR": Algy = Ait}.

6

Figure 2: The center t of the ellipsoid E is not contained in F'. F' is contained
in the part of E that is below the hyperplane h.

We claim that F'is contained in the half-ellipsoid “below” h. Indeed, every
vector x on or “above” h satisfies A’z > At > b; and, therefore, does not
belong to F'.

The next ellipsoid E’ in our sequence contains the “lower” half of F and
has a volume that is smaller than that of E. Note that £’ contains F'.

All ellipsoids obtained in this way contain F', and they shrink in volume.
If the center ¢ of any of these ellipsoids satisfies At < b, then we output £,
and the algorithm terminates.

Of course, a problem arises if F' is empty. Then none of the centers ¢
satisfies At < b, and we would iterate forever. It turns out, however, that
there is a real number v > 0, which depends on the entries of A and b, such
that either F' is empty, or the volume of F' is at least equal to v. Therefore,
if the current ellipsoid has volume less than v, we can conclude that F' is
empty, and terminate the algorithm.

Until now, we have assumed that F' is bounded. If this is not the case,
the algorithm still works: We require that a “large” part of F' is contained
in each ellipsoid of the sequence.

This was a brief sketch of the ellipsoid algorithm. To fill in the details,
at least three issues have to be resolved.

1. How to construct the initial ellipsoid? This question will be answered
in Section 3.3.

2. How to construct the ellipsoid E’ from E?7 Recall that £’ must contain
a “large” part of F', and its volume must be smaller than that of F.
This question will be answered in Section 3.2.

3. How many iterations do we have to make? That is, after how many
iterations can we conclude that F' is empty? Note that in order to

7

B

I

Figure 3: E' is the smallest ellipsoid that contains the left part of E.

have a “small” number of iterations, each next ellipsoid £’ should be
“much” smaller than E. This question will be answered in Section 3.3.

3.2 Constructing the next ellipsoid

We first show how to construct the next ellipsoid in our sequence for a special
case.

Let E be the n-dimensional unit-ball, i.e., E = S(0,1). Note that F is
indeed an ellipsoid, because it can be written as £ = {z € R* : 27T 1z < 1}.
Assume that the matrix A has A' = (1,0,0,...,0) as its first row, and that
b has the form b = (=1, by, b3,...,b,)T.

The center t = 0 of E satisfies A't =0 > —1 = b;. Therefore, t € F. Let
h~ be the halfspace {z € R" : Alzx < Alt}, ie, h~ ={r € R* : z; < 0}.
Then we have to find a small ellipsoid E’ that contains the “left” part of E.
Let us denote this left part by HS':

HS =ENh ={z cR":272 <1 and z; <0}.

We use our geometric intuition to derive the smallest ellipsoid £’ that con-
tains HS. Afterwards, we will prove that the ellipsoid we get is indeed the
right one.

Intuitively, the center ¢’ of E' should be on the negative z;-axis. (See
Figure 3.) Moreover, E’ should be symmetric w.r.t. the z;-axis. Hence, we

expect that £’ has the form

n
={z eR" :a’(m —t)* + _b%af <1}, (1)
i=2
where a, b, and ¢] are to be determined by us. We may assume without
loss of generality that a > 0 and b > 0. Moreover, our intuition says that
—1 <t} < 0. We can write E' as

={reR":(z-t""T'(B)z-t) <1},

where
t' = (t,0,0,...,0)"

and

B' = diag(1/a® 1/6,1/b?, ..., 1/6%).
Again intuitively, if £’ is the smallest ellipsoid containing HS, then the vector
(—1,0,0,...,0) should be on the boundary of E'. Substituting this vector
into (1) gives

a®(1+t)?=1. (2)
Similarly, vectors (0,zs,s,...,2,) with Y .27 = 1 should be on the
boundary of E’. This yields
a?(t)? + 6> =1. (3)
Equations (2) and (3) give
1 1+ 2t
= —— and b= +7,12 (4)
(1+1) (141)

Hence, we need one more equation to determine E’. We know from Lemma, 3
that

vol(E") .
wolfs. 1) ~ VB

bnl

- 1\
= Jiion
32”1)

+1
(1+2t')

Since we want E’ to be as small as possible, we choose t}, —1 < ¢} < 0, such
that the quotient (5) is minimum. Elementary calculus shows that this is
the case when ¢t} = —1/(n + 1). Then (4) implies that a = (n 4+ 1)/n and
b=+vn?—1/n.

What have we learned? We have derived a candidate ellipsoid

E={zeR":(z-t")"'B) (z—-1t) <1}, (6)

where

1 T

t = (—,0,0,...,0)

n+1

and 2 2 2 2
n n n n
B' = di
dzag((n+1)2’n2—1’n2—1’ ’n2—1>

It remains to show that this ellipsoid is a good one.

Lemma 4 The set E' in (6) satisfies:
1. B' is positive definite, so that E' is an ellipsoid.
2. E' contains the half-ball

HS ={z e R" : 272 < 1 and 2, < 0}.

3. vol(E')/vol(S(0,1)) < e~ ¥/(n+1)),

Proof. To prove the first claim, let

Q= di (n n n n)
= dia : , e,)
I\n+1 V-1 V2 -1 n? 1

Then B’ = QQT and therefore, by Lemma 1, B’ is positive definite.
To prove the second claim, let x € HS. We have to show that z € E’', i.e.,
(x —t")T(B')"Y(x — t') < 1. This follows from a straightforward calculation:

(@ =) (B) (= —1)

1
= <$1+n—+1,.’132,...,.%‘n> .

1
T+

10

n+1
:c +—n+1)
1 2 .1'2
—_ n
<$1+n+1’

nZ ‘rL"I’L
 (n41)? "\ n?
N n? x1+n+1 z; n2
(n+1)2 n? s = ni-1
= n2 .'L‘]_+n+1 - 2 1 ; nz '/L‘Z
_ 2n+2 5, 2n+2 1 n?—1 4
= 2]+ 2 $1+ﬁ+ oy T
Since 27z < 1, it follows that
2n + 2 1 n?—1
NT N —1 ! 2
(@ —t)(B) Yz —t) S (T m) S+
2n +2
= 2 (x +x)+1

The inequality 72 < 1 also implies that z; > —1. This, together with the
fact that x; <0, yields

2n + 2
n2

(-t (B) (z—-t) < iz +1)+1<1,

which is exactly what we wanted to show.
It remains to prove the third claim. We know from Lemma 3 that

l E' 2 (n—1)/2

_wol(E) det(B)) = —~ n .
vol(S(0,1)) n+1\n?-1

We know from calculus that 1 + y < e¥ for all y # 0. Therefore,

no_q__1 e
n+1 n+1
and)
n 2
_q 1/(n?-1)
2 1 + 2 <e
Hence,
vol(E') < e~ lnt1) (61/(n2_1))("_1)/2
vol(S(0,1))

o~ 1/(n+1) | 1/(2(n+1)
o~ 1/(2+1))

11

This completes the proof. |

We have shown how to construct the ellipsoid E’ from E, for the special
case when (i) E is the unit-ball, (ii) the matrix A has A' = (1,0,0,...,0)
as its first row, and (iii) b has the form b = (=1, b, bs,...,b,)T. The general
case can be reduced to this special case: Let

E={zeR":(z—-t)'B Y (z—1t) <1}

be the ellipsoid, and let 7, 1 < ¢ < m, be such that At > b;. Hence, we want
to find a small ellipsoid E’ that contains the “lower” half of £. That is, we
want a small ellipsoid £’ such that

En{zeR": Az < A"t} C E'.
We obtain E' as follows.

1. Using an affine transformation 7, map F onto S(0,1) and {z € R" :
Alx < At} onto {r € R* : z; < 0}.

2. We are now in the special case that was treated above. So let E| be
the corresponding ellipsoid. (Above, this ellipsoid was denoted by E'.)

3. Apply the inverse of the affine transformation 7. This maps Ej onto
the ellipsoid E’ we are looking for.

This gives the following result. For a proof, which is technical, see [2].

Lemma 5 Let a be the n-vector (A)T, let t' be the n-vector

gy 1 Ba
o n+1vaTBa’

let B’ be the n X n matriz

n? B 2 (Ba)(Ba)*

B = —
n2—1 n+1 aTBa ’

and let
E={zeR":(z—t)"(B) ' (z-t) <1}.

Then the following holds.

1. B' is positive definite, so that E' is an ellipsoid. In particular, since
a # 0!, we have a¥ Ba > 0.

it does not make sense to have a row in A all whose entries are zero

12

2. E' contains the half-ellipsoid
En{z e R": A’z < A't}.
3. vol(E")/vol(E) < e 1/G+1),

Exercise 1 Let E be the unit-ball, let the matrix A have A' = (1,0,0,...,0)
as its first row, and let b have the form b = (=1, bs,bs,...,b,)T. Check that
the ellipsoid E’ of Lemma 5 is indeed the same as that of Lemma 4.

We apply Lemma 5 to a specific example. Let n = 2, B = (2 g >’

t= (8 >, by = —1, and let A have (1,—1) as its first row. Then

Altz(l,—1)<8>=0261.

Hence, the center ¢ is not contained in the set {x € R?* : Az < b}. In this

(1) (2)- ()
" a’Ba = (1,-1) (_36 > =9
Hence,
=(0)-aa(%)= (50),
and
R

[52/9 40/9
=\ 40/9 64/9)
Consider the hyperplane (which is in fact a line)
h={recR: Az =A%} ={r e R®: 2; — 2, = 0}.

The ellipsoid £’ defined by B’ and ¢’ contains the part of the ellipsoid defined
by B and t that is “below” h, i.e.,

En{zeR: Az <At} =FEn{zeR?:z, <2} CFE.

Note that in this case, “below” does not mean below in the usual sense.

13

Ellipsoid Algorithm
[:=0; K :=16n(n+1)L;
t; = 0; (* the zero-vector of length n x*)
B, :=n?.22L],; (x I, is the n x n identity matrix x)
for|:=0to K —1
do (* B is a positive definite n x n matrix; the [-th ellipsoid is
E={zeR: (z—t)"B; (z —t;) <1} %)

if At; <b

then output ¢;, and terminate

else (x construct a new ellipsoid x)

let 7 be such that A%t; > b;;

T
. i1,
a = (A) ’
tipr =1 — 5 A
+ n+l | /aT Bja’
B, = 2 (Bua)(Ba)T
I+1 -— R277 n+1 aT Bja
endif

endfor;
output “F'is empty”

Figure 4: The ellipsoid algorithm.

3.3 The algorithm

Let A be an m x n matrix, and b an m-vector, both having integer entries.
We want to decide if the set F' = {z € R" : Az < b} is empty or not. Let

L:=mn+ Z[loga,ﬂ + Z[log b;].
ij i

Then L is proportional to the length of the input.
Before we give the complete algorithm, let us look at the first ellipsoid

in our sequence of ellipsoids. Recall that we require that a large part of the
region F'is contained in each ellipsoid. Let Ej be the ball centered at the
origin and having radius n - 2L. The proof of the following lemma can be

found in [2, page 97].

Lemma 6 If F' is non-empty, then FFNEy has volume at least v := 2~

The algorithm that decides if F' is empty or not is given in Figure 4.

Exercise 2 Convince yourself that in the algorithm of Figure 4, the initial

ellipsoid Fj is indeed equal to S(0,n - 2F).

14

Let us analyze the running time of our algorithm. The initialization can
be carried out in O(L + n?) time. Since we assume that exact arithmetic is
available, each iteration of the for-loop takes O(mn + n?) time. Hence, the
total running time of the algorithm is bounded by

O (L +n®+ K(mn+n?)) = O (n’L(mn +n?)) =0 (L°).

Hence, the running time of the ellipsoid algorithm is polynomial in the length
of the input. Of course, we still have to prove that this algorithm is correct.

Theorem 1 The ellipsoid algorithm correctly solves the LSI problem.

Proof. If the algorithm reports that F'is non-empty, then it also gives an
element ¢; € F'. Therefore, in this case, F' really is non-empty. It remains to
prove the converse. That is, we have to show that if F' is non-empty, then
the algorithm reports this.

Assume that F' is non-empty, but the algorithm reports that it is empty.
We will derive a contradiction. First note that the for-loop makes K itera-
tions. We know from Lemma 6 that

vol(F N Ey) > 2~ (2L, (7)

We claim that FNEy C E; foralll, 0 <[< K. This is clearly true for [= 0.
Let 0 <[l < K, and assume that FF'N Fy C F;. Consider the index 7 in the
[-th iteration. By Lemma 5, we have

En{r e R": Alz < A%} C Epyy.
Our construction of E;;; guarantees that (see the discussion in Section 3.1)
FNEyC{zxeR": Az < A't;},
which implies that
FNE,CEN{zeR": Az < A't;}.

Therefore, we have F'N Ey C E; 1, proving the claim.
In particular, since F'N Ey C Ey, we get

vol(F'N Ey) < vol(Ek). (8)

15

By Lemma 5, we have

vol(Ex) < e Y yol(Er_y)
< e VM) yol(By_y)
< e 3/ D) yol (B _s)

< e KR yol(Ey).

Since
Ey=50,n-2") C{z eR" : |z;| <n-2F,1<i<n},

we have
vol(Ep) < (2n-25)".

It follows that

vol(Ex) < e ®/@0H) (on 2L)" (x2n < 2F)

e K/ 92l (W K = 16n(n + 1)L %)
—8nL 22nL

IN

= €
2—8nL 22TLL

AN

2—6TLL

< 2—(n+2)L-
Hence, by (8), we get
vol(F N Ey) < 27+
which contradicts (7). This completes the proof. [

4 Solving the general linear programming prob-
lem

At this moment, we know that any LSI problem can be solved in polynomial
time. In this section, we show that this result can be used to solve general
linear programs in polynomial time. First, we consider the linear-inequalities
problem.

Definition 4 (LI) Given an m X n matrix A, and an m-vector b, both
having integer entries, decide if the set {x € R" : Az < b} is empty or not.
Moreover, if this set is non-empty, find any vector x such that Az <b.

16

Note that Lemma 6 does not necessarily hold for the set F':= {z € R" :
Az < b}. Takee.g. m =3, n=2,b=(0,0,0), and

Then, F = {(0,0)}, i.e., F' is non-empty. The volume of F', however, is equal
to zero.
As before, let

L:=mn+ Z[log a;;| + Z[log b,
i i
which is the length of the input. A proof of the following lemma can be found
in [2, page 76].

Lemma 7 Let e :=27%L and b} :=b;+¢, 1 <i<m. Theset F:= {zx € R* :
Az < b} is non-empty if and only if the set F' := {x € R" : Az < V'} is non-
empty. Moreover, in polynomial time, any element of F' can be transformed
into an element of F.

This lemma of course implies that any LI problem can be solved in poly-
nomial time.

The final step of our proof uses the duality theorem, due to von Neumann
(1947). This theorem is one of the most important results in mathematical
programming. For any LP max{cl'z : Az < b}, the dual program is defined
as the linear programming problem min{bTy : ATy = ¢,y > 0}. We denote
the dual program by LD. A proof of the duality theorem can be found in [2].

Theorem 2 (Duality Theorem) Let F, := {x € R" : Ax < b}, and F;:=
{y eR™: ATy = ¢,y > 0}.

1. If F, and F,; are both non-empty, then

max{c’z : Az < b} = min{bTy : ATy =c,y > 0}.

2. If E, =0, then either Fy =0 or LD is unbounded.
3. If Fy =0, then either F, =0 or LP is unbounded.
4. If LP is unbounded, then Fy = (.
5. If LD is unbounded, then F, = ().

17

For positive integers a and b, we denote by O, the a X b matrix having
zero entries, and by I, the a X a identity matrix.
The following algorithm solves a general LP.

Step 1: Test if the set F:= {x € R" : Az < b} is empty. If it is, output “F
is empty”, and terminate. Otherwise, go to Step 2.

Step 2: Let A’ be the (2m + 2n + 2) x (m + n) matrix

A Omm
O,, AT
1. Onn _AT
A o Omn —1 m ’
CT _ bT
_ CT bT

and b’ the (2m + 2n + 2)-vector
v =", ", —c",0,0,...,0)T.
Test if the set F' := {(z,y) € R™™ : A’ (z) < b'} is empty.
If F' is empty, then output “max{c’z : Ar < b} = c0”. Otherwise,

the algorithm has found an element (zg,y) in F’. In this case, output
“max{c’z : Az < b} = cl'zy”.

Theorem 3 This algorithm solves any LP problem in polynomual time.

Proof. Since any LI problem can be solved in polynomial time, the given
algorithm has polynomial running time. So it remains to prove that the
algorithm is correct. It is clear that the algorithm reports that F' is empty if
and only if F really is empty.

Assume that F' is non-empty. Also, assume that max{c'z : Az < b}
is finite. We claim that then (i) F” is non-empty, and our (ii) algorithm
computes this maximum.

To prove (i), let 2o be such that

g = max{c’x : Av < b}.
By the duality theorem, there is a vector y, such that
b yo = min{b’y : ATy =c,y > 0}.

We have
AxO < ba ATyO =CY > Oa and CTZ'O = bTyOa (9)

18

or equivalently,

Aﬂfo S ba AT?JO S c, (_AT) Yo S ¢, —Yo S Oa (10)
Ty —bTyy <0, and —cTag+ by, <O. (11)

Hence, A’ (f}g) < b and, therefore, F” is non-empty, proving (i).

To prove (ii), let (zg,yo) be the element of F' that is found by the algo-
rithm. Then (10) and (11) hold for z, and y,. Hence, also (9) holds. We
have

cTry < max{c"z: Az < b}
= min{d’y: ATy =c,y > 0}
< by
= cl'x.

It follows that all inequalities in this chain are in fact equalities. That is,
cTzy = max{c'z : Az < b}, proving (ii).

The proof can now easily be completed using the duality theorem. |

This concludes the chapter on linear programming. All results that were
shown here remain valid for computation models that have finite precision
arithmetic. The details, however, are technical. For details, refer to the
books mentioned below.

References

[1] M. Groétschel, L. Lovdsz and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1988.

[2] H. Karloff. Linear Programming. Birkhduser, 1991.

[3] E.L. Lawler. The great mathematical Sputnik of 1979. The Mathematical
Intelligencer 2 (1980), pp. 191-198.

[4] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982.

[5] W. Rudin. Real and Complex Analysis, third edition. McGraw-Hill, 1987,
pp. 54-55.

19

