Lower Bounds

Michiel Smid*
December 7, 1999

1 Lower bounds for comparison based algo-
rithms

We start by considering algorithms whose execution only depends on the
outcomes of comparisons between input variables. Such an algorithm gets
as input a sequence sy, So, . .., S, of elements from some ordered universe U,
and can only compare pairs of input elements. The outcome of a comparison
between s; and s; is either “s; < s;7 or “s; > s;7. At any moment during
the execution of the algorithm, the two elements that are compared only
depend on the outcomes of previous comparisons. The complezity of such an
algorithm is defined as the number of comparisons made in the worst case.

The basic idea for proving a lower bound for comparison based algorithms
is as follows. Let P be a problem that has N possible solutions, and let A4
be any algorithm that solves P. Assume that in one comparison, A can at
most halve the number of possible solutions. Then, in the worst case, this
algorithm has to make at least log N comparisons. Put differently, A has to
obtain log N bits of information in order to solve P. In one comparison, it
obtains at most one bit of information. Therefore, at least log N comparisons
have to be made. This lower bound is often called the information theoretic
bound.

1.1 A lower bound for the sorting problem

Let us apply this idea to the sorting problem. First note that many sorting
algorithms, such as insertion-sort, merge-sort, heapsort, and quicksort, are
comparison based.

*Fakultdt fir Informatik, Otto-von-Guericke-Universitit Magdeburg. E-mail:
michiel@latrappe.cs.uni-magdeburg.de.

If a sorting algorithm gets an input sequence of length n, then it basically
has to determine the permutation of 1,2, ..., n that puts this sequence into
sorted order. Since there are n! permutations, we expect a lower bound of
logn! on the worst-case number of comparisons that have to be made by any
comparison based sorting algorithm. We know from Stirling’s approximation
that logn! = nlogn—O(n). Hence, we will get a lower bound of n logn—0O(n)
on the complexity of the sorting problem. In the rest of this section, we will
give a formal proof of this lower bound.

As an introduction to this formal proof, consider the following algorithm
that sorts any sequence si,ss, s3 of length three. The first comparison is
between s; and sy. If 51 < so, then sy is compared with s;. If s5 < s3, then
the input sequence is in sorted order already. Otherwise, if sy > s3, one more
comparison—between s; and s3—is needed to determine the sorted order.
In case the first comparison has s; > sy as outcome, we proceed similarly.
We can represent this algorithm by a binary tree, called a decision tree. The
internal nodes of this tree are labeled with comparisons. A node labeled
s; : s; denotes a comparison between s; and s;. The edge leading to the
left child corresponds to the outcome s; < s;, whereas the edge leading to
the right child corresponds to the outcome s; > s;. The leaves of the tree
are labeled with permutations of 1,2,3. Applying such a permutation to
the indices of the input sequence gives this sequence in sorted order. See
Figure 1.

Definition 1 A decision tree is a finite binary tree whose internal nodes
have labels of the form s; : s;. Each internal node has two outgoing edges;
the left one is labeled with <, whereas the right one is labeled with >.

Let T be a decision tree. This tree corresponds to a comparison based
algorithm Az: Let sq,89,...,5, be an input sequence for this algorithm.
Then A7z starts in the root of 7', and follows a path down the tree. Assume
the algorithm has reached node u, and let this node have label s; : s;. Then
Ag compares s; with s;. If s; < s;, then A proceeds to the left child of
u. Otherwise, if s; > s;, it proceeds to the right child of v. The algorithm
terminates when it reaches a leaf of 7.

Definition 2 Let 7" be a decision tree. Assume that the leaves of T are
labeled with permutations of 1,2,...,n. We say that T solves the sorting
problem for n elements, if the following holds.

1. For any sequence sy, Ss,...,5, € U, if the leaf reached by algorithm
Az, when given this sequence as input, has the permutation 7 as its
label, then

Sr1) S Sp@) < Sa3) S -0 S San)-

S1 : 82

< >
82 : 83 81 : 83
< > < >
123 5183 213 89 : 83
< > < >
132 312 231 321

Figure 1: A decision tree that sorts input sequences of length three.

2. For every leaf w of T, there is an input sequence on which algorithm
Ar terminates in w.

Exercise 1 Convince yourself that this definition expresses what you intu-
itively expect.

Given a decision tree T, we have defined a corresponding comparison
based algorithm Az, and we have defined what it means that T solves the
sorting problem. Conversely, given any comparison based sorting algorithm
B, we can define a decision tree T, such that Ay = B. Hence, there is
a one-to-one correspondence between comparison based sorting algorithms
and decision trees that solve the sorting problem. Therefore, we speak about
deciston tree algorithms.

Remark 1 A decision tree is only used to analyze the complexity of an
algorithm; it is not constructed. Such a tree represents all possible behaviors
of the algorithm.

Let T be a decision tree that solves the sorting problem for n elements,
and let sy, $s,..., 5, be an input sequence. Then the length of the path in T’
that algorithm A7 traverses on this input is exactly the number of compar-
isons made. Therefore, since for each leaf w of T there is an input sequence

3

on which algorithm Az terminates in w, the worst-case complexity of a com-
parison based sorting algorithm is equal to the height of the corresponding
decision tree.

Definition 3 The complexity of the sorting problem for n elements in the
decision tree model is defined as the minimal height of any decision tree
solving this problem.

We now prove our lower bound on the complexity of the sorting problem.

Theorem 1 The complezity of the sorting problem in the decision tree model
is at least equal to [logn!|. That is, any decision tree algorithm for sorting
n elements from an ordered universe makes at least [logn!| comparisons in
the worst case.

Proof. Let T be an arbitrary decision tree solving the sorting problem for n
elements, and let h be its height. Since T is a binary tree, it has at most 2"

leaves. On the other hand, since there are n! permutations of 1,2,...,n, it
follows from Definition 2 that T must have at least n! leaves. It follows that
n! < 2" which shows that 7' has height at least [logn!]. [

Exercise 2 We have mentioned already that, by Stirling’s approximation,
Theorem 1 gives a lower bound of nlogn — O(n) for decision tree sorting
algorithms. Let C'(n) denote the number of comparisons made by the merge-
sort algorithm on an input sequence of length n. Then C(1) = 0, and
C(n)=n—-1+4+C(|n/2])+ C(|n/2]) for n > 1. Prove that

C(n) = nflogn] — 2Menl 4+ 1.

This implies that, in the decision tree model, the complexity of the sorting
problem is at most equal to nlogn + 1.

1.2 The element uniqueness problem

In this section, we prove a lower bound for the element uniqueness problem,
which is defined as follows. Given a sequence sy, Ss, ..., s, of elements from
an ordered universe U, decide whether these elements are pairwise distinct,
i.e., s; # s; for all i # j.

By considering all pairs s;, s;, where 7 # j, this problem can clearly be
solved by making (}) = O(n?) comparisons. There is a much faster algo-
rithm: First sort the sequence using the merge-sort algorithm. Now observe
that the elements of the input sequence are pairwise distinct if and only if any

4

two elements that are neighbors in the sorted sequence are distinct. Hence,
after having sorted the sequence, we can solve the problem by making n — 1
comparisons. This algorithm makes overall at most nlogn 4+ n comparisons.
In this section, we will show that this is optimal in the decision tree model.

A decision tree 7" solving the element uniqueness problem for n elements
is again a binary tree. As before, internal nodes of T are labeled with com-
parisons s; : s;, and have two outgoing edges which are labeled with < and >.
Each leaf of T has a label YES or NO. On input sy, ss, ..., s,, the algorithm
A7 corresponding to T terminates in a leaf labeled YES if and only if the
input elements are pairwise distinct.

We will prove that any decision tree solving the element uniqueness
problem for n elements has at least n! leaves. This will imply that the
height of such a tree is at least [logn!|. As a result, any comparison
based algorithm that solves the element uniqueness problem makes at least
[logn!| = nlogn — O(n) comparisons in the worst case.

So let 7" be an arbitrary decision tree solving the element uniqueness
problem for n elements. If 7 is a permutation of 1,2,...,n, then we denote
by w(m) the leaf of 7" in which algorithm Az terminates when given as input
the sequence

(1), 7 1(2),...,m }(n).
Note that such a leaf w(7) has label YES.

Theorem 2 If m and p are two different permutations of 1,2,...,n, then

w(m) # w(p).

This theorem implies that different permutations lead to different leaves
of the decision tree T'. Hence, this tree has at least n! leaves. In the rest of
this section, we will prove Theorem 2. When reading the proof for the first
time, it may help to assume that 7 is the identity permutation.

The proof of Theorem 2 is by contradiction. So assume that w(7) = w(p).
Let ay ;= w(k), for 1 <k < n. Note that 77 (ay) = k.

Lemma 1 There is an index i, 1 < i < n, such that p~'(a;) > p~(tiz1).
Proof. If such an index does not exist, then
1 1 1
p(on) <p (a2) <...<p (ow)
Therefore, since p~! is a permutation of 1,2, ..., n, we must have p~'(a;) =

k
for all k, 1 < k < n. It follows that 7! = p~!, which implies that = = p.
This is a contradiction. |

Lemma 2 Let i be an index for which p~(c;) > p~ (uy1), and let u be an
internal node on the path in T from the root to leaf w(w). This node u is not
labeled with the comparison Sa,; : Sa;,; OT Sayy; * Sa;-

7

Proof. Assume that = is labeled with the comparison s, : s4,,,- On
input 7=(1),771(2),...,77(n), algorithm Az passes through node u. In
this node, it compares the a;-th element with the «;,;-st element. Since
7 Ha;) =4 <i+1=m"(a1), the algorithm proceeds to the left child
of w.

Similarly, on input p~!(1), p7!(2),...,p~!(n), the algorithm visits node
u, and compares p '(q;) with p~*(a;;1). It follows from Lemma 1, that the
algorithm proceeds to the right child to u.

This is a contradiction, because the fact that w(mw) = w(p) implies that
the computations for both input sequences terminate in the same leaf of T'.

The case when node u is labeled with the comparison s,,,, : s,; can be

1

handled in a symmetric way. |

Again, let i be an index for which p~™*(oy) > p~*(iy1). Consider the
input sequence 11,79, ...,7,, Where

N (k) if1<k<nandk#a;,
ko= 1 ifk = [e7AR

The sequences 71,7, ..., 7, and 71 (1),77(2),...,77(n) are the same, ex-

cept at position ;1. The r-sequence has the value ¢ at this position, whereas

the m~!-sequence has the value i + 1 there. Also, since r,, = Taiy., the 7-
sequence is a NO-input for the element uniqueness problem.

Lemma 3 On input ry,rs,...,T,, algorithm Ar terminates in leaf w(m).
Proof. We first show that
re < 7 if and only if 771 (k) < w71 (¢), (1)

for all £ and ¢, such that 1 <k <n, 1 </{¢<n,and {k, £} # {a;, ait1}

Clearly, (1) holds if & = £. So assume that &k # ¢. If k # a;41 and
¢ # i1, then 7, = 77 1(k) and r, = 771(¢) and, hence, (1) holds. Next,
consider the case when k = a;,; and £ # «;. Since ry, = i, r, = 77 1({),
7 1(f) # 1, and 7 1(k) =i + 1, we have

re <o iff P <7 (K)
iff i+1<7 (¢
iff 77'(k) < 7(0),

6

e., (1) holds. It remains to consider the case when ¢ = «a;y; and k # «;.
Since 77(k) # 4 + 1, we have

<
ES
N
<
&~
—-
=
3
—
—~~
=N
SN

<
iff 7r_1(k)§ +1
< Hagpa) =7 (D),

which shows that also in this case (1) holds.

The path in 7T that is followed by algorithm Az on a particular input
sequence only depends on the outcomes of comparisons. If A7 compares the
k-th and ¢-th input elements, where {k,¢} # {a;, a;11}, then (1) implies
that the outcomes are the same for the input sequences r,7,...,7, and
7 1), 77 (2),..., 7 (n). We know from Lemma 2 that on the path to
w(m) none of the two comparisons so; : Sa,,, and Sa,, : Sa, is made. It

follows that the computations on the r-sequence and the 7~ !-sequence follow
the same path and, therefore, terminate in the same leaf, namely w(w). ®

We saw already that the leaf w(m) is labeled YES. By Lemma 3, however,
this leaf should have label NO, because the r-sequence contains two equal
elements. It follows that our decision tree T does not correctly solve the
element uniqueness problem. This is a contradiction and, therefore, our
assumption that w(m) = w(p) was wrong. Hence, we have proved Theorem 2.
This, in turn, implies the following result.

Theorem 3 Any decision tree algorithm solving the element uniqueness prob-
lem forn elements from an ordered universe makes at least [logn!| = nlogn—
O(n) comparisons in the worst case.

2 Lower bounds for algebraic decision tree al-
gorithms

In this section, we strengthen the lower bounds obtained so far. Until now,
we assumed that the elements belong to an arbitrary ordered universe. The
only operation allowed was the comparison of two input elements, and the
complexity of an algorithm was equal to the worst-case number of compar-
isons made. Assume now that the elements are real numbers. Such elements
can be added, multiplied, etc. Hence, the question arises whether we can
use arithmetic to solve the sorting problem or the element uniqueness prob-
lem in o(nlogn) time. For example, could it be that comparisons such as
5185 + 82 : s4 — s3 lead to faster algorithms?

7

H1§i<j§n(si —55):0

< >

0: H1§i<j§n(si - 55) YES

Figure 2: Solving the element uniqueness problem by making at most two
comparisons.

If we allow arithmetic operations, then counting only the number of com-
parisons does not give a realistic measure for the running time of an algo-
rithm. Consider for example the decision tree in Figure 2. The correspond-
ing algorithm solves the element uniqueness problem on any input sequence
$1,89,...,8n, by making only two comparisons in the worst case. Clearly,
since the algorithm has to compute the product], i< Sn(s,,- — §;), it is not
realistic to say that its running time is bounded by a constant. That is, we
have to count both the number of comparisons and arithmetic operations.

Hence, we have to generalize decision trees such that they also model
the cost of arithmetic operations. We will do this for algorithms that use—
besides comparisons—the addition (+), subtraction (—), multiplication (x),
division (/), and square root operations. We assume that all these operations
are performed exactly.

Definition 4 An algebraic decision tree for real inputs sq, ss, ..., s, is a finite
tree T in which each node has at most two children, and that satisfies the
following three conditions.

1. Each leaf is labeled with either YES or NO.

2. Each node u having one child is labeled with a variable Z(u) and an
assignment of the form

(a) Z(u) := A1&As, where & € {+, —, %, /}, or
(b) Z(u) := VA,

where, for i = 1,2, (i) A; = Z(u') for some proper ancestor u' of u in
T, (ii) A; € {s1,89,...,8p}, or (iii) A; is a real number. In the latter
case, this real number is a “constant” that is independent of the input
sequence, although it may depend on n.

3. Each node u having two children is labeled with a comparison of the
form A : 0, where (i) A = Z(u') for some proper ancestor u' of u in T,
or (ii) A € {s1,82,...,8,}. The two outgoing edges leading to the left
and right child of u are labeled with < and >, respectively.

An algebraic decision tree T' corresponds to an algorithm Az that com-
putes a function f : R* — {YES,NO}: Given an input sequence sy, 2, . . ., S,
this algorithm traverses a path down the tree 7', starting in the root. If the
current node u has one child, then A7 performs the corresponding arithmetic
operation, assigns the result to the variable Z(u), and proceeds to the child
of u. If the current node w has two children, then the corresponding com-
parison is made and, depending on the outcome, Ar proceeds to the left or
right child of u. If Ar reaches a leaf, say w, then it outputs the label (YES
or NO) stored at w, and terminates. This label is the value f(s1, s2,..., s,).

We require that no computation leads to a division by zero or taking the
square root of a negative number. Also, for each leaf w of T, there is an
input on which algorithm Az terminates in w.

An algorithm A that only makes comparisons and the arithmetic oper-
ations +, —, %, /, and Vo will be called an algebraic decision tree algorithm,
if there is an algebraic decision tree that solves the same problem as 4. In
Exercise 5, we will see that not every such algorithm is an algebraic decision
tree algorithm.

The complexity of an algebraic decision tree algorithm is defined as the
height of the corresponding tree. Hence, each comparison and each of the
elementary operations +, —, %, /, and va takes unit time.

Let P be a decision problem whose value, YES or NO, depends on n real
numbers si, $s,...,s,. We associate with P the subset Vp of R" consist-
ing of those points (s1, s2, .. ., $,) for which P(sy, ss, ..., s,) has value YES.
Conversely, for any subset V' of R”, there is a decision problem P for which
Vp = V. Hence, we can identify decision problems with subsets of R™. For
example, if P is the element uniqueness problem for n elements, then

Vp:{(sl,SQ,...,Sn)ERn| H (Si—Sj)§£0}.
1<i<j<n

We say that a decision problem P is decidable in the algebraic decision
tree model, if there is an algebraic decision tree that, when given an arbitrary

9

input sy, S2, . . ., Sp, outputs YES if P(sy, s2,...,,) = YES, and outputs NO
otherwise.

Definition 5 Let V be a subset of R", and let P be the corresponding
decision problem. If P is decidable in the algebraic decision tree model,
then we define the complexity of V' as the minimum height of any algebraic
decision tree that outputs YES if its input is contained in V', and outputs
NO otherwise.

In the rest of this section, we will show that the topological structure
of a set V C R” yields a lower bound on the complexity of V. Before we
prove this lower bound for general algebraic decision trees, we consider a
more restricted class of algorithms.

2.1 Linear decision trees

We consider algorithms that can only perform the following operations, each
in unit time. First, input elements, values that have previously been com-
puted, and constants can be added and subtracted. Second, any input el-
ement and previously computed value can be multiplied by a constant. As
before, these constants do not depend on the input sequence, although they
may depend on n. Finally, any input element and previously computed value
can be compared with zero; the outcome is either “<” or “>”.

Hence, each variable that occurs during the execution is a linear function
of the input variables. An example is the function 4+3s;+7s2— 554254 —8s3.
Therefore, we call these algorithms linear decision tree algorithms.

Consider a decision problem P that is decidable in this linear model, and
let V.= Vp C R" be the corresponding set of YES-inputs. Let 7" be any
linear decision tree that decides P. Then the algorithm Az corresponding to
T outputs YES if and only if it gets an element of V' as input.

Let w be any leaf of T', and consider the path uy, us, ..., u, from the root
uy to up = w. Let vy,vs,...,vr be the nodes on this path that have two
children. In each node v;, algorithm A7 makes a comparison, which can be
written as

fi(S]_,SQ, P Sn) . 0,

where f; is a linear function of the n input variables s1, ss, ..., s,. Let R(w)
be the set consisting of all points (s1, ss,...,5,) € R”, such that for all i,
1< <k,

1. fi(s1,82,...,8,) < 0 if the path in T to w proceeds from v; to its left
child,

10

2. fi(s1,89,...,8,) > 0if the path in T to w proceeds from v; to its right
child.

Hence, R(w) contains exactly those inputs on which algorithm Az terminates
in leaf w.

Lemma 4 The set R(w) is connected, i.e., for any two points P and Q in
R(w), there is a (continuous) curve in R™ between P and Q) that is completely
contained in R(w).

Proof. Each inequality f;(s1, S2,...,s,) : 0 defines a closed or open halfspace
in R*. The set R(w) is the intersection of these halfspaces. Hence, since each
halfspace is convex, R(w) is also convex and, therefore, connected. |

We claim that we can obtain a lower bound on the complexity of problem
P from the topological structure of the set V. This set V consists of one
or more connected components. Let A and B be two different connected
components of V, and let P = (s1,89,...,8,) and Q = (t1,ts,...,t,) be
points in A and B, respectively. Let wp be the leaf of T" in which algorithm
Ar terminates on input P. Define wg similarly w.r.t. input Q.

Lemma 5 The leaves wp and wg are distinct.

Proof. Assume that wp = wg, and denote this leaf by w. Note that P and
@ are both contained in the set R(w). We saw in the proof of Lemma 4 that
R(w) is convex. Therefore, the line segment P(Q) is completely contained in
R(w). Hence, for each point X = (z1,%s,...,z,) that is on PQ), algorithm
Ar, when given X as input, terminates in w. Since P € V', leaf w is labeled
with YES. This proves that each point X on P(Q) belongs to the set V. As a
result, the points P and @) are connected by a curve—the line segment PQ—
that is completely inside V. This is a contradiction, because these points are
in different connected components of V. [|

This lemma immediately implies the following lower bound, which was
first proved by Dobkin and Lipton [3]. For any subset V of R", we denote
the number of its connected components by CC(V).

Theorem 4 (Dobkin, Lipton) Let P be a decision problem that is decid-
able in the linear decision tree model, and let Vp C R"™ be the corresponding
set of YES-inputs. The complexity of any linear decision tree algorithm that
decides the set Vp is at least equal to log CC(Vp).

11

Proof. Let T be any linear decision tree that decides Vp. Then, by Lemma 5,
T has at least CC(Vp) leaves. Hence, this tree has height at least log CC (Vp).
[|

Let us apply this result to the element uniqueness problem, in which case
we have

Vp = {(81,52,...,sn)€R"| H (s,-—sj)#O}.

1<i<j<n

In order to get a lower bound on this problem for linear decision tree algo-
rithms, we need to estimate the number of connected components of Vp.

Let m and p be two different permutations of 1,2,...,n, and consider
the points P := (n(1),7(2),...,7(n)) and R := (p(1), p(2),...,p(n)) in R,
Clearly, both P and R belong to the set Vp. We will show that these two
points belong to different connected components of Vp. This will prove that

Because 7 and p are distinct, there are indices ¢ and j such that 7 (i) <
7(7) and p(i) > p(j). (The proof is similar to that of Lemma 1.) Hence the
points P and R are on different sides of the hyperplane z; = ;. Any curve
in R* between P and R must pass through this hyperplane. That is, this
curve contains a point @ := (g1, g2, - - -, gn) for which ¢; = g;. As a result, this
curve is not completely contained in the set Vp. Therefore, P and R belong
to different connected components of Vp. Theorem 4 immediately implies
the following lower bound.

Theorem 5 The complexity of any linear decision tree algorithm solving the
element uniqueness problem for n real numbers is at least equal to [logn!| =
nlogn — O(n).

This lower bound is stronger than that of Theorem 3. It says that the
arithmetic operations of addition and subtraction, and multiplication by con-
stants do not help to obtain an o(nlogn)-time algorithm for the element
uniqueness problem. It does not rule out, however, o(nlogn)-time algo-
rithms that can multiply, divide and take square roots. In the next section,
we will show that this still does not help.

Here is another reason why linear decision tree algorithms are not general
enough. Geometric algorithms often make comparisons whose outcomes are
decided by multiplying input variables. An example is the test if a planar
point c is to the left, right, or on the directed line through the points a and b.

12

This can be decided by computing the sign of the determinant

a1 as 1
by by 1],
C1 Co 1

which is a polynomial in the input variables, having degree two. Hence, in
order to obtain meaningful lower bounds for geometric problems, we have to
consider the more general algebraic decision tree model.

2.2 The general lower bound

The proof of Theorem 4 heavily depends on the fact that the set R(w) asso-
ciated with a leaf w is connected. For an algebraic decision tree, this set is in
general not connected. For example, if n = 2, then R(w) may be defined by
the two inequalities s? + s2 — 1 < 0 and —8s? + sy + 2 < 0. That is, R(w) is
the set of those points that are inside the unit circle, and below the parabola
sy = 8s2 — 2. This set clearly consists of two connected components.

In this section, we will prove that the arguments of Section 2.1 can never-
theless be generalized. As we will see, the number of connected components
of the set Vp of YES-inputs still gives a lower bound on the complexity of
the (decidable) decision problem P. The proof will be based on the following
result from algebraic topology, which was proved independently by Milnor [5]
and Thom [8].

Theorem 6 (Milnor, Thom) Let k be a positive integer, and let fi, fa, - ..,
fr be polynomials in N wvariables, each having degree at most g. Let

W = {(21,20,...,2x5) € RY|fi(z1,72,...,25) =0 for all i, 1 < i < k}.
The set W has at most g(2g — 1)1 connected components.
The proof of Theorem 6 is beyond the scope of this course.
Exercise 3 Prove Theorem 6 for N = 1.

Consider an algebraic decision tree 7', and let w be a leaf of T'. Later in
this section, we will show that the set R(w) of all inputs on which algorithm
A7 terminates in w can be described by a system of polynomial equations
and inequalities, each having degree at most two. Our goal is to derive an
upper bound on the number of connected components of R(w). This will be
done by transforming the system of equations and inequalities into a system
containing polynomial equations only, and then applying Theorem 6. The

details of this transformation are given in the following theorem, which is
due to Ben-Or [1].

13

Theorem 7 Let a, b and ¢ be non-negative integers, and let fi,..., fa,
D1y Dby Gis---,qc be polynomials in N wvariables, each having degree at
most two. Let W be the set of all points (zy,...,zx) in RY such that

1. fi(x1,...,zn) =0, foralli, 1 <i<a,
2. pi(x1,...,2n5) <0, foralli, 1 <i<b, and
3. qi(x1,...,xzNy) >0, foralli, 1 <i<ec.
The set W has at most 3N10¢ connected components.

Proof. We first remark that the number of connected components of W is
finite. (See Milnor [6].) Let d := CC(W). For each j, 1 < j <d, let P; € RY
be an arbitrary point in the j-th connected component of W. Define

e :=min{g;(P;)|1 <i<¢1<j<d}
Then € > 0. Let W, be the set of all points (z1,...,7zx) € RY such that
o fi(x1,...,xy) =0, forall i, 1 <i<aq,
o pi(z1,...,xy) <0, foralli, 1 <i<b, and
e gi(x1,...,xn) > € foralli, 1 <i<ec.

Then W, C W, and W, contains the points Py, Ps, ..., P,.

We transform the equations and inequalities that define W, into a system
of polynomial equations by introducing b+ ¢ new variables zyy1, ..., Tnipre:
Let W' be the set of all points (21, ..., Zyxipre) in RYT0T¢ such that

o fi(xy,...,xzy)=0,foralli, 1 <i<aq,
® pi(x1,...,on) +2%,; =0, foralli, 1 <i<b, and
® Gi(zy,...,xn) —aX 4y —€=0,forali 1 <i<ec.
The projection of W’ onto the first N coordinates is exactly the set W, i.e.,
We={(z1,---,2n)|3TN11, - s TNtbre € R (T1,. -, Znypre) € W

For each j, 1 < j < d, let P; be a point in W' such that its projection onto
the first N coordinates is the point P;. Since the points Py, P,..., Py are in
pairwise distinct connected components of W, and since W, C W, it follows
that the points Pj, Pj,. .., P are in pairwise distinct connected components
of W'. Hence, CC(W') > d.

14

The set W' is defined by polynomial equations in N 4+ b+ ¢ variables, each
having degree at most two. Therefore, by Theorem 6, we have

This completes the proof. |

Now we are ready to prove the lower bound for algebraic decision tree
algorithms.

Theorem 8 (Ben-Or [1]) Let P be a decision problem that is decidable in
the algebraic decision tree model, and let Vp C R" be the corresponding set
of YES-inputs. The complexity of any algebraic decision tree algorithm that
decides the set Vp is at least equal to

log CC(Vp) —nlog3
1+ 2log3 '

Proof. Let T be an arbitrary algebraic decision tree that decides Vp, and let
w be a leaf of T. Let R(w) be the set of all points (s1, s2,...,s,) € R such
that the computation in 7" on input s, ss,..., S, terminates in w. We will
derive an upper bound on the number of connected components of R(w).

Consider the path wuy,us, ..., ugr; in T from the root uy to ug; = w.
Let r be the number of nodes on this path that have exactly one child, and
let s be the number of such nodes that are labeled with a |/ -assignment.
We will define a system of & 4+ s polynomial equations and inequalities in
the variables 1, ..., z,1. The variables xy, ..., z, represent the input vari-
ables s1,...,s,, whereas the variables x,,11, ..., 2, represent the program
variables Z(u1), ..., Z(ug)-

Let 1 <17 < k, and consider node u;.

Case 1: u; has one child, i.e., u; is a computation node.

Node wu; is labeled with an assignment of the form Z(u;) := A;&A; or
Z(u;) := /Ay, where & € {+,—,, /}, and, for m = 1,2, (i) A, = Z(u;) for
some index j, 1 < j <4, (ii) Ap € {51,582, ..., Sn}, or (iii) A,, = ¢ for some
real constant c. (See Definition 4.)

Depending on the form of this assignment, we add either one equation, or
one equation and one <-inequality to our system. In Table 1, all possibilities
are listed. For example, if the assignment is Z (u;) := s,/Z (u;), then we add
the equation z,4;Z,+¢ — x, = 0. Here, z,; represents the program variable
Z(u;); Tpye represents Z(ug); and x, represents the input variable s,. If the
assignment is Z(u;) := ,/S,, then we add the equation 22 ; —z, = 0 and the
inequality —z,4; < 0. (Note that z,;; = /z, if and only if foH =z, and

15

assignment ‘ equation

Z(ul) = Z(U’J) + Z(Ug) Tpti — Tp4j — 4L = 0
Z(ul) = Z(U’J) - Z(uf) Tn+i = Tntj T Ty = 0
Z(u;) := Z(uj) * Z(ue) | Tngi — TngjTnse =0
Z(u;) = Z(uy)/Z (ue) TntiTnte — Tnyj =0
Z(wi) ==/ Z(u;) Loy — Tnyj =0 and —2,4; <0
Z(ul) = 8q + Z(Ug) Tn+i — Lo — Tp4e = 0
Z(u;) == 8q — Z(uyg) Tpii — Tg + Tpyg =0
Z(u;) = Z(ug) — 84 Tnti — Tnte + Lo =0
Z(ul) = Sg ¥ Z(U@) Tn4i — Lalpte = 0
Z(ui) := $a/Z(w) Tntinte — T =0
Z<u2) = Z(uf)/sa Tp+ilg — Tpte = 0
Z(u;) = Sa + Sp Tnii— Lo —xp =0
Z(u;) = Sq — Sp Tpyi— Tq+xp =0
Z(u;) == Sq * Sp Tpyi — TaZy =0

Z(ui) == 84/ sy TntiTy —Tqa =0

Z(U’Z) = \/‘E xi-}—i — 2, =0and —z,4; <0
Z(u;) :== ¢+ Z(ug) Ty — C— Tpyp =0
Z(u;) == c— Z(uy) Tpii—C+ XTpie =10
Z(u;) == Z(ug) — ¢ Tpai — Tnpe+c=0
Z(ul) =cCx Z(U@) Tnti — Clp4e = 0

Z(w;) == c/Z (ue) TnyiZnye —Cc =10

Z(u;) == Z(w)/c CTnti — Tnye =0

Z(u;) = c+ sp Tpii—C—xp =0
Z(u;) :=c— 8 Tpii—C+xp =0
Z(u;):==8p,—¢ Tpti —Tp+c=0
Z(u;) = c* S Tpri —CTy =0

Z(u;) == c¢/sp Tpyity —C =0

Z(u;) = sp/c CTpyi — Tp =0

Z(u;) = =c+d Tppi —C+d=0
Z(u;)) :=c—d Tppi —C+d=0
Z(u;j) :==cx*d Zpti —cd =0

Z(u;) :==c/d dzn1i—c=0

Z(ui) = 4/c 23— c=0and —2,,; <0

Table 1: The equations corresponding to all possible assignments of compu-
tation node u;. The indices j and ¢ satisfy 1 < j < ¢ and 1 < ¢ < 1; the
indices a and b satisfy 1 < a <n and 1 < b < mn; c and d are real constants.

16

Case 2: u; has two children, i.e., u; is a comparison node.

Node w; is labeled with a comparison of the form A : 0, where (i) A =
Z(u;) for some index j, 1 < j <4, or (ii) A € {s1,52,...,5,}-

In case the path in T to w proceeds from u; to its left child, we do the
following. If the comparison in u; has the form Z(u;) : 0, then we add the
inequality z,1; < 0 to our system. Otherwise, the comparison in u; has the
form s, : 0, in which case we add the inequality z, < 0.

In case the path to w proceeds from wu; to its right child, we do the
following. If the comparison in u; has the form Z(u;) : 0, then we add the
inequality z,4; > 0. Otherwise, the comparison in u; has the form s, : 0, in
which case we add the inequality z, > 0.

Recall that r denotes the number of computation nodes on the path
to w, and s denotes the number of these nodes that are labeled with a
|/ -assignment. Let ¢ be the number of times this path proceeds from a
comparison node to its left child. Then we have obtained a system of r
polynomial equations, s+t polynomial <-inequalities, and k—r—t polynomial
>-inequalities, in the variables z;,...,x,.x. Each of these polynomials has
degree at most two. Let W C R*** be the set of all points that satisfy these
equations and inequalities. Then, by Theorem 7, W has at most 3"+2k+s—"
connected components.

The projection of W onto the first n coordinates is the set R(w). This
implies that CC(R(w)) < CC(W) and, hence, CC(R(w)) < 3"T2F+s77_ Let
h be the height of our algebraic decision tree T'. Then, since k¥ < h and s < r,
we have proved that CC(R(w)) < 3"2h.

Now we can complete the proof of the theorem. Recall that Vp C R" is
the set of YES-inputs for the decision problem P. Since

VP = U R(’U)),

w:YES-leaf of T'

we have
covm< Y CO(R)).
w:YES-leaf of T
Hence, the number of connected components of Vp is less than or equal to
372" times the number of YES-leaves of T. Since T' has height h, it has at
most 2" leaves. Therefore,

CC(Vp) < 3n2h . oh,
Taking logarithms, and rewriting the inequality, we obtain

S log CC(Vp) —nlog3
- 1+ 2log3

h

Y

17

which is exactly what we wanted to show. |

Remark 2 Let P be a decision problem that is decidable in the algebraic
decision tree model, and let V' C R" be the corresponding set of YES-inputs.
It follows from the proof of Theorem 8 that the number of connected com-
ponents of V is finite.

2.3 Applications of Ben-Or’s theorem

First, let us again consider the element uniqueness problem. As we have
seen already in Section 2.1, the corresponding subset Vp of R® has at least
n! connected components. Hence, Theorem 8 gives a lower bound of

logn! —nlog3 — O(nlogn)
1+ 2log3

on the complexity of this problem.

Theorem 9 Any algebraic decision tree algorithm that solves the element
uniqueness problem for n real numbers has complexity Q(nlogn).

Using simple reductions, this theorem implies several other lower bounds.

Corollary 1 FEach of the following problems has complezity Q(nlogn) in the
algebraic decision tree model.

1. The sorting problem for n real numbers.
2. The closest pair problem for n points in R?, for any d > 1.

3. Constructing the Voronoi diagram of n points in the plane.

Proof. Let A be any algebraic decision tree algorithm solving the sorting
problem, and let 7'(n) be its complexity. The following algorithm B solves the
element uniqueness problem: Given real numbers s1, $s, ..., $,, first use algo-
rithm A to sort them. Then compare any two elements that are neighbors in
the sorted sequence. Output YES, if no two equal elements are encountered;
otherwise, output NO. Algorithm B has complexity 7'(n) + O(n), which, by
Theorem 9, must be Q(nlogn). It follows that T'(n) = Q(nlogn).

The lower bound for the closest pair problem follows immediately from
Theorem 9, because the input sequence contains two equal elements if and
only if the distance of the closest pair is zero.

Finally, let C be an arbitrary algebraic decision tree algorithm that con-
structs the Voronoi diagram of any set of n points in the plane. Given such

18

a set S, we can first use C to construct the Voronoi diagram of S, and then
use this diagram to find a closest pair in S in O(n) time. Hence, algorithm
C has complexity (nlogn). [

Exercise 4 Prove that, in the algebraic decision tree model, the following
problems have complexity (nlogn):

1. Constructing the convex hull of a set of n points in the plane. The con-
vex hull vertices should be reported in clockwise (or counter clockwise)
order.

2. Constructing an arbitrary triangulation of a set of n points in the plane.

This exercise shows that the complexity of computing the ordered se-
quence of convex hull vertices is Q(nlogn). What is the complexity if we
are satisfied with just the vertices of the convex hull, in no particular order?
We will use Theorem 8 to prove that the complexity is still Q(nlogn). Note
that in order to use this theorem, we need a decision problem. Therefore, we
first prove the following result. Recall that a point that is in the interior of
a convex hull edge is not a vertex of the convex hull.

Theorem 10 Any algebraic decision tree algorithm that, when given a set
of m points in the plane, decides whether they are all vertices of the convex
hull, has complezity Q(nlogn).

Proof. Let V be the set of all points (z1,y1,Z2, Y2, .- -, Tn, Yn) € R? such
that the convex hull of the n planar points (z;,v;), 1 < ¢ < n, has n vertices.
We claim that V' has at least (n — 1)! connected components. Hence, by
Theorem 8, the complexity of any algebraic decision tree algorithm that
decides V is at least equal to

1 — 1) —2nl
og(n —1) nlogs _ Q(nlogn),
1+ 2log3

which is exactly the statement of the theorem.

To prove the claim, let P = (z1,%1, T2, %2, ..., %Tn, Yn) € R?" be a point
of V, and let z be a point (in R?) in the interior of the convex hull of the
points (x;,y;), 1 < ¢ < m. The circular order of the indices of the points
(x;,), sorted in counter clockwise order around z, is called the order type
of P. Since the first element of an order type is arbitrary, there are (n — 1)!
different order types.

Any (continuous) curve in R?" that connects two points P and Q of V
that have different order types must pass through a point in R2" that does

19

3 1

Figure 3: Illustrating the proof of Theorem 10 for n = 4.

not belong to V. Hence, P and () are in different connected components of
V. This proves that CC(V) > (n — 1)L

As an example, let n = 4, and consider the two “elements” of V in
Figure 3. In this figure, the point (z;,y;) has label 4, 1 < ¢ < 4. The order
type of the left element is (1,4, 3,2); for the right element, it is (1, 3,4, 2).

Consider a continuous movement of the left “point” (considered as an
element of R®) to the right “point”. In Figure 3, this means that for each i,
1 <4 < 4, point 7 on the left moves continuously to point ¢ on the right.
During this movement, the points 3 and 4 must change their relative order.
This is only possible by moving through a configuration in which at least
three of the four points are colinear. In this configuration, the convex hull
of these points has size less than four. Hence, this configuration corresponds
to a point in R® that is not contained in the set V. |

Corollary 2 Any algebraic decision tree algorithm that, when given a set
of n points in the plane, computes the vertices of their convexr hull (in no
particular order) has complexity Q(nlogn).

2.4 Some problems that are not decidable in the alge-
braic decision tree model

Let P be a decision problem, and let V' C R"” be the corresponding set of
YES-inputs. If V' has an infinite number of connected components, then it
follows from Remark 2 that P is not decidable in the algebraic decision tree
model. Hence, by taking V := N, we obtain the following result:

Theorem 11 There is no algebraic decision tree algorithm that, when given
an arbitrary real number x as input, decides if © € N.

Exercise 5 In Figure 4, an algorithm is given that gets an arbitrary real
number z as input, and outputs YES if and only if x € N. Does this contra-
dict Theorem 117

20

Algorithm(z):
(* z is a real number)
ifx <0
then output NO
else k := 0;
while k£ < z
dok:=k+1
endwhile;
L=k—1;
ifx >/
then output NO
else output YES
endif
endif

Figure 4: An algorithm that decides the set N.

Exercise 6 Prove that there is no algebraic decision tree algorithm that, on
an arbitrary input z € R, computes the value |z|. (Hint: Use Theorem 11.)

If a set V' C R" has an infinite number of connected components, then V
is not decidable in the algebraic decision tree model. Is every set V with a
finite number of connected components decidable in this model? The answer
is “no”: Let n = 2, and

V= {(z,y) € R?|y < sinz}.
Then V consists of one connected component. Since
{r € R|sinmzx =0and z > 0} = N,
Theorem 11 implies the following result:
Theorem 12 There is no algebraic decision tree algorithm that, when given

two arbitrary real numbers x and y as input, decides if y < sinz.

2.5 Another example: computing an approximate min-
imum weight matching

Let S be a set of 2n points in R?, where d > 1 is a (small) constant. We
consider sets of edges having the points of S as vertices. Such a set M is

21

called a perfect matching of S, if each point of S is a vertex of exactly one
edge in M. In other words, a perfect matching is a partition of S into n
subsets of size two. The weight wt(M) of a perfect matching M is defined
as the sum of the Euclidean lengths of all edges in M. The minimum weight
matching MWM (S) of S is the perfect matching of S that has minimum
weight.

The best known algorithm that computes a minimum weight matching is
due to Vaidya [9]; its running time is bounded by O(n®2(logn)?) if d = 2,
and O(n3~1/¢") if d > 2, for some constant ¢ > 1.

Exercise 7 Prove that the minimum weight matching of a set of 2n real
numbers—i.e., one-dimensional points—can be computed in O(n logn) time.

Let us consider the (hopefully) easier problem of approximating the min-
imum weight matching. Let » > 1 be a real number. A perfect matching M
of S is called an r-approzimate MWM , if wt(M) < r - wt(MWM(S)).

Rao and Smith [7] have shown that an r-approximate MWAM, for

r=c-exp(8- 2171 @=D/q)

where c is a constant, can be computed in O(nlogn) time.

We will show that Rao and Smith’s algorithm is optimal in the algebraic
decision tree model: Any algorithm in this model that, when given an arbi-
trary set S of 2n points in R and an arbitrary real number » > 1, computes
an r-approximate MWM for S, has running time Q(nlogn). In fact, this
lower bound even holds for dimension d = 1. Moreover, it holds for any ap-
proximation factor r, even one that depends on n. For example, computing
a 22"-approximate MWM has complexity Q(nlogn).

In the rest of this section, we will prove the lower bound for the one-
dimensional case. Clearly, this implies the same lower bound for any dimen-
sion d > 1.

Let A be an arbitrary algebraic decision tree algorithm that, when given
as input a sequence of 2n real numbers 1,7, ..., 2z, and a real number
r > 1, computes an r-approximate M WM for the x;’'s. We will use Theorem 8
to prove that A4 has complexity Q(nlogn).

Note that algorithm A solves a computation problem. In order to apply
Theorem 8, we need a decision problem, i.e., a problem having values YES
and NO. Below, we will define such a decision problem; in fact, we will define
the corresponding subset V C R?" of YES-inputs.

Fix the integer n and the real number » > 1. We define an algorithm
B that takes as input any sequence of 2n real numbers. On input sequence
X1, Ta, ..., Ty, algorithm B does the following.

22

Step 1. Check if z; = ¢, for all 4, 1 < ¢ < n. If not, output NO, and
terminate. Otherwise, go to Step 2.

Step 2. Let € := 1/(2rn). Run algorithm A on the input z1, s, ..., Top, 7.
Let M be the r-approximate MWM that is computed by A. Check if
all edges of M have length €. If so, output YES. Otherwise, output
NO.

Let T4(n) and Tx(n) denote the complexities of algorithms A and B,
respectively. Then, it is clear that

Ts(n) < Ta(n) + cn,

for some constant c. Therefore, if we can show that B has complexity
Q(nlogn), then it follows immediately that A has complexity Q(nlogn)
as well.

Let V be the set of all points (1, Zs, - - ., T2,) in R?" that are accepted by
algorithm B. We will show that V has at least n! connected components. As
a result, Theorem 8 implies the Q(nlogn) lower bound on the complexity of
B and, hence, on the complexity of A.

Lemma 6 Let m be any permutation of 1,2,...,n, and let ¢ = 1/(2rn).
Then the point

P:=(1,2,...,n,7(1) +e,7(2) +¢...,m(n) +¢€)
18 contained in the set'V .

Proof. Let M* be the MWM of the elements 1,2,...,n,7(1) + ¢,7(2) +
€...,m(n) + € Since 0 < € < 1/2, it is easy to see that M* consists of the
edges (i,i+¢€), 1 <i<mn.

Consider what happens when algorithm B is run on input P. Clearly,
this input “survives” Step 1. Let M be the r-approximate MWM that is
computed in Step 2. We will show below that M = M*. Having proved this,
it follows that algorithm B accepts the input P, i.e., P € V.

Suppose that M # M*. Then M contains an edge of the form (i,),
(1,7 +€), or (i +€,j + €), for some integers i and j, i # j. (We consider
edges to be undirected.) Since 0 < ¢ < 1/2, it follows that this edge and,
hence, also the matching M, has weight more than 1/2. Clearly, the optimal
matching M* has weight ne = 1/(2r). Therefore, wt(M) > 1/2 = r-wt(M*).
This is a contradiction, because M is an r-approximate MWM. [|

Lemma 7 The set V' has at least n! connected components.

23

Proof. Let 7 and p be two different permutations of 1,2,...,n. Consider
the points

P:=(12,...,n,7(1)+e7m(2) +¢,....,m(n) +e€)

and
R:=(1,2,....n,p(1) + 6 p(2) +¢...,p(n) +e).

in R?". By Lemma 6, both these points are contained in the set V. We will
show that they are in different connected components of V.

Let C be an arbitrary curve in R?" that connects P and R. Since 7 and
p are distinct permutations, there are indices ¢ and j such that 7 (i) < m(j)
and p(i) > p(j). Hence, the curve C contains a point @,

Q = (plap27'"apnaqlana"'aqn)a

such that ¢; = ¢;. We claim that () is not contained in V. This will prove
that P and R are in different connected components of V.

To prove the claim, first assume that there is an index k, 1 < k < n, such
that pp # k. Then point @ is rejected by algorithm B and, therefore, Q & V.
Hence, we may assume that

Q:(1727'"7n7q17q2a"'JQTL)'

Let us see what happens if we run algorithm B on input (). This input
“survives” Step 1. Let M be the r-approximate M WM that is constructed
in Step 2.

If M contains an edge of the form (pg,p;) = (k,£), then algorithm B
rejects point (), because such an edge has length more than e¢. Hence, we
may assume that each edge of M has the form (pg, q) = (k, ;). Let a and
b be the integers, 1 < a,b < n, such that (a,¢;) and (b, ¢;) are edges of M.
Since (i) @ and b are distinct integers, (ii) ¢; = ¢;, and (iii) 0 < € < 1/2, one
of these two edges must have length more than e. Hence, algorithm B rejects
point (). This completes the proof. |

We summarize the result of this section.

Theorem 13 Let d > 1 be an integer. Any algebraic decision tree algorithm
that, when given a set of 2n points in R? and a real number r > 1, computes
an r-approzimate MWM , has complexity Q(nlogn).

24

3 Final remarks

In the algebraic decision tree model, square roots can be computed (exactly)
in unit time. Theorem 8 also holds, if k-th roots can be computed in unit
time, where k is an element of a finite set of positive integers. (The size of
this set may not depend on n.)

In Section 2.1, we have considered the linear decision tree model. I do
not think that in this model, the convex hull of a set of planar points can
be computed, although I do not know how to prove this. How do we answer
a question like “given three points in R?, are they colinear?”, in this linear
model?

A wealth of information about algebraic algorithms can be found in the
book by Biirgisser, Clausen, and Shokrollahi [2].

The lower bound proofs of this chapter are not valid for algorithms that
use indirect addressing. See Section IL.3 in the book by Mehlhorn [4].

We have only considered lower bounds for deterministic algorithms. Note
that quicksort is a randomized sorting algorithm. See Section I1.1.6 in [4] for
lower bounds on the expected running time of randomized algorithms.

References

[1] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th
Annu. ACM Sympos. Theory Comput., pages 80-86, 1983.

[2] P. Biirgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity
Theory. Springer-Verlag, Berlin, 1996.

[3] D. P. Dobkin and R. J. Lipton. On the complexity of computations under
varying sets of primitives. J. Comput. Syst. Sci., 18:86-91, 1979.

[4] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
Springer-Verlag, Heidelberg, Germany, 1984.

[5] J. W. Milnor. On the Betti numbers of real algebraic varieties. Proc.
Amer. Math. Soc., 15:275-280, 1964.

[6] J. W. Milnor. Singular Points of Complex Hypersurfaces. Princeton
University Press, Princeton, NJ, 1968.

[7] S.B.Raoand W. D. Smith. Approximating geometrical graphs via “span-
ners” and “banyans”. In Proc. 30th Annu. ACM Sympos. Theory Com-
put., pages 540-550, 1998.

25

[8] R. Thom. Sur I’homologie des variétés algébriques reélles. In S. S. Cairns,
editor, Differential and Combinatorial Topology, pages 255-265. Prince-
ton University Press, Princeton, NJ, 1965.

[9] P. M. Vaidya. Geometry helps in matching. STAM J. Comput., 18:1201—
1225, 1989.

26

